Comparison of Automated Thresholding Algorithms in Optical Coherence Tomography Angiography Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashani, A.H.; Chen, C.-L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wang, R.K. Optical Coherence Tomography Based Angiography [Invited]. Biomed. Opt. Express 2017, 8, 1056. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Tran, S.; Amin, A.; Morse, L.S.; Moshiri, A.; Park, S.S.; Yiu, G. Retinal Vessel Density in Exudative and Nonexudative Age-Related Macular Degeneration on Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2020, 212, 7–16. [Google Scholar] [CrossRef]
- Xie, N.; Tan, Y.; Liu, S.; Xie, Y.; Shuai, S.; Wang, W.; Huang, W. Macular Vessel Density in Diabetes and Diabetic Retinopathy with Swept-Source Optical Coherence Tomography Angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2671–2679. [Google Scholar] [CrossRef]
- Kim, A.Y.; Chu, Z.; Shahidzadeh, A.; Wang, R.K.; Puliafito, C.A.; Kashani, A.H. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT362–OCT370. [Google Scholar] [CrossRef]
- Wintergerst, M.W.M.; Pfau, M.; Müller, P.L.; Berger, M.; de Sisternes, L.; Holz, F.G.; Finger, R.P. Optical Coherence Tomography Angiography in Intermediate Uveitis. Am. J. Ophthalmol. 2018, 194, 35–45. [Google Scholar] [CrossRef]
- Shahlaee, A.; Samara, W.A.; Hsu, J.; Say, E.A.T.; Khan, M.A.; Sridhar, J.; Hong, B.K.; Shields, C.L.; Ho, A.C. In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 165, 39–46. [Google Scholar] [CrossRef]
- Giarratano, Y.; Bianchi, E.; Gray, C.; Morris, A.; MacGillivray, T.; Dhillon, B.; Bernabeu, M.O. Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics. Transl. Vis. Sci. Technol. 2020, 9, 5. [Google Scholar] [CrossRef]
- Fragiotta, S.; Leong, B.C.S.; Kaden, T.R.; Bass, S.J.; Sherman, J.; Yannuzzi, L.A.; Freund, K.B. A Proposed Mechanism Influencing Structural Patterns in X-Linked Retinoschisis and Stellate Nonhereditary Idiopathic Foveomacular Retinoschisis. Eye 2019, 33, 724–728. [Google Scholar] [CrossRef]
- Battaglia Parodi, M.; Cicinelli, M.V.; Rabiolo, A.; Pierro, L.; Gagliardi, M.; Bolognesi, G.; Bandello, F. Vessel Density Analysis in Patients with Retinitis Pigmentosa by Means of Optical Coherence Tomography Angiography. Br. J. Ophthalmol. 2017, 101, 428–432. [Google Scholar] [CrossRef]
- Rabiolo, A.; Gelormini, F.; Sacconi, R.; Cicinelli, M.V.; Triolo, G.; Bettin, P.; Nouri-Mahdavi, K.; Bandello, F.; Querques, G. Comparison of Methods to Quantify Macular and Peripapillary Vessel Density in Optical Coherence Tomography Angiography. PLoS ONE 2018, 13, e0205773. [Google Scholar] [CrossRef] [PubMed]
- Terheyden, J.H.; Wintergerst, M.W.M.; Falahat, P.; Berger, M.; Holz, F.G.; Finger, R.P. Automated Thresholding Algorithms Outperform Manual Thresholding in Macular Optical Coherence Tomography Angiography Image Analysis. PLoS ONE 2020, 15, e0230260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, M.; Plöttner, P.; Sochurek, J.A.M.; Lauermann, J.L.; Alten, F.; Prasuhn, J.; Kasten, M.; Brüggemann, N. The Impact of Motion Artifacts on Quantitative Optical Coherence Tomography Angiography Analysis in Parkinson’s Disease. Park. Relat. Disord. 2022, 95, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Rommel, F.; Rommel, F.; Rothe, M.; Rothe, M.; Kurz, M.; Kurz, M.; Prasuhn, M.; Prasuhn, M.; Grisanti, S.; Ranjbar, M.; et al. Evaluating Diurnal Variations in Retinal Perfusion Using Optical Coherence Tomography Angiography. Int. J. Retin. Vitr. 2020, 6. [Google Scholar] [CrossRef]
- Ranjbar, M.; Rothe, M.; Klapa, S.; Lange, T.; Prasuhn, M.; Grisanti, S.; Riemekasten, G.; Humrich, J. Evaluation of Choroidal Substructure Perfusion in Patients Affected by Systemic Sclerosis: An Optical Coherence Tomography Angiography Study. Scand. J. Rheumatol. 2019, 49, 1–5. [Google Scholar] [CrossRef]
- Noguchi, K.; Gel, Y.R.; Brunner, E.; Konietschke, F. NparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J. Stat. Soft. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Obuchowski, N.A. Receiver Operating Characteristic Curves and Their Use in Radiology. Radiology 2003, 229, 3–8. [Google Scholar] [CrossRef]
- Cole, E.D.; Ferrara, D.; Novais, E.A.; Louzada, R.N.; Waheed, N.K. Clinical trial endpoints for optical coherence tomography angiography in neovascular age-related macular degeneration. Retina 2016, 36 (Suppl. 1), S83–S92. [Google Scholar] [CrossRef] [PubMed]
- Uji, A.; Balasubramanian, S.; Lei, J.; Baghdasaryan, E.; Al-Sheikh, M.; Sadda, S.R. Choriocapillaris Imaging Using Multiple En Face Optical Coherence Tomography Angiography Image Averaging. JAMA Ophthalmol. 2017, 135, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Sacconi, R.; Parravano, M.; Costanzo, E.; Querques, L.; Battista, M.; Grosso, D.; Giorno, P.; Bandello, F.; Querques, G. Optical coherence tomography angiography assessment of the diabetic macula: A Comparison Study Among Different Algorithms. Retina 2021, 41, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Pedinielli, A.; Bonnin, S.; Sanharawi, M.E.; Mané, V.; Erginay, A.; Couturier, A.; Tadayoni, R. Three Different Optical Coherence Tomography Angiography Measurement Methods for Assessing Capillary Density Changes in Diabetic Retinopathy. Ophthalmic. Surg. Lasers Imaging. Retin. 2017, 48, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, A.; Aragona, E.; Saladino, A.; Amato, A.; Bandello, F.; Battaglia Parodi, M. The Impact of Different Thresholds on Optical Coherence Tomography Angiography Images Binarization and Quantitative Metrics. Sci. Rep. 2021, 11, 14758. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Pichi, F.; Kumar Menia, N.; Shroff, D.; Phasukkijwatana, N.; Aggarwal, K.; Agarwal, A. Recent Advances in Wide Field and Ultrawide Field Optical Coherence Tomography Angiography in Retinochoroidal Pathologies. Expert Rev. Med. Devices 2021, 18, 375–386. [Google Scholar] [CrossRef]
- Mehta, N.; Liu, K.; Alibhai, A.Y.; Gendelman, I.; Braun, P.X.; Ishibazawa, A.; Sorour, O.; Duker, J.S.; Waheed, N.K. Impact of Binarization Thresholding and Brightness/Contrast Adjustment Methodology on Optical Coherence Tomography Angiography Image Quantification. Am. J. Ophthalmol. 2019, 205, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Laiginhas, R.; Cabral, D.; Falcão, M. Evaluation of the Different Thresholding Strategies for Quantifying Choriocapillaris Using Optical Coherence Tomography Angiography. Quant. Imaging Med. Surg. 2020, 10, 1994005. [Google Scholar] [CrossRef]
- Spaide, R.F. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am. J. Ophthalmol. 2016, 170, 58–67. [Google Scholar] [CrossRef]
- Rochepeau, C.; Kodjikian, L.; Garcia, M.-A.; Coulon, C.; Burillon, C.; Denis, P.; Delaunay, B.; Mathis, T. Optical Coherence Tomography Angiography Quantitative Assessment of Choriocapillaris Blood Flow in Central Serous Chorioretinopathy. Am. J. Ophthalmol. 2018, 194, 26–34. [Google Scholar] [CrossRef]
- Borrelli, E.; Grosso, D.; Parravano, M.; Costanzo, E.; Brambati, M.; Viganò, C.; Sacconi, R.; Querques, L.; Pina, A.; De Geronimo, D.; et al. Volume Rendered 3D OCTA Assessment of Macular Ischemia in Patients with Type 1 Diabetes and without Diabetic Retinopathy. Sci. Rep. 2021, 11, 19793. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Mastropasqua, L.; Souied, E.; Sadda, S.; Vella, G.; Toto, L.; Miere, A.; Corradetti, G.; Sacconi, R.; Ferro, G.; et al. Longitudinal Assessment of Type 3 Macular Neovascularization Using 3D Volume-Rendering OCTA. Can. J. Ophthalmol. 2022, 57, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Kar, S.S.; Sevgi, D.D.; Madabhushi, A.; Srivastava, S.K.; Ehlers, J.P. Quantitative Imaging Biomarkers in Age-Related Macular Degeneration and Diabetic Eye Disease: A Step Closer to Precision Medicine. J. Pers. Med. 2021, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
Parameters | Overall | Controls | Diseased | DR | AMD | Uveitis | RVO |
---|---|---|---|---|---|---|---|
No. Patients/Eyes | 51/91 | 21/21 | 47/70 | 12/23 | 14/23 | 13/15 | 8/9 |
Laterality, left n (%) | 48 (52.7%) | 10 (47.6%) | 38 (54.3%) | 12 (52.2%) | 12 (52.2%) | 9 (60%) | 5 (55.6%) |
Age (years), mean ± SD | 70.5 ± 11.7 | 67.1 ± 10.6 | 71.5 ± 12 | 69.8 ± 9.7 | 79.8 ± 5.9 | 63.1 ± 14.7 | 68.6 ± 12.4 |
Sex, female n (%) | 27 (52.7%) | 7 (33.3%) | 41 (58.6%) | 14 (60.9%) | 14 (60.9%) | 8 (53.3%) | 5 (55.6%) |
Lens status, phakic n (%) | 35 (38.5%) | 13 (61.9%) | 22 (31.4%) | 9 (39.1%) | 7 (30.4%) | 0 (0%) | 6 (66.7%) |
VA (logMAR), mean ± SD | 0.30 ± 0.32 | 0.09 ± 0.12 | 0.37 ± 0.33 | 0.33 ± 0.22 | 0.34 ± 0.34 | 0.27 ± 0.22 | 0.69 ± 0.22 |
IOP (mmHg), mean ± SD | 14.7 ± 3.5 | 13.5 ± 3.8 | 15 ± 3.5 | 16.5 ± 3.0 | 14.8 ± 3.2 | 14.5 ± 3.7 | 12.8 ± 4.2 |
AL (mm), mean ± SD | 23.4 ± 1.0 | 23.5 ± 1.1 | 23.4 ± 0.9 | 23.4 ± 1.0 | 23.6 ± 0.8 | 23.2 ± 1.0 | 23.1 ± 0.5 |
CRT (μm), mean ± SD | 272.1 ± 72.7 | 258.3 ± 33.3 | 276.2 ± 80.6 | 249.9 ± 40.2 | 260.1 ± 47.1 | 327.5 ± 127.3 | 299.0 ± 92.8 |
Controls | Diseased | DR | AMD | Uveitis | RVO | |
---|---|---|---|---|---|---|
Default | 0.909 (0.801–0.963) | 0.887 (0.829–0.927) | 0.948 (0.895–0.977) | 0.652 (0.253–0.855) | 0.959 (0.903–0.985) | 0.953 (0.854–0.989) |
Huang | 0.784 (0.525–0.913) | 0.481 (0.216–0.667) | 0.930 (0.858–0.969) | 0.603 (0.146–0.870) | 0.642 (0.149–0.870) | −1.069 (−5.466–0.492) |
ISODATA | 0.921 (0.826–0.968) | 0.895 (0.841–0.932) | 0.948 (0.895–0.977) | 0.676 (0.305–0.865) | 0.960 (0.906–0.986) | 0.958 (0.869–0.990) |
Mean | 0.898 (0.777–0.959) | 0.899 (0.848–0.935) | 0.945 (0.889–0.976) | 0.672 (0.296–0.864) | 0.950 (0.881–0.982) | 0.963 (0.883–0.991) |
Otsu | 0.924 (0.834–0.969) | 0.894 (0.841–0.932) | 0.950 (0.898–0.978) | 0.683 (0.319–0.868 | 0.959 (0.902–0.985) | 0.956 (0.862–0.989) |
Controls | Diseased | DR | AMD | Uveitis | RVO | |
---|---|---|---|---|---|---|
Default | 0.322 (−0.488–0.726) | 0.958 (0.936–0.973) | 0.953 (0.902–0.979) | 0.953 (0.899–0.981) | 0.923 (0.816–0.972) | 0.973 (0.914–0.993) |
Huang | 0.605 (0.132–0.840) | 0.935 (0.902–0.958) | 0.871 (0.734–0.944) | 0.885 (0.752–0.952) | 0.967 (0.921–0.988) | 0.933 (0.790–0.984) |
ISODATA | 0.244 (−0.660–0.694) | 0.96 (0.94–0.975) | 0.951 (0.898–0.979) | 0.962 (0.918–0.984) | 0.926 (0.825–0.973) | 0.976 (0.925–0.994) |
Mean | 0.485 (−0.131–0.792) | 0.930 (0.894–0.955) | 0.905 (0.804–0.959) | 0.917 (0.821–0.965) | 0.938 (0.853–0.977) | 0.951 (0.848–0.988) |
Otsu | 0.407 (−0.301–0.760) | 0.96 (0.94–0.975 | 0.956 (0.908–0.981) | 0.960 (0.914–0.983) | 0.952 (0.886–0.983) | 0.970 (0.905–0.993) |
Algorithm Comparison | Agreement (Bland–Altman Analysis) | |||
---|---|---|---|---|
Algorithm 1 | Algorithm 2 | MD | LoA | Range |
Default | Mean | −10.13 | −4.87/−15.39 | 10.52 |
Default | Otsu | 1.69 | 2.5/0.87 | 1.63 |
Default | ISODATA | 1.25 | 2.03/0.48 | 1.55 |
Default | Huang | −11.24 | −5.03/−17.45 | 12.42 |
Mean | Otsu | 11.81 | 17.3/6.27 | 11.03 |
Mean | ISODATA | 11.38 | 17.03/5.74 | 11.29 |
Mean | Huang | −1.11 | 2.84/−5.06 | 7.9 |
Otsu | ISODATA | −0.43 | 0.04/−0.9 | 1.3 |
Otsu | Huang | −12.92 | −6.37/−19.47 | 13.1 |
ISODATA | Huang | −12.49 | −5.89/−19.1 | 13.21 |
Algorithm Comparison | Agreement (Bland–Altman Analysis) | |||
---|---|---|---|---|
Algorithm 1 | Algorithm 2 | MD | LoA | Range |
Default | Mean | 0.9 | 7.29/−5.5 | 12.79 |
Default | Otsu | −2.36 | −0.76/−3.96 | 3.2 |
Default | ISODATA | −0.91 | −0.76/−3.96 | 3.2 |
Default | Huang | 1.93 | 9.32/−5.41 | 14.73 |
Mean | Otsu | −3.26 | 3.29/−9.81 | 13.1 |
Mean | ISODATA | −1.81 | 5.25/−8.87 | 14.12 |
Mean | Huang | 1.03 | 5.23/−3.16 | 8.39 |
Otsu | ISODATA | 1.45 | 2.82/0.09 | 2.73 |
Otsu | Huang | 4.29 | 11.53/−2.94 | 14.47 |
ISODATA | Huang | 2.84 | 10.82/−5.14 | 15.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prangel, D.; Prasuhn, M.; Rommel, F.; Grisanti, S.; Ranjbar, M. Comparison of Automated Thresholding Algorithms in Optical Coherence Tomography Angiography Image Analysis. J. Clin. Med. 2023, 12, 1973. https://doi.org/10.3390/jcm12051973
Prangel D, Prasuhn M, Rommel F, Grisanti S, Ranjbar M. Comparison of Automated Thresholding Algorithms in Optical Coherence Tomography Angiography Image Analysis. Journal of Clinical Medicine. 2023; 12(5):1973. https://doi.org/10.3390/jcm12051973
Chicago/Turabian StylePrangel, David, Michelle Prasuhn, Felix Rommel, Salvatore Grisanti, and Mahdy Ranjbar. 2023. "Comparison of Automated Thresholding Algorithms in Optical Coherence Tomography Angiography Image Analysis" Journal of Clinical Medicine 12, no. 5: 1973. https://doi.org/10.3390/jcm12051973
APA StylePrangel, D., Prasuhn, M., Rommel, F., Grisanti, S., & Ranjbar, M. (2023). Comparison of Automated Thresholding Algorithms in Optical Coherence Tomography Angiography Image Analysis. Journal of Clinical Medicine, 12(5), 1973. https://doi.org/10.3390/jcm12051973