Educational Effects of Simulation and Non-Simulation Training in Airway Management according to Levels of the Kirkpatrick Model: A Systematic Review and Network Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Inclusion Criteria
2.3. Interventions/Comparisons
2.4. Outcomes
2.5. Study Design
2.6. Statistical Analysis
2.7. Ethical Review
3. Results
3.1. Systematic Review
3.2. Primary Efficacy Endpoint: Knowledge Score
3.3. Primary Efficacy Endpoint: Behavior Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheney, F.W. The American Society of Anesthesiologists Closed Claims Project: What have we learned, how has it affected practice, and how will it affect practice in the future? Anesthesiology 1999, 91, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Chiaghana, C.; Giordano, C.; Cobb, D.; Vasilopoulos, T.; Tighe, P.J.; Sappenfield, J.W. Emergency department airway management responsibilities in the United States. Anesth. Analg. 2019, 128, 296–301. [Google Scholar] [CrossRef]
- Schnittker, R.; Marshall, S.; Horberry, T.; Young, K.L. Human factors enablers and barriers for successful airway management—An in-depth interview study. Anaesthesia 2018, 73, 980–989. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.; Cooper, R.M. A primer on the ethics of teaching and learning in airway management. Anaesthesia 2018, 73, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.D.; Chrimes, N. Time for a breath of fresh air: Rethinking training in airway management. Anaesthesia 2016, 71, 1259–1264. [Google Scholar] [CrossRef]
- Seam, N.; Lee, A.J.; Vennero, M.; Emlet, L. Simulation training in the ICU. Chest 2019, 156, 1223–1233. [Google Scholar] [CrossRef]
- Melissa, M. Simulation Training. Am. J. Nurs. 2018, 118, 13. [Google Scholar]
- Dilaveri, C.A.; Szostek, J.H.; Wang, A.T.; Cook, D.A. Simulation training for breast and pelvic physical examination: A systematic review and meta-analysis. BJOG 2013, 120, 1171–1182. [Google Scholar] [CrossRef]
- Batchelder, A.J.; Steel, A.; Mackenzie, R.; Hormis, A.P.; Daniels, T.S.; Holding, N. Simulation as a tool to improve the safety of pre-hospital anaesthesia—A pilot study. Anaesthesia 2009, 64, 978–983. [Google Scholar] [CrossRef]
- Binstadt, E.; Donner, S.; Nelson, J.; Flottemesch, T.; Hegarty, C. Simulator training improves fiber-optic intubation proficiency among emergency medicine residents. Acad. Emerg. Med. 2008, 15, 1211–1214. [Google Scholar] [CrossRef]
- Kneebone, R.; Nestel, D.; Wetzel, C.; Black, S.; Jacklin, R.; Aggarwal, R.; Yadollahi, F.; Wolfe, J.; Vincent, C.; Darzi, A. The human face of simulation: Patient-focused simulation training. Acad. Med. 2006, 81, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.J.; Cleave-Hogg, D.; McIlroy, J.; Devitt, J.H. Simulation technology: A comparison of experiential and visual learning for undergraduate medical students. Anesthesiology 2002, 96, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.C.; Cannon, E.K.; Warner, D.O.; Cook, D.A. Advanced airway management simulation training in medical education: A systematic review and meta-analysis. Crit. Care Med. 2014, 42, 169–178. [Google Scholar] [CrossRef]
- Kennedy, C.C.; Maldonado, F.; Cook, D.A. Simulation-based bronchoscopy training: Systematic review and meta-analysis. Chest 2013, 144, 183–192. [Google Scholar] [CrossRef]
- Pacheco Granda, F.A.; Salik, I. Simulation Training and Skill Assessment in Critical Care; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Rose, S. Medical student education in the time of COVID-19. JAMA 2020, 323, 2131–2132. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Mian, A. Medical education: COVID-19 and surgery. Br. J. Surg. 2020, 107, e269. [Google Scholar] [CrossRef]
