Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Groups
2.2. Collection of Samples for Analysis
2.3. Measurement of Sphingolipids
2.4. Statistical Analysis
3. Results
3.1. Sphingolipid Concentration in Study Group and Control Group
3.2. Correlation between Sphingolipids, Lipid Profile and BMI
3.3. Generalized Multivariable Linear Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamorro, C.C.; Arteaga, P.; Paredes, C.; Bravo, N.C.; Giraldo, C.V.; Betancourt, G.C.; Márquez, Z.; Torres, C.R. Cholelithiasis and associated complications in pediatric patients. Cir. Pediatr. 2020, 33, 172–176. [Google Scholar]
- Murphy, P.B.; Vogt, K.N.; Winick-Ng, J.; McClure, J.A.; Welk, B.; Jones, S.A. The increasing incidence of gallbladder disease in children: A 20year perspective. J. Pediatr. Surg. 2016, 51, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Tiwari, A.; Sharma, D.; Agrawal, R. Etiology-Based Decision-making Protocol for Pediatric Cholelithiasis. Indian Pediatr. 2021, 58, 729–732. [Google Scholar] [CrossRef]
- Zdanowicz, K.; Białokoz-Kalinowska, I.; Lebensztejn, D.M. Non-alcoholic fatty liver disease in non-obese children. Hong Kong Med. J. 2020, 26, 459–462. [Google Scholar] [CrossRef]
- Sarrami, M.; Ridley, W.; Nightingale, S.; Wright, T.; Kumar, R. Adolescent gallstones—Need for early intervention in symptomatic idiopathic gallstones. Pediatr. Surg. Int. 2019, 35, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Shao, W.; Liu, Q.; Liu, N.; Wang, Q.; Xu, J.; Zhang, X.; Weng, Z.; Lu, Q.; Jiao, L.; et al. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nat. Commun. 2022, 13, 252. [Google Scholar] [CrossRef]
- Krawczyk, M.; Niewiadomska, O.; Jankowska, I.; Jankowski, K.; Więckowski, S.; Lebensztejn, D.; Więcek, S.; Gozdowska, J.; Kułaga, Z.; Weber, S.N.; et al. Common variant p.D19H of the hepatobiliary sterol transporter ABCG8 increases the risk of gallstones in children. Liver Int. 2022, 42, 1585–1592. [Google Scholar] [CrossRef]
- Markowski, A.R.; Błachnio-Zabielska, A.U.; Guzińska-Ustymowicz, K.; Markowska, A.; Pogodzińska, K.; Roszczyc, K.; Zinczuk, J.; Zabielski, P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020, 10, 632. [Google Scholar] [CrossRef]
- Filimoniuk, A.; Blachnio-Zabielska, A.; Imierska, M.; Lebensztejn, D.M.; Daniluk, U. Sphingolipid Analysis Indicate Lactosylceramide as a Potential Biomarker of Inflammatory Bowel Disease in Children. Biomolecules 2020, 10, 1083. [Google Scholar] [CrossRef]
- Kurz, J.; Parnham, M.J.; Geisslinger, G.; Schiffmann, S. Ceramides as Novel Disease Biomarkers. Trends Mol. Med. 2019, 25, 20–32. [Google Scholar] [CrossRef]
- Zdanowicz, K.; Ryzko, J.; Bobrus-Chociej, A.; Wojtkowska, M.; Lebensztejn, D.M. The role of chemerin in the pathogenesis of cholelithiasis in children and adolescents. J. Paediatr. Child Health 2021, 57, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, K.; Bobrus-Chociej, A.; Lebensztejn, D.M. Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study. Biomedicines 2022, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Bielawski, J.; Pierce, J.S.; Snider, J.; Rembiesa, B.; Szulc, Z.M.; Bielawska, A. Comprehensive Quantitative Analysis of Bioactive Sphingolipids by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Methods Mol. Biol. 2009, 579, 443–467. [Google Scholar] [CrossRef]
- Lee, B.J.; Kim, J.S.; Kim, B.K.; Jung, S.J.; Joo, M.K.; Hong, S.G.; Kim, J.S.; Kim, J.H.; Yeon, J.E.; Park, J.; et al. Effects of sphingolipid synthesis inhibition on cholesterol gallstone formation in C57BL/6J mice. J. Gastroenterol. Hepatol. 2010, 25, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.S.; Oh, S.; Yoo, H.S. Inhibition of Ceramide Decreased the Expression of ATP-Binding Cassette Transporter G5/8 mRNA in an Animal Model of Cholesterol Gallstone. Dig. Dis. 2017, 35, 439–543. [Google Scholar] [CrossRef] [PubMed]
- Platania, C.B.M.; Cas, M.D.; Cianciolo, S.; Fidilio, A.; Lazzara, F.; Paroni, R.; Pignatello, R.; Strettoi, E.; Ghidoni, R.; Drago, F.; et al. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv. 2019, 26, 237–243. [Google Scholar] [CrossRef]
- Aye, I.L.; Singh, A.T.; Keelan, J.A. Transport of lipids by ABC proteins: Interactions and implications for cellular toxicity, viability and function. Chem. Biol. Interact. 2009, 180, 327–339. [Google Scholar] [CrossRef]
- Duan, R.D. Alkaline sphingomyelinase: An old enzyme with novel implications. Biochim. Biophys. Acta 2006, 1761, 281–291. [Google Scholar] [CrossRef]
- Wasilewska, N.; Bobrus-Chociej, A.; Harasim-Symbor, E.; Tarasów, E.; Wojtkowska, M.; Chabowski, A.; Lebensztejn, D.M. Increased serum concentration of ceramides in obese children with nonalcoholic fatty liver disease. Lipids Health Dis. 2018, 17, 216. [Google Scholar] [CrossRef]
- Chang, Y.; Noh, Y.H.; Suh, B.S.; Kim, Y.; Sung, E.; Jung, H.S.; Kim, C.W.; Kwon, M.J.; Yun, K.E.; Noh, J.W.; et al. Bidirectional Association between Nonalcoholic Fatty Liver Disease and Gallstone Disease: A Cohort Study. J. Clin. Med. 2018, 7, 458. [Google Scholar] [CrossRef]
- Arrese, M.; Cortés, V.; Barrera, F.; Nervi, F. Nonalcoholic fatty liver disease, cholesterol gallstones, and cholecystectomy: New insights on a complex relationship. Curr. Opin. Gastroenterol. 2018, 34, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Hernández, J.; Saldaña-Dávila, G.E.; Piña-Aguero, M.I.; Núñez-García, B.A.; López-Alarcón, M.G. Association between Plasmatic Ceramides Profile and AST/ALT Ratio: C14:0 Ceramide as Predictor of Hepatic Steatosis in Adolescents Independently of Obesity. Can. J. Gastroenterol. Hepatol. 2017, 2017, 3689375. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, A.; Pakarinen, M.; Gylling, H.; Nissinen, M.J. Relation of cholesterol metabolism to pediatric gallstone disease: A retrospective controlled study. BMC Gastroenterol. 2015, 15, 74. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, A.I.; Pakarinen, M.P.; Sittiwet, C.; Gylling, H.; Miettinen, T.A.; Miettinen, T.E.; Nissinen, M. Cholesterol, non-cholesterol sterols and bile acids in paediatric gallstones. Dig. Liver Dis. 2010, 42, 61–66. [Google Scholar] [CrossRef]
- Lopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Hammad, S.M.; Arthur, J.; Virella, G.; Klein, R.L. Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. J. Clin. Lipidol. 2019, 13, 481–491.e1. [Google Scholar] [CrossRef]
- Chen, G.C.; Chai, J.C.; Yu, B.; Michelotti, G.A.; Grove, M.L.; Fretts, A.M.; Daviglus, M.L.; Garcia-Bedoya, O.L.; Thyagarajan, B.; Schneiderman, N.; et al. Serum sphingolipids and incident diabetes in a US population with high diabetes burden: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am. J. Clin. Nutr. 2020, 112, 57–65. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Gordillo, R.; Koliaki, C.; Gancheva, S.; Jelenik, T.; De Filippo, E.; Herder, C.; Markgraf, D.; Jankowiak, F.; Esposito, I.; et al. Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care 2018, 41, 1235–1243. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, C.M.; Ha, E.; Park, S.K.; Jung, J.Y.; Ryoo, J.H. Association between metabolic syndrome and incidence of cholelithiasis in the Korean population. J. Gastroenterol. Hepatol. 2021, 36, 3524–3531. [Google Scholar] [CrossRef]
- Lv, J.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Li, S.; Huang, Y.; Fu, Y.; He, P.; et al. Gallstone Disease and the Risk of Type 2 Diabetes. Sci. Rep. 2017, 7, 15853. [Google Scholar] [CrossRef]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; DeFronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef]
- Wigger, L.; Cruciani-Guglielmacci, C.; Nicolas, A.; Denom, J.; Fernandez, N.; Fumeron, F.; Marques-Vidal, P.; Ktorza, A.; Kramer, W.; Schulte, A.; et al. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Rep. 2017, 18, 2269–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilvo, M.; Salonurmi, T.; Havulinna, A.S.; Kauhanen, D.; Pedersen, E.R.; Tell, G.S.; Meyer, K.; Teeriniemi, A.-M.; Laatikainen, T.; Jousilahti, P.; et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018, 61, 1424–1434. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, A.; Maciejczyk, M.; Szulimowska, J.; Imierska, M.; Błachnio-Zabielska, A. High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice. Biomolecules 2019, 9, 877. [Google Scholar] [CrossRef]
- Ichi, I.; Takashima, Y.; Adachi, N.; Nakahara, K.; Kamikawa, C.; Harada-Shiba, M.; Kojo, S. Effects of Dietary Cholesterol on Tissue Ceramides and Oxidation Products of Apolipoprotein B-100 in ApoE-Deficient Mice. Lipids 2007, 42, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Tippetts, T.S.; Holland, W.L.; Summers, S.A. Cholesterol–the devil you know; ceramide–the devil you don’t. Trends Pharmacol. Sci. 2021, 42, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Zabielski, P.; Daniluk, J.; Hady, H.R.; Markowski, A.R.; Imierska, M.; Górski, J.; Blachnio-Zabielska, A.U. The effect of high-fat diet and inhibition of ceramide production on insulin action in liver. J. Cell. Physiol. 2019, 234, 1851–1861. [Google Scholar] [CrossRef]
Marker | Patients with Cholelithiasis | Patients without Cholelithiasis | p |
---|---|---|---|
Number of patients | 48 | 38 | NA |
Age (median, range) | 12 (1–17) | 12 (4–17) | NS |
Sex (male) | 21 | 22 | NS |
BMI (kg/m2) | 20.45 (13.3–29) | 21.82 (13.3–39.54) | NS |
BMI z-score (median, range) | 0.98 (−1.73–2.59) | 1.17 (−2.09–2.9) | NS |
TC (mmol/L) | 3.8 (2.41–6.54) | 4.16 (3.21–7.71) | 0.04 |
TG (mmol/L) | 1.73 (0.37–1.96) | 0.94 (0.43–2.07) | NS |
Sph (ng/mL) | 2.35 (1.44–3.21) | 2.0 (1.37–3.23) | NS |
SPA (ng/mL) | 1.40 (1.11–2.23) | 1.69 (1.03–2.66) | 0.006 |
C14:0-Cer (ng/mL) | 0.94 (0.44–1.51) | 1.947 (1.01–2.52) | <0.001 |
C16:0-Cer (ng/mL) | 42.48 (27.42–96.93) | 85.24 (61.20–125.66) | <0.001 |
C18:1-Cer (ng/mL) | 1.45 (1.04–2.18) | 1.90 (0.92–4.44) | 0.01 |
C18:0-Cer (ng/mL) | 220.25 (125.50–318.55) | 273.91 (162.28–438.99) | 0.006 |
C20:0-Cer (ng/mL) | 38.67 (23.47–58.97) | 15.92 (10.73–39.07) | <0.001 |
C22:0-Cer (ng/mL) | 221.48 (158.69–286.96) | 235.12 (153.22–498.21) | NS |
C24:1-Cer (ng/mL) | 471.50 (335.72–651.07) | 395.00 (245.40–641.9) | 0.01 |
C24:0-Cer (ng/mL) | 725.99 (556.03–941.12) | 759.68 (469.39–1164.63) | NS |
C16:0-LacCer (ng/mL) | 1524.09 (901.77–2067.22) | 1356.47 (876.70–1725.39) | <0.001 |
C18:0-LacCer (ng/mL) | 77.16 (60.53–116.27) | 85.04 (62.72–116.88) | 0.01 |
C18:1-LacCer (ng/mL) | 26.44 (19.00–39.96) | 19.45 (12.88–28.10) | <0.001 |
C24:1-LacCer (ng/mL) | 610.90 (423.31–827.57) | 857.66 (552.53–1134.32) | <0.001 |
C24:0-LacCer (ng/mL) | 188.33 (134.33–284.36) | 277.38 (198.05–428.39) | <0.001 |
BMI | TG | TC | |
---|---|---|---|
SPA | NS | NS | NS |
C14:0-Cer | NS | R = 0.29; p = 0.01 | R = 0.55; p < 0.001 |
C16:0-Cer | R = 0.28; p = 0.01 | NS | R = 0.32; p = 0.003 |
C18:1-Cer | NS | NS | NS |
C18:0-Cer | NS | NS | NS |
C20:0-Cer | R = −0.35; p = 0.002 | NS | NS |
C24:1-Cer | R = −0.3; p = 0.007 | R = 0.37; p < 0.001 | NS |
C16:0-LacCer | NS | NS | NS |
C18:1-LacCer | NS | NS | R = −0.28; p = 0.01 |
C18:0-LacCer | NS | NS | NS |
C24:1-LacCer | NS | NS | R = 0.24; p = 0.03 |
C24:0-LacCer | NS | R = 0.24; p = 0.03 | R = 0.29; p = 0.009 |
Marker | AUC | 95% C.I. AUC | p | Cut-Off | Sensit. | Spec. | ACC |
---|---|---|---|---|---|---|---|
SPA | 0.326 | (0.211–0.442) | 0.003 | 1.107 | 100% | 26% | 57.0% |
C14:0-Cer | 0.99 | (0.971–1.0) | <0.001 | 1.363 | 95.8% | 97.4% | 96.5% |
C16:0-Cer | 1 | (1.0–1.0) | <0.001 | 59.692 | 97.9% | 100% | 98.8% |
C20:0-Cer | 0.914 | (0.857–0.972) | <0.001 | 26.83 | 93.8% | 73.7% | 84.9% |
C24:1-Cer | 0.656 | (0.533–0.778) | 0.01 | 406.594 | 77.1% | 60.5% | 69.8% |
C16:0-LacCer | 0.721 | (0.615–0.827) | <0.001 | 1536.383 | 50% | 92.1% | 68.6% |
C18:1-LacCer | 0.888 | (0.819–0.957) | <0.001 | 21.977 | 89.6% | 78.9% | 84.9% |
C24:1-LacCer | 0.876 | (0.804–0.948) | <0.001 | 749.27 | 65.8% | 93.8% | 81.4% |
C24:0-LacCer | 0.93 | (0.88–0.979) | <0.001 | 250.785 | 73.7% | 95.8% | 86.0% |
Dependent Variables | Model Coefficient (β) | p |
---|---|---|
Sph | 0.001 | NS |
SPA | −0.373 | <0.0001 |
C14:0-Cer | −1.014 | <0.0001 |
C16:0-Cer | −52.120 | <0.0001 |
C18:1-Cer | 0.045 | NS |
C18:0-Cer | −2.545 | NS |
C20:0-Cer | 19.839 | <0.0001 |
C22:0-Cer | 17.868 | NS |
C24:1-Cer | 83.609 | <0.0001 |
C24:0-Cer | 55.559 | NS |
C16:0-LacCer | 177.932 | 0.01 |
C18:0-LacCer | −7.504 | NS |
C18:1-LacCer | 8.419 | <0.0001 |
C24:1-LacCer | −252.245 | <0.0001 |
C24:0-LacCer | −84.788 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, K.; Bobrus-Chcociej, A.; Pogodzinska, K.; Blachnio-Zabielska, A.; Zelazowska-Rutkowska, B.; Lebensztejn, D.M.; Daniluk, U. Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study. J. Clin. Med. 2022, 11, 5613. https://doi.org/10.3390/jcm11195613
Zdanowicz K, Bobrus-Chcociej A, Pogodzinska K, Blachnio-Zabielska A, Zelazowska-Rutkowska B, Lebensztejn DM, Daniluk U. Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study. Journal of Clinical Medicine. 2022; 11(19):5613. https://doi.org/10.3390/jcm11195613
Chicago/Turabian StyleZdanowicz, Katarzyna, Anna Bobrus-Chcociej, Karolina Pogodzinska, Agnieszka Blachnio-Zabielska, Beata Zelazowska-Rutkowska, Dariusz Marek Lebensztejn, and Urszula Daniluk. 2022. "Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study" Journal of Clinical Medicine 11, no. 19: 5613. https://doi.org/10.3390/jcm11195613
APA StyleZdanowicz, K., Bobrus-Chcociej, A., Pogodzinska, K., Blachnio-Zabielska, A., Zelazowska-Rutkowska, B., Lebensztejn, D. M., & Daniluk, U. (2022). Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study. Journal of Clinical Medicine, 11(19), 5613. https://doi.org/10.3390/jcm11195613