Research Trends and Hotspots of Retinal Optical Coherence Tomography: A 31-Year Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Rretrieval
2.2. Data Analysis
2.2.1. WOS Analysis Tool
2.2.2. VOSviewer
2.2.3. CiteSpace
3. Results
3.1. Publication Output and Growth Trend
3.2. Co-Occurrence Analysis of the Top 100 Keywords
3.3. Co-Citation Reference Analysis
3.3.1. Clusters of Research
3.3.2. Most Co-Cited Papers and Burst Detection
3.4. Contribution of Countries/Regions, Institutions, and Authors
3.5. Contribution of Journals
4. Discussion
4.1. Global Output on Retinal OCT Research
4.2. Trends and Hotspots in Retinal OCT Research
4.2.1. Cluster 1 (Figure 2, Red Cluster): Thickness Measurements by OCT
4.2.2. Cluster 2 (Figure 2, Green Cluster): Therapies for the Treatments of Macular Degeneration and Macular Edema
4.2.3. Cluster 3 (Figure 2, Blue Cluster): Degenerative Retinal Diseases
4.2.4. Cluster 4 (Figure 2, Yellow Cluster): OCTA Technique
4.2.5. Cluster 5 (Figure 2, Purple Cluster): Vitrectomy for MH and ERM
4.3. Emerging Frontiers in Retinal OCT Research
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geitzenauer, W.; Hitzenberger, C.K.; Schmidt-Erfurth, U.M. Retinal optical coherence tomography: Past, present and future perspectives. Br. J. Ophthalmol. 2011, 95, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Schuman, J.S.; Hee, M.R.; Puliafito, C.A.; Wong, C.; Pedut-Kloizman, T.; Lin, C.P.; Hertzmark, E.; Izatt, J.A.; Swanson, E.A.; Fujimoto, J.G. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 1995, 113, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Staurenghi, G.; Sadda, S.; Chakravarthy, U.; Spaide, R.F. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The IN•OCT consensus. Ophthalmology 2014, 121, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, W.; Zheng, K.; Peng, K.; Xia, H.; Zhu, L. Prediction of spontaneous closure of traumatic macular hole with spectral domain optical coherence tomography. Sci. Rep. 2015, 5, 12343. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Bailey, S.T.; Hwang, T.S.; McClintic, S.M.; Gao, S.S.; Pennesi, M.E.; Flaxel, C.J.; Lauer, A.K.; Wilson, D.J.; Hornegger, J.; et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl. Acad. Sci. USA. 2015, 112, E2395–E2402. [Google Scholar] [CrossRef]
- Castillo, M.M.; Mowatt, G.; Elders, A.; Lois, N.; Fraser, C.; Hernández, R.; Amoaku, W.; Burr, J.M.; Lotery, A.; Ramsay, C.R.; et al. Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: A systematic review. Ophthalmology 2015, 122, 399–406. [Google Scholar] [CrossRef]
- Katsimpris, A.; Karamaounas, A.; Sideri, A.M.; Katsimpris, J.; Georgalas, I.; Petrou, P. Optical coherence tomography angiography in Alzheimer’s disease: A systematic review and meta-analysis. Eye 2021, 36, 1419–1426. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Durairajanayagam, D.; Tatagari, S.; Esteves, S.C.; Harlev, A.; Henkel, R.; Roychoudhury, S.; Homa, S.; Puchalt, N.G.; Ramasamy, R.; et al. Bibliometrics: Tracking research impact by selecting the appropriate metrics. Asian J. Androl. 2016, 18, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Kuang, L.; Zhao, J.; Ross, A.E.; Wang, Z.; Ciolino, J.B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J. Control. Release 2022, 345, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ye, J.; Lu, F.; Shen, M. Trends in Research Related to Ophthalmic OCT Imaging From 2011 to 2020: A Bibliometric Analysis. Front. Med. 2022, 9, 820706. [Google Scholar] [CrossRef] [PubMed]
- De Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 2015, 1, 5. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K. Image artifacts in optical coherence tomography angiography. Retina 2015, 35, 2163–2180. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef]
- Spaide, R.F.; Klancnik, J.M., Jr.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef]
- Jia, Y.; Bailey, S.T.; Wilson, D.J.; Tan, O.; Klein, M.L.; Flaxel, C.J.; Potsaid, B.; Liu, J.J.; Lu, C.D.; Kraus, M.F.; et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 2014, 121, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.P.; Zhang, M.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Jia, Y.; Huang, D. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017, 7, 42201. [Google Scholar] [CrossRef] [PubMed]
- Margolis, R.; Spaide, R.F. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 2009, 147, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, Y.; Takusagawa, H.L.; Pechauer, A.D.; Edmunds, B.; Lombardi, L.; Davis, E.; Morrison, J.C.; Huang, D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015, 133, 1045–1052. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef]
- Paunescu, L.A.; Schuman, J.S.; Price, L.L.; Stark, P.C.; Beaton, S.; Ishikawa, H.; Wollstein, G.; Fujimoto, J.G. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1716–1724. [Google Scholar] [CrossRef]
- Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef]
- Avery, R.L.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 2006, 113, 363–372.e5. [Google Scholar] [CrossRef]
- Fung, A.E.; Lalwani, G.A.; Rosenfeld, P.J.; Dubovy, S.R.; Michels, S.; Feuer, W.J.; Puliafito, C.A.; Davis, J.L.; Flynn, H.W., Jr.; Esquiabro, M. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 566–583. [Google Scholar] [CrossRef]
- Spaide, R.F.; Koizumi, H.; Pozzoni, M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2008, 146, 496–500. [Google Scholar] [CrossRef]
- Fujiwara, T.; Imamura, Y.; Margolis, R.; Slakter, J.S.; Spaide, R.F. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am. J. Ophthalmol. 2009, 148, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Fujiwara, T.; Margolis, R.; Spaide, R.F. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009, 29, 1469–1473. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, Y.; Kawaguchi, K.; Nouchi, T.; Yasuno, Y. Choroidal thickness in healthy Japanese subjects. Invest. Ophthalmol. Vis. Sci. 2010, 51, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Curcio, C.A. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: Literature review and model. Retina 2011, 31, 1609–1619. [Google Scholar] [CrossRef]
- Tan, C.S.; Ouyang, Y.; Ruiz, H.; Sadda, S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 261–266. [Google Scholar] [CrossRef]
- Wollstein, G.; Schuman, J.S.; Price, L.L.; Aydin, A.; Stark, P.C.; Hertzmark, E.; Lai, E.; Ishikawa, H.; Mattox, C.; Fujimoto, J.G.; et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch. Ophthalmol. 2005, 123, 464–470. [Google Scholar] [CrossRef]
- Langenegger, S.J.; Funk, J.; Töteberg-Harms, M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3338–3344. [Google Scholar] [CrossRef]
- Chung, S.E.; Kang, S.W.; Lee, J.H.; Kim, Y.T. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 2011, 118, 840–845. [Google Scholar] [CrossRef]
- Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: One-year results of 2 randomized clinical trials—TAP report. Arch. Ophthalmol. 1999, 117, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of macular edema: Beyond the surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef] [PubMed]
- Martidis, A.; Duker, J.S.; Greenberg, P.B.; Rogers, A.H.; Puliafito, C.A.; Reichel, E.; Baumal, C. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 2002, 109, 920–927. [Google Scholar] [CrossRef]
- Mitchell, P.; Bandello, F.; Schmidt-Erfurth, U.; Lang, G.E.; Massin, P.; Schlingemann, R.O.; Sutter, F.; Simader, C.; Burian, G.; Gerstner, O.; et al. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011, 118, 615–625. [Google Scholar] [CrossRef]
- Ip, M.; Hendrick, A. Retinal Vein Occlusion Review. Asia-Pac. J. Ophthalmol. 2018, 7, 40–45. [Google Scholar] [CrossRef]
- Holló, G.; Aung, T.; Cantor, L.B.; Aihara, M. Cystoid macular edema related to cataract surgery and topical prostaglandin analogs: Mechanism, diagnosis, and management. Surv. Ophthalmol. 2020, 65, 496–512. [Google Scholar] [CrossRef]
- Zur, D.; Iglicki, M.; Busch, C.; Invernizzi, A.; Mariussi, M.; Loewenstein, A. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology 2018, 125, 267–275. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, L.J.; Pang, C.P.; Chen, H. Ellipsoid zone optical intensity reduction as an early biomarker for retinitis pigmentosa. Acta Ophthalmol. 2021, 99, e215–e221. [Google Scholar] [CrossRef]
- Hood, D.C.; Lazow, M.A.; Locke, K.G.; Greenstein, V.C.; Birch, D.G. The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2011, 52, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Sadda, S.R.; Guymer, R.; Holz, F.G.; Schmitz-Valckenberg, S.; Curcio, C.A.; Bird, A.C.; Blodi, B.A.; Bottoni, F.; Chakravarthy, U.; Chew, E.Y.; et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology 2018, 125, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Fu, D.J.; Liefers, B.; Faes, L.; Glinton, S.; Wagner, S.; Struyven, R.; Pontikos, N.; Keane, P.A.; Balaskas, K. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: A model development and external validation study. Lancet Digit. Health 2021, 3, e665–e675. [Google Scholar] [CrossRef]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Yousefi, S.; Saunders, L.J.; Belghith, A.; Manalastas, P.I.; Medeiros, F.A.; Weinreb, R.N. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology 2016, 123, 2498–2508. [Google Scholar] [CrossRef]
- Spaide, R.F. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am. J. Ophthalmol. 2016, 170, 58–67. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, F.; Motulsky, E.H.; Gregori, G.; Chu, Z.; Chen, C.L.; Li, C.; de Sisternes, L.; Durbin, M.; Rosenfeld, P.J.; et al. A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 203–211. [Google Scholar] [CrossRef]
- Borrelli, E.; Sarraf, D.; Freund, K.B.; Sadda, S.R. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog. Retin. Eye Res. 2018, 67, 30–55. [Google Scholar] [CrossRef]
- Brooks, H.L., Jr. Macular hole surgery with and without internal limiting membrane peeling. Ophthalmology 2000, 107, 1939–1948; discussion 1948–1949. [Google Scholar] [CrossRef]
- Fung, A.T.; Galvin, J.; Tran, T. Epiretinal membrane: A review. Clin. Exp. Ophthalmol. 2021, 49, 289–308. [Google Scholar] [CrossRef]
- Ullrich, S.; Haritoglou, C.; Gass, C.; Schaumberger, M.; Ulbig, M.W.; Kampik, A. Macular hole size as a prognostic factor in macular hole surgery. Br. J. Ophthalmol. 2002, 86, 390–393. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R.; et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef] [PubMed]
Rank | First Author | Year | Source | Title | Doi | Citations | Cluster |
---|---|---|---|---|---|---|---|
1 [18] | Spaide RF | 2015 | JAMA Ophthalmol. | Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography | 10.1001/jamaophthalmol.2014.3616 | 570 | 0 |
2 [15] | Spaide RF | 2015 | Retina-J. Ret. Vit. Dis. | Image artifacts in optical coherence tomography angiography | 10.1097/IAE.0000000000000765 | 417 | 0 |
3 [6] | Spaide RF | 2018 | Prog. Retin. Eye Res. | Optical coherence tomography angiography | 10.1016/j.preteyeres.2017.11.003 | 356 | 0 |
4 [19] | Jia YL | 2012 | Opt. Epress | Split-spectrum amplitude-decorrelation angiography with optical coherence tomography | 10.1364/OE.20.004710 | 340 | 0 |
5 [4] | Staurenghi G | 2014 | Ophthalmology | Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus | 10.1016/j.ophtha.2014.02.023 | 308 | 17 |
6 [20] | Jia YL | 2014 | Ophthalmology | Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration | 10.1016/j.ophtha.2014.01.034 | 290 | 0 |
7 [22] | Margolis R | 2009 | Am. J. Ophthalmo.l | A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes | 10.1016/j.ajo.2008.12.008 | 274 | 6 |
8 [7] | Jia YL | 2015 | Proc. Natl. Acad. Sci. USA | Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye | 10.1073/pnas.1500185112 | 272 | 0 |
9 [21] | Campbell JP | 2017 | Sci. Rep. | Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography | 10.1038/srep42201 | 264 | 0 |
10 [23] | Rosenfeld PJ | 2006 | N. Engl. J. Med. | Ranibizumab for neovascular age-related macular degeneration | 10.1056/NEJMoa054481 | 252 | 3 |
Rank | Country/Region | Record | Citations | Average Article Citations | H-Index | Rank | Co-Authorship Country/Region | Total Link Strength |
---|---|---|---|---|---|---|---|---|
1 | USA | 7835 | 295,069 | 37.66 | 198 | 1 | USA | 5300 |
2 | China | 2705 | 41,667 | 15.4 | 86 | 2 | England | 2242 |
3 | Japan | 2269 | 57,132 | 25.18 | 100 | 3 | Germany | 1937 |
4 | Germany | 2106 | 56,136 | 26.66 | 103 | 4 | Italy | 1587 |
5 | Italy | 1879 | 37,785 | 20.11 | 80 | 5 | China | 1335 |
6 | England | 1715 | 47,537 | 27.72 | 97 | 6 | France | 1204 |
7 | South Korea | 1644 | 29,381 | 17.87 | 67 | 7 | Switzerland | 1139 |
8 | Turkey | 1413 | 12,076 | 8.55 | 41 | 8 | Australia | 1006 |
9 | France | 1083 | 27,380 | 25.28 | 78 | 9 | India | 936 |
10 | India | 975 | 13,261 | 13.6 | 54 | 10 | Spain | 931 |
Rank | Institutions | Record | Countries | Rank | Co-Authorship Institution | Total Link Strength | Countries |
---|---|---|---|---|---|---|---|
1 | University of California System | 1272 | USA | 1 | University of California Los Angeles | 1507 | USA |
2 | University of London | 1011 | England | 2 | Moorfields Eye Hospital | 1339 | England |
3 | University College London | 946 | England | 3 | University College London | 1317 | England |
4 | Moorfields Eye Hospital NHS Foundation Trust | 777 | England | 4 | Vitreous Retina Macula Consultant of New York | 1206 | USA |
5 | Medical University of Vienna | 564 | Austria | 5 | New York University | 1181 | USA |
Rank | Author | Records | Rank | Co-Authorship Author | Total Link Strength |
---|---|---|---|---|---|
1 | Bandello F | 299 | 1 | Bandello F | 1202 |
2 | Querques G | 249 | 2 | Yoshimura N | 1174 |
3 | Schmidt-erfurth U | 239 | 3 | Querques G | 1088 |
4 | Sadda SR | 235 | 4 | Tsujikawa A | 786 |
5 | Yoshimura N | 227 | 5 | Duker JS | 760 |
6 | Freund KB | 215 | 6 | Fujimoto JG | 703 |
7 | Duker JS | 207 | 7 | Weinreb RN | 696 |
8 | Holz FG | 193 | 8 | Holz FG | 636 |
9 | Weinreb RN | 188 | 9 | Huang D | 636 |
10 | Fujimoto JG | 185 | 10 | Schmidt-erfurth U | 628 |
Rank | Journal | Record | Impact Factor | Journal Quartile | Rank | Co-Cited Journal | Cited Time | Impact Factor | Journal Quartile |
---|---|---|---|---|---|---|---|---|---|
1 | Invest. Ophth. Vis. Sci. | 2026 | 4.799 | Q1 | 1 | Invest. Ophth. Vis. Sci. | 90,587 | 4.799 | Q1 |
2 | Retina-J. Ret. Vit. Dis. | 1994 | 4.256 | Q1 | 2 | Ophthalmology | 83,931 | 12.079 | Q1 |
3 | Am. J. Ophthalmol. | 1260 | 5.258 | Q1 | 3 | Am. J. Ophthalmol. | 67,517 | 5.258 | Q1 |
4 | Graef Arch. Clin. Exp. | 1033 | 3.117 | Q2 | 4 | Retina-J. Ret. Vit. Dis. | 48,182 | 4.256 | Q1 |
5 | Brit. J. Ophthalmol. | 948 | 4.638 | Q1 | 5 | Acta Ophthalmol. | 38,288 | 3.761 | Q1 |
6 | Ophthalmology | 800 | 12.079 | Q1 | 6 | Brit. J. Ophthalmol. | 35,172 | 4.638 | Q1 |
7 | Eur. J. Ophthalmol. | 666 | 2.597 | Q3 | 7 | Graef Arch. Clin. Exp. | 19,714 | 3.117 | Q2 |
8 | Eye | 651 | 3.775 | Q1 | 8 | Eye | 14,662 | 3.775 | Q1 |
9 | PLoS ONE | 585 | 3.240 | Q2 | 9 | PLoS ONE | 11,479 | 3.240 | Q2 |
10 | Acta Ophthalmol. | 535 | 3.761 | Q1 | 10 | Prog. Retin. Eye Res. | 10,672 | 21.198 | Q1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.; Mai, X.; Lin, T.; Jiang, Z.; Wang, Z.; Chen, L.; Chen, H. Research Trends and Hotspots of Retinal Optical Coherence Tomography: A 31-Year Bibliometric Analysis. J. Clin. Med. 2022, 11, 5604. https://doi.org/10.3390/jcm11195604
Lin A, Mai X, Lin T, Jiang Z, Wang Z, Chen L, Chen H. Research Trends and Hotspots of Retinal Optical Coherence Tomography: A 31-Year Bibliometric Analysis. Journal of Clinical Medicine. 2022; 11(19):5604. https://doi.org/10.3390/jcm11195604
Chicago/Turabian StyleLin, Aidi, Xiaoting Mai, Tian Lin, Zehua Jiang, Zhenmao Wang, Lijia Chen, and Haoyu Chen. 2022. "Research Trends and Hotspots of Retinal Optical Coherence Tomography: A 31-Year Bibliometric Analysis" Journal of Clinical Medicine 11, no. 19: 5604. https://doi.org/10.3390/jcm11195604
APA StyleLin, A., Mai, X., Lin, T., Jiang, Z., Wang, Z., Chen, L., & Chen, H. (2022). Research Trends and Hotspots of Retinal Optical Coherence Tomography: A 31-Year Bibliometric Analysis. Journal of Clinical Medicine, 11(19), 5604. https://doi.org/10.3390/jcm11195604