Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Trial Design
2.2.1. Back Squat One-Repetition Maximum Test (BS 1-RM)
2.2.2. Back Squat Exercise Protocol (BS)
2.2.3. a-tDCS Procedures
2.2.4. Surface EMG Protocol
2.3. Statistical Analyses
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
tDCS | Transcranial direct current stimulation |
a-tDCS | Anodal transcranial direct current stimulation |
1-RM | One-repetition maximum test |
sEMG | Surface electromyography |
BS | Back squat |
MVIC | Maximum voluntary isometric contraction |
RPE | Rate of perceived exertion |
MV | Mean concentric velocity |
EMGrms | Root mean square electromyography |
DLPFC | Dorsolateral prefrontal cortex |
M1 | Primary motor cortex |
CMJ | Counter movement jump |
RF | Rectus femoris |
VL | Vastus lateralis |
MC | Motor cortex |
TC | Temporal cortex |
References
- Lu, P.; Hanson, N.J.; Wen, L.; Guo, F.; Tian, X. Transcranial Direct Current Stimulation Enhances Muscle Strength of Non-dominant Knee in Healthy Young Males. Front. Physiol. 2021, 12, 788719. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cavuoto, L.; Schwaitzberg, S.; Norfleet, J.E.; Intes, X.; De, S. The Effects of Transcranial Electrical Stimulation on Human Motor Functions: A Comprehensive Review of Functional Neuroimaging Studies. Front. Neurosci. 2020, 14, 744. [Google Scholar] [CrossRef]
- Angius, L.; Hopker, J.; Mauger, A.R. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef]
- Horvath, J.C.; Vogrin, S.J.; Carter, O.; Cook, M.J.; Forte, J.D. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Exp. Brain Res. 2016, 234, 2629–2642. [Google Scholar] [CrossRef] [PubMed]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial direct current stimulation (tDCS): A Beginner’s guide for design and implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Lattari, E.; Oliveira, B.R.R.; Júnior, R.S.M.; Neto, S.R.M.; Oliveira, A.J.; Maranhão Neto, G.A.; Machado, S.; Budde, H. Acute effects of single dose transcranial direct current stimulation on muscle strength: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0229858. [Google Scholar] [CrossRef]
- Nitsche, M.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A Technical Guide to tDCS, and Related Non-Invasive Brain Stimulation Tools HHS Public Access Author Manuscript. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Marques, M.C.; Marques, M.C.; Sánchez-Medina, L. The Importance of Movement Velocity as a Measure to Control Resistance Training Intensity. J. Hum. Kinet. 2011, 29, 15–19. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The role of velocity based training in the strength periodization for modern athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-García, A.G.; Ribas-Serna, J.; González-Badillo, J.J. Velocity-based resistance training: Impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl. Physiol. Nutr. Metab. 2020, 45, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Yáñez García, J.M.; Mora-Custodio, R.; Ribas-Serna, J.; González-Badillo, J.J.; Rodríguez-Rosell, D. Movement velocity as a determinant of actual intensity in resistance exercise. Int. J. Sports Med. 2022, 43, 741–826. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sport. 2017, 27, 724–735. [Google Scholar] [CrossRef]
- Cuesta-Vargas, A.; Buchan, J.; Pajares, B.; Alba, E.; Roldan-Jiménez, C. Cancer-related fatigue stratification system based on patient-reported outcomes and objective outcomes: A cancer-related fatigue ambulatory index. PLoS ONE 2019, 14, e0215662. [Google Scholar] [CrossRef]
- Ebersole, K.T.; Malek, D.M. Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles. J. Athl. Train. 2008, 43, 152–156. [Google Scholar] [CrossRef]
- Alix-Fages, C.; García-Ramos, A.; Calderón-Nadal, G.; Colomer-Poveda, D.; Romero-Arenas, S.; Fernández-del-Olmo, M.; Márquez, G. Anodal transcranial direct current stimulation enhances strength training volume but not the force-velocity profile. Eur. J. Appl. Physiol. 2020, 120, 1881–1891. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, Y.C.; Jiang, R.S.; Lo, L.Y.; Wang, I.L.; Chiu, C.H. Transcranial direct current stimulation decreases the decline of speed during repeated sprinting in basketball athletes. Int. J. Environ. Res. Public Health 2021, 18, 6967. [Google Scholar] [CrossRef]
- Park, S.B.; Jun Sung, D.; Kim, B.; Kim, S.J.; Han, J.K. Transcranial Direct Current Stimulation of motor cortex enhances running performance. PLoS ONE 2019, 14, e0211902. [Google Scholar] [CrossRef] [PubMed]
- Hendy, A.M.; Kidgell, D.J. Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Exp. Brain Res. 2014, 232, 3243–3252. [Google Scholar] [CrossRef] [PubMed]
- Kan, B.; Dundas, J.E.; Nosaka, K. Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Appl. Physiol. Nutr. Metab. 2013, 38, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Torres-Torrelo, J.; Mora-Custodio, R.; Marques, M.C.; González-Badillo, J.J. Effort index as a novel variable for monitoring the level of effort during resistance exercises. J. Strength Cond. Res. 2018, 32, 2139–2153. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Shrestha, B.; Dunn, L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef]
- Dissanayaka, T.; Zoghi, M.; Farrell, M.; Egan, G.; Jaberzadeh, S. Sham transcranial electrical stimulation and its effects on corticospinal excitability: A systematic review and meta-analysis. Rev. Neurosci. 2018, 29, 223–232. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.; Pérez, C.; Morán-Navarro, R.; González-Badillo, J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sport. Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Jasper, H. Report of committee on methods of clinical exam in EEG. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- Fonteneau, C.; Mondino, M.; Arns, M.; Baeken, C.; Bikson, M.; Brunoni, A.R.; Burke, M.J.; Neuvonen, T.; Padberg, F.; Pascual-Leone, A.; et al. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. 2019, 12, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Zaghi, S.; Lopes, M.; Fregni, F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur. J. Neurol. 2008, 15, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, D.; Hermens, H. Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM). Roessingh Res. Dev. 2007, 1, 108–112. [Google Scholar]
- Napoli, N.J.; Mixco, A.R.; Bohorquez, J.E.; Signorile, J.F. An EMG comparative analysis of quadriceps during isoinertial strength training using nonlinear scaled wavelets. Hum. Mov. Sci. 2015, 40, 134–153. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Hamada, M.; Strigaro, G.; Murase, N.; Sadnicka, A.; Galea, J.M.; Edwards, M.J.; Rothwell, J.C. Cerebellar modulation of human associative plasticity. J. Physiol. 2012, 590, 2365–2374. [Google Scholar] [CrossRef]
- Alix-Fages, C.; Romero-Arenas, S.; Castro-Alonso, M.; Colomer-Poveda, D.; Río-Rodriguez, D.; Jerez-Martínez, A.; Fernandez-del-Olmo, M.; Márquez, G. Short-Term Effects of Anodal Transcranial Direct Current Stimulation on Endurance and Maximal Force Production. A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 536. [Google Scholar] [CrossRef]
- Vieira, L.A.F.; Lattari, E.; de Jesus Abreu, M.A.; Rodrigues, G.M.; Viana, B.; Machado, S.; Oliveira, B.R.R.; Maranhão Neto, G.D.A. Transcranial Direct Current Stimulation (tDCS) Improves Back-Squat Performance in Intermediate Resistance-Training Men. Res. Q. Exerc. Sport 2020, 93, 210–218. [Google Scholar] [CrossRef]
- Romero-Arenas, S.; Calderón-Nadal, G.; Alix-Fages, C.; Jerez-Martínez, A.; Colomer-Poveda, D.; Márquez, G. Transcranial Direct Current Stimulation Does Not Improve Countermovement Jump Performance in Young Healthy Men. J. Strength Cond. Res. 2019, 35, 2918–2921. [Google Scholar] [CrossRef]
- Alix-Fages, C.; Romero-Arenas, S.; Nadal, G.C.; Jerez-Martínez, A.; Pareja-Blanco, F.; Colomer-Poveda, D.; Márquez, G.; Garcia-Ramos, A. Transcranial direct current stimulation and repeated sprint ability: No effect on sprint performance or ratings of perceived exertion. Eur. J. Sport Sci. 2021, 22, 569–578. [Google Scholar] [CrossRef]
- Dutta, A.; Krishnan, C.; Kantak, S.S.; Ranganathan, R.; Nitsche, M.A. Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation. Restor. Neurol. Neurosci. 2015, 33, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A.M.; Saadi, Z.K.; Yahyavi, S.S.; Zarifkar, A.; Aligholi, H.; Nami, M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS ONE 2019, 14, e0220363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenville, R.; Maudrich, T.; Maudrich, D.; Villringer, A.; Ragert, P. Cerebellar transcranial direct current stimulation improves maximum isometric force production during isometric barbell squats. Brain Sci. 2020, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Oki, K.; Clark, L.A.; Amano, S.; Clark, B.C. Effect of Anodal Transcranial Direct Current Stimulation of the Motor Cortex on Elbow Flexor Muscle Strength in the Very Old. J. Geriatr. Phys. Ther. 2019, 42, 243–248. [Google Scholar] [CrossRef]
- Workman, C.D.; Fietsam, A.C.; Rudroff, T. Different Effects of 2 mA and 4 mA Transcranial Direct Current Stimulation on Muscle Activity and Torque in a Maximal Isokinetic Fatigue Task. Front. Hum. Neurosci. 2020, 14, 240. [Google Scholar] [CrossRef]
- López-Alonso, V.; Fernández-del-Olmo, M.; Costantini, A.; Gonzalez-Henriquez, J.J.; Cheeran, B. Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin. Neurophysiol. 2015, 126, 2342–2347. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Filip, A.; Zmijewski, P.; Zajac, A.; Tufano, J.J. Can post-activation performance enhancement (PAPE) improve resistance training volume during the bench press exercise? Int. J. Environ. Res. Public Health 2020, 17, 2554. [Google Scholar] [CrossRef]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Szkudlarek, A.; Lockie, R.G.; Zajac, A. Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public Health 2020, 17, 3752. [Google Scholar] [CrossRef]
- Kirnap, M.; Calis, M.; Turgut, A.O.; Halici, M.; Tuncel, M. The Efficacy of EMG-Biofeedback Training on Quadriceps Muscle Strength in Patients after Arthroscopic Meniscectomy. N. Z. Med. J. 2005, 118, 1224. [Google Scholar]
- Munoz-Martel, V.; Santuz, A.; Ekizos, A.; Arampatzis, A. Neuromuscular organisation and robustness of postural control in the presence of perturbations. Sci. Rep. 2019, 9, 12273. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean ± SD |
---|---|
Age (years) | 34.7 ± 3.3 |
Stature (cm) | 178.0 ± 7.6 |
Body mass (kg) | 76.8 ± 11.2 |
BMI (kg·m−2) | 26.8 ± 4.2 |
1-RM (kg) | 141.5 ± 16.3 |
SET 1 | SET 2 | SET 3 | ||||
---|---|---|---|---|---|---|
Right Leg | Left Leg | Right Leg | Left Leg | Right Leg | Left Leg | |
a-tDCS | ||||||
Rectus Femoris (µV) | 272.1 ± 86.6 * | 283.1 ± 135.2 | 279.7 ± 80.3 * | 282.0 ± 138.0 | 237.9 ± 104.1 | 228.0 ± 135.5 |
Vastus Lateralis (µV) | 202.4 ± 69.2 | 213.6 ± 73.6 | 212.0 ± 60.9 | 208.1 ± 73.0 | 170.3 ± 80.7 | 153.8 ± 83.2 |
Sham | ||||||
Rectus Femoris (µV) | 180.0 ± 47.6 | 267.1 ± 143.1 | 213.9 ± 72.1 | 285.0 ± 176.8 | 176.5 ± 63.3 | 246.6 ± 143.5 |
Vastus Lateralis (µV) | 197.3 ± 67.8 | 218.2 ± 73.4 | 216.1 ± 79.4 | 232.9 ± 93.1 | 193.0 ± 84.2 | 203.6 ± 88.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Sillero, M.; Chulvi-Medrano, I.; Maroto-Izquierdo, S.; Bonilla, D.A.; Vargas-Molina, S.; Benítez-Porres, J. Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise. J. Clin. Med. 2022, 11, 5220. https://doi.org/10.3390/jcm11175220
Garcia-Sillero M, Chulvi-Medrano I, Maroto-Izquierdo S, Bonilla DA, Vargas-Molina S, Benítez-Porres J. Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise. Journal of Clinical Medicine. 2022; 11(17):5220. https://doi.org/10.3390/jcm11175220
Chicago/Turabian StyleGarcia-Sillero, Manuel, Iván Chulvi-Medrano, Sergio Maroto-Izquierdo, Diego A. Bonilla, Salvador Vargas-Molina, and Javier Benítez-Porres. 2022. "Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise" Journal of Clinical Medicine 11, no. 17: 5220. https://doi.org/10.3390/jcm11175220
APA StyleGarcia-Sillero, M., Chulvi-Medrano, I., Maroto-Izquierdo, S., Bonilla, D. A., Vargas-Molina, S., & Benítez-Porres, J. (2022). Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise. Journal of Clinical Medicine, 11(17), 5220. https://doi.org/10.3390/jcm11175220