- Palma-Vasquez, C.; Carrasco, D.; Hernando-Rodriguez, J.C. Mental health of teachers who have teleworked due to COVID-19. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 515–528. [Google Scholar] [CrossRef]
- Ahmed, H.; Allaf, M.; Elghazaly, H. COVID-19 and medical education. Lancet Infect. Dis. 2020, 20, 777–778. [Google Scholar] [CrossRef]
- Mujahid, M.; Lee, E.; Rustam, F.; Washington, P.B.; Ullah, S.; Reshi, A.A.; Ashrag, I. Sentiment analysis and topic modeling on tweets about online education during COVID-19. Appl. Sci. 2021, 11, 8438. [Google Scholar] [CrossRef]
- López-Belmonte, J.; Segura-Robles, A.; Moreno-Guerrero, A.-J.; Parra-González, M.-E. Projection of e-learning in higher education: A study of its scientific production in web of science. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 20–32. [Google Scholar] [CrossRef]
- Daniel, S.J. Education and the COVID-19 pandemic. Prospects 2020, 49, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Caliph, S.; Simpson, C.; Khoo, R.Z.; Neviles, G.; Muthumuni, S.; Lyons, K.M. Pharmacy student challenges and strategies towards initial COVID-19 curriculum changes. Healthcare 2021, 9, 1322. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, S. COVID-19 impact and virtual medical education. J. Adv. Med. Educ. Prof. 2020, 8, 140–143. [Google Scholar] [PubMed]
- Katić, S.; Ferraro, F.V.; Ambra, F.I.; Iavarone, M.L. Distance learning during the COVID-19 pandemic. A comparison between european countries. Educ. Sci. 2021, 11, 595. [Google Scholar] [CrossRef]
- Cernasev, A.; Desai, M.; Jonkman, L.J.; Connor, S.E.; Ware, N.; Sekar, M.C.; Schommer, J.C. Student pharmacists during the pandemic: Development of a COVID-19 Knowledge, Attitudes, and Practices (COVKAP) Survey. Pharmacy 2021, 9, 159. [Google Scholar] [CrossRef]
- Brivio, F.; Fagnani, L.; Pezzoli, S.; Fontana, I.; Biffi, L.; Mazzaferro, A.D.; Velasco, V.; Greco, A. School health promotion at the time of COVID-19: An exploratory investigation with school leaders and teachers. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 1181–1204. [Google Scholar] [CrossRef]
- Ferrel, M.N.; Ryan, J.J. The impact of COVID-19 on medical education. Cureus 2020, 12, e7492. [Google Scholar] [CrossRef]
- McDermott, D.; McEwing, E.; Lopez, J.; Osso, M.; Trujillo, G. Pandemic crisis: Simulation contingency plans. Teach Learn Nurs. 2021, 16, 393–395. [Google Scholar] [CrossRef]
- Craig, R.L. Training and Development Handbook; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Jansen, J.P.; Crawford, B.; Bergman, G.; Stam, W. Bayesian meta-analysis of multiple treatment comparisons: An introduction to mixed treatment comparisons. Value Health 2008, 11, 956–964. [Google Scholar]
- White, I.R. Network meta-analysis. Stata J. 2015, 15, 951–985. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Strus, S.; Thorlund, K.; Jensen, J.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Jansen, J.P.; Fleurence, R.; Devine, B.; Itzler, R.; Barrett, A.; Hawkins, N.; Lee, K.; Boersma, C.; Annemans, L.; Cappelleri, J.C. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 1. Value Health 2011, 14, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Hoaglin, D.C.; Hawkins, N.; Jansen, J.P.; Scott, D.A.; Itzler, R.; Cappelleri, J.C.; Boersma, C.; Thompson, D.; Larholt, K.M.; Diaz, M.; et al. Conducting indirect-treatment-comparison and network-meta-analysis studies: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 2. Value Health 2011, 14, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Welton, N.J.; Sutton, A.J.; Caldwell, D.M.; Lu, G.; Ades, A.E. Evidence synthesis for decision making 4: Inconsistency in networks of evidence based on randomized controlled trials. Med. Decis. Mak. 2013, 33, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Sutton, A.J.; Welton, N.J.; Ades, A.E. Evidence synthesis for decision making 3: Heterogeneity-subgroups, meta-regression, bias, and bias-adjustment. Med. Decis. Mak. 2013, 33, 618–640. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Sutton, A.J.; Ades, A.E.; Welton, N.J. Evidence synthesis for decision making 2: A generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med. Decis. Mak. 2013, 33, 607–617. [Google Scholar] [CrossRef]
- Brooks, S.P.; Roberts, G.O. Convergence assessment techniques for Markov chain Monte Carlo. Stat. Comput. 1998, 8, 319–335. [Google Scholar] [CrossRef]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar]
- Alyousef, S.; Marwa, H.; Alnojaidi, N.; Lababidi, H.; Bashir, M.S. Cumulative evaluation data: Pediatric airway management simulation courses for pediatric residents. Adv. Simul. 2017, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Rubiano, A.M.; Sánchez, A.I.; Guyette, F.; Puyana, J.C. Trauma care training for National Police nurses in Colombia. Prehosp. Emerg. Care 2010, 14, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Wiel, E.; Lebuffe, G.; Erb, C.; Assez, N.; Menu, H.; Facon, A.; Goldstein, P. Mannequin-based simulation to evaluate difficult intubation training for emergency physicians. Ann. Fr. Anesth. Reanim. 2009, 28, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Wenk, M.; Waurick, R.; Schotes, D.; Wenk, M.; Gerdes, C.; Van Aken, H.K.; Popping, D.M. Simulation-based medical education is no better than problem-based discussions and induces misjudgment in self-assessment. Adv. Health Sci. Educ. Theory Pract. 2009, 14, 159–171. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Underwood, L.-D.; Van Ginkel, C.; Wong, M.; Lee, D.; Lucas, A.S.; Palaganas, J.; Banta, D.; Denmark, T.K.; Clem, K. An educational course including medical simulation for early goal-directed therapy and the severe sepsis resuscitation bundle: An evaluation for medical student training. Resuscitation 2009, 80, 674–679. [Google Scholar] [CrossRef]
- Noeller, T.P.; Smith, M.D.; Holmes, L.; Cappaert, M.; Gross, A.J.; Cole-Kelly, K.; Rosen, K.R. A theme-based hybrid simulation model to train and evaluate emergency medicine residents. Acad. Emerg. Med. 2008, 15, 1199–1206. [Google Scholar] [CrossRef]
- Corbridge, S.J.; McLaughlin, R.; Tiffen, J.; Wade, L.; Templin, R.; Corbridge, T.C. Using simulation to enhance knowledge and confidence. Nurse Pract. 2008, 33, 12–13. [Google Scholar]
- Multak, N.; Euliano, T.; Gabrielli, A.; Layon, A.J. Human patient simulation: A preliminary report of an innovative training tool for physician assistant education. J. Physician Assist. Educ. 2002, 13, 103–115. [Google Scholar] [CrossRef]
- Modell, J.H.; Cantwell, S.; Hardcastle, J.; Robertson, S.; Pablo, L. Using the human patient simulator to educate students of veterinary medicine. J. Vet. Med. Educ. 2002, 29, 111–116. [Google Scholar] [CrossRef]
- Nadel, F.M.; Lavelle, J.M.; Fein, J.A.; Giardino, A.P.; Decker, J.M.; Durbin, D.R. Teaching resuscitation to pediatric residents: The effects of an intervention. Arch. Pediatr. Adolesc. Med. 2000, 154, 1049–1054. [Google Scholar] [CrossRef]
- Hosking, E. Does practising intubation on a manikin improve both understanding and clinical performance of the task by medical students. Anaesth. Points West 1998, 31, 25–28. [Google Scholar]
- Han, M.J.; Lee, J.R.; Shin, Y.J.; Son, J.S.; Choi, E.J.; Oh, Y.H.; Lee, S.-H.; Choi, H.-R. Effects of a simulated emergency airway management education program on the self-efficacy and clinical performance of intensive care unit nurses. Jpn. J. Nurs. Sci. 2018, 15, 258–266. [Google Scholar] [CrossRef]
- Nishisaki, A.; Donoghue, A.J.; Colborn, S.; Watson, C.; Meyer, A.; Brown, C.A., 3rd; Helfaer, M.A.; Walls, R.M.; Nadkarni, V. Effect of just-in-time simulation training on tracheal intubation procedure safety in the pediatric intensive care unit. Anesthesiology 2010, 113, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.; Calderón, M.; Sáenz, X.; Reyes, G.; Moreno, M.; Ramírez, L. Effect and benefit of clinical simulation in the development of psychomotor competencies in anesthesia: A random double-blind clinical trial. Rev. Colomb. Anestesiol. 2008, 36, 93–107. [Google Scholar] [CrossRef]
- Rowe, R.; Cohen, R.A. An evaluation of a virtual reality airway simulator. Anesth. Analg. 2002, 95, 62–66. [Google Scholar] [CrossRef]
- Naik, V.N.; Matsumoto, E.D.; Houston, P.L.; Hamstra, S.J.; Yeung, R.Y.; Mallon, J.S.; Martire, T.M. Fiberoptic orotracheal intubation on anesthetized patients: Do manipulation skills learned on a simple model transfer into the operating room? Anesthesiology 2001, 95, 343–348. [Google Scholar] [CrossRef]
- Abrahamson, S.; Denson, J.S.; Wolf, R.M. Effectiveness of a simulator in training anesthesiology residents. J. Med. Educ. 1969, 44, 515–519. [Google Scholar] [CrossRef]
- Mattila, A.; Martin, R.M.; DeIuliis, E.D. Simulated fieldwork: A virtual approach to clinical education. Educ. Sci. 2020, 10, 272. [Google Scholar] [CrossRef]
- Nielsen, R.P.; Nikolajsen, L.; Paltved, C.; Aagaard, R. Effect of simulation-based team training in airway management: A systematic review. Anaesthesia 2021, 76, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
Intervention | Efficacy for Knowledge Scores, % (Rank) |
---|---|
Sim | 92.0 (1) |
Non-Sim | 57.8 (2) |
NI | 0.2 (3) |
Intervention | Efficacy for Behavior Performance, % (Rank) |
---|---|
Sim | 98.8 (1) |
Non-Sim | 18.4 (3) |
NI | 32.8 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ando, K.; Ando, A.; Tanaka, A.; Koba, S.; Sagara, H. Educational Effects of Simulation and Non-Simulation Training in Airway Management according to Levels of the Kirkpatrick Model: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2022, 11, 5614. https://doi.org/10.3390/jcm11195614
Ando K, Ando A, Tanaka A, Koba S, Sagara H. Educational Effects of Simulation and Non-Simulation Training in Airway Management according to Levels of the Kirkpatrick Model: A Systematic Review and Network Meta-Analysis. Journal of Clinical Medicine. 2022; 11(19):5614. https://doi.org/10.3390/jcm11195614
Chicago/Turabian StyleAndo, Koichi, Akane Ando, Akihiko Tanaka, Shinji Koba, and Hironori Sagara. 2022. "Educational Effects of Simulation and Non-Simulation Training in Airway Management according to Levels of the Kirkpatrick Model: A Systematic Review and Network Meta-Analysis" Journal of Clinical Medicine 11, no. 19: 5614. https://doi.org/10.3390/jcm11195614
APA StyleAndo, K., Ando, A., Tanaka, A., Koba, S., & Sagara, H. (2022). Educational Effects of Simulation and Non-Simulation Training in Airway Management according to Levels of the Kirkpatrick Model: A Systematic Review and Network Meta-Analysis. Journal of Clinical Medicine, 11(19), 5614. https://doi.org/10.3390/jcm11195614