External Validation of Mortality Scores among High-Risk COVID-19 Patients: A Romanian Retrