Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, J. Keeping your top players on the pitch: The key to football medicine at a professional level. Br. J. Sports Med. 2013, 47, 723–724. [Google Scholar] [CrossRef] [Green Version]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of injuries among male soccer players: A prospective, randomized intervention study targeting players with previous injuries or reduced function. Am. J. Sports Med. 2008, 36, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.; Dupont, G.; Ekstrand, J. Injury prevention strategies, coach compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: A survey of teams’ head medical officers. Br. J. Sports Med. 2016, 50, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, P.; Konefał, M.; Kowalczuk, E.; Chmura, J. Match outcome and sprinting activities in match play by elite German soccer players. J. Sports Med. Phys. Fit. 2018, 58, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Chmura, P.; Konefał, M.; Chmura, J.; Kowalczuk, E.; Zając, T.; Rokita, A.; Andrzejewski, M. Match outcome and running performance in different intensity ranges among elite soccer players. Biol. Sport 2018, 35, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Torreño, N.; Requena, B.; De Villarreal, E.S.; Casamichana, D.; Barbero-Alvarez, J.C.; Munguía-Izquierdo, D. Match-play activity profile in professional soccer players during official games and the relationship between external and internal load. J. Sports Med. Phys. Fit. 2015, 55, 1417–1422. [Google Scholar]
- Ekstrand, J.; Walden, M.; Hagglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [Green Version]
- McLaren, S.J.; Macpherson, T.W.; Coutts, A.J.; Hurst, C.; Spears, I.R.; Weston, M. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Med. 2018, 48, 641–658. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-Based Training Load in Soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Nassis, G.P. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Eirale, C.; Tol, J.L.; Farooq, A.; Smiley, F.; Chalabi, H. Low injury rate strongly correlates with team success in Qatari professional football. Br. J. Sports Med. 2013, 47, 807–808. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Wellmann, K. Perceptions of football players regarding injury risk factors and prevention strategies. PLoS ONE 2017, 12, e0176829. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.; Dahlström, H. The Reliability and Validity of a Physical Work Test. Acta Physiol. Scand. 1962, 55, 353–361. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.J.; Goss, F.L.; Dubé, J.; Rutkowski, J.; Dupain, M.; Brennan, C.; Andreacci, J. Validation of the Adult OMNI Scale of Perceived Exertion for Cycle Ergometer Exercise. Med. Sci. Sports Exerc. 2004, 36, 102–108. [Google Scholar] [CrossRef]
- Utter, A.C.; Robertson, R.J.; Green, J.M.; Suminski, R.R.; McAnulty, S.R.; Nieman, A.D.C. Validation of the Adult OMNI Scale of Perceived Exertion for Walking/Running Exercise. Med. Sci. Sports Exerc. 2004, 36, 1776–1780. [Google Scholar] [CrossRef]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training–Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.; A Florhaug, J.; Franklin, J.; Gottschall, L.; A Hrovatin, L.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibler, W.B.; Chandler, T.J.; Stracener, E.S. Musculoskeletal adaptations and injuries due to overtraining. Exerc. Sport Sci. Rev. 1992, 20, 99–126. [Google Scholar] [PubMed]
- Fanchini, M.; Rampinini, E.; Riggio, M.; Coutts, A.J.; Pecci, C.; McCall, A. Despite association, the acute: Chronic workload ratio does not predict non-contact injury in elite footballers. Sci. Med. Footb. 2018, 2, 108–114. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.W. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br. J. Sports Med. 2014, 48, 708–712. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Menaspà, P.; Coutts, A.J.; Kalkhoven, J.; Menaspà, M.J. Training Load and Its Role in Injury Prevention, Part I: Back to the Future. J. Athl. Train. 2020, 55, 885–892. [Google Scholar] [CrossRef]
- Wang, C.; Vargas, J.T.; Stokes, T.; Steele, R.; Shrier, I. Analyzing Activity and Injury: Lessons Learned from the Acute:Chronic Workload Ratio. Sports Med. 2020, 50, 1243–1254. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.-X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: A comprehensive 3-year study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.-X. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2016, 51, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal Training-Load Quantification in Elite English Premier League Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L.; O’Grady, C.J.; Scanlan, A.T. The Concurrent Validity of Session-Rating of Perceived Exertion Workload Obtained Face-to-Face Versus Via an Online Application: A Team Case Study. Int. J. Sports Physiol. Perform. 2020, 15, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- Hackenberger, B.K. Bayes or not Bayes, is this the question? Croat. Med. J. 2019, 60, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Ashby, D. Bayesian statistics in medicine: A 25 years review. Stat. Med. 2006, 25, 3589–3631. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.A. Bayesian Modeling and Computation in Python, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Albert, J.H.; Chib, S. Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 1993, 88, 669–679. [Google Scholar] [CrossRef]
- Kruschke, J.K.; Liddell, T.M. Bayesian data analysis for newcomers. Psychon. Bull. Rev. 2018, 25, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar]
- Impellizzeri, F.; Woodcock, S.; Coutts, A.J.; Fanchini, M.; McCall, A.; Vigotsky, A. Acute to random chronic workload ratio is ‘as’ associated with injury as acute to actual chronic workload ratio: Time to dismiss ACWR and its components. SportRXiv 2020, 243015567. [Google Scholar] [CrossRef] [Green Version]
- Delecroix, B.; McCall, A.; Dawson, B.; Berthoin, S.; Dupont, G. Workload and non-contact injury incidence in elite football players competing in European leagues. Eur. J. Sport Sci. 2018, 18, 1280–1287. [Google Scholar] [CrossRef]
- Menaspa, P. Are rolling averages a good way to assess training load for injury prevention? Br. J. Sports Med. 2017, 51, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulme, A.; McLean, S.; Salmon, P.M.; Thompson, J.; Lane, B.; Nielsen, R.O. Computational methods to model complex systems in sports injury research: Agent-based modelling (ABM) and systems dynamics (SD) modelling. Br. J. Sports Med. 2018, 53, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Kalkhoven, J.T.; Watsford, M.L.; Coutts, A.J.; Edwards, W.B.; Impellizzeri, F.M. Training Load and Injury: Causal Pathways and Future Directions. Sports Med. 2021, 51, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Tenan, M.S.; Kempton, T.; Novak, A.; Coutts, A.J. Acute: Chronic Workload Ratio: Conceptual Issues and Fundamental Pitfalls. Int. J. Sports Physiol. Perform. 2020, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
Overall, N = 815 | Injured, N = 30 | Not Injured, N = 785 | |
---|---|---|---|
ACWR | 1 (0.76, 1.16) | 1.2 (0.93, 1.35) | 0.99 (0.76, 1.35) |
ACWRr | 0.98 (0.67, 1.46) | 1.29 (1.02, 2.01) | 0.97 (0.67, 2.01) |
Acute Load | 1800 (1400, 2308) | 2138 (1820, 2880) | 1780 (1400, 2880) |
Cumulative Load (2 weeks) | 3640 (3000, 4362) | 3891 (3325, 4745) | 3625 (2990, 4745) |
Cumulative Load (3 weeks) | 5331 (4513, 6271) | 5458 (4582, 5899) | 5327 (4511, 5899) |
Cumulative Load (4 weeks) | 7174 (5826, 8347) | 7065 (5951, 8621) | 7185 (5825, 8621) |
Chronic Load (4 weeks) | 1900 (1620, 2244) | 1870 (1598, 2141) | 1900 (1620, 2254) |
Variables | Overall, N = 815 | Injured, N = 30 | Not Injured, N = 785 |
---|---|---|---|
Acute Load Quantiles | |||
First | 205 (25%) | 3 (10%) | 202 (26%) |
Second | 206 (25%) | 5 (17%) | 201 (26%) |
Third | 200 (25%) | 8 (27%) | 192 (24%) |
Fourth | 204 (25%) | 14 (47%) | 190 (24%) |
ACWR Quantiles | |||
First | 205 (25%) | 3 (25%) | 202 (26%) |
Second | 219 (27%) | 6 (20%) | 213 (27%) |
Third | 187 (23%) | 5 (17%) | 182 (23%) |
Fourth | 204 (25%) | 16 (53%) | 188 (24%) |
ACWRr Quantiles | |||
First | 204 (25%) | 205 (25%) | 201 (26%) |
Second | 204 (25%) | 206 (25%) | 200 (25%) |
Third | 203 (25%) | 200 (25%) | 194 (25%) |
Fourth | 204 (25%) | 204 (25%) | 190 (24%) |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
Injured | ||||
Mu | 2296.28 | 2000.21 | 2592.58 | 8196.6 |
Sigma | 756.34 | 560.5 | 1023.57 | 3394.13 |
Not Injured | ||||
Mu | 1847.62 | 1792.49 | 1903.53 | 22,465.81 |
Sigma | 654.33 | 590.28 | 720.85 | 14,753.83 |
Group Diff. | ||||
Nu | 12.46 | 5.23 | 38.46 | 4233.86 |
Effect Size | 0.64 | 0.20 | 1.09 | |
Mean Diff | 448.66 | 146.36 | 748.07 |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
Injured | ||||
Mu | 1.18 | 1.03 | 1.32 | 19,033 |
Sigma | 0.38 | 0.28 | 0.51 | 6421 |
Not Injured | ||||
Mu | 0.96 | 0.94 | 0.98 | 17,854 |
Sigma | 0.28 | 0.26 | 0.30 | 12,787 |
Group Diff. | ||||
Nu | 23.26 | 8.64 | 64.66 | 6155.5 |
Effect Size | 0.64 | 0.2 | 1.08 | |
Mean Diff | 0.21 | 0.07 | 0.36 |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
ACWR | ||||
β0 | −3.45 | −3.92 | −3.04 | 11,557 |
β1 | −0.62 | −1.55 | 0.11 | 9272 |
β2 | −0.13 | −0.81 | 0.51 | 15,042 |
β3 | −0.15 | −0.87 | 0.53 | 15,573 |
β4 | 0.90 | 0.28 | 1.51 | 6059 |
P(Inj | ACWR > 1.15) | 0.07 | 0.04 | 0.11 | |
Random ACWR | ||||
β0 | −3.43 | −3.90 | −3.03 | 10,439 |
β1 | −0.62 | −1.56 | 0.09 | 8005 |
β2 | −0.41 | −1.22 | 0.28 | 11,619 |
β3 | 0.30 | −0.30 | 0.92 | 10,790 |
β4 | 0.73 | 0.12 | 1.34 | 5809 |
P(Inj | ACWRr > 1.45) | 0.06 | 0.04 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, L.; Sampietro, M.; Cicognini, A.; García-Sillero, M.; Vargas-Molina, S. Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. J. Clin. Med. 2022, 11, 5945. https://doi.org/10.3390/jcm11195945
Carbone L, Sampietro M, Cicognini A, García-Sillero M, Vargas-Molina S. Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. Journal of Clinical Medicine. 2022; 11(19):5945. https://doi.org/10.3390/jcm11195945
Chicago/Turabian StyleCarbone, Leandro, Matias Sampietro, Agustin Cicognini, Manuel García-Sillero, and Salvador Vargas-Molina. 2022. "Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis" Journal of Clinical Medicine 11, no. 19: 5945. https://doi.org/10.3390/jcm11195945
APA StyleCarbone, L., Sampietro, M., Cicognini, A., García-Sillero, M., & Vargas-Molina, S. (2022). Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. Journal of Clinical Medicine, 11(19), 5945. https://doi.org/10.3390/jcm11195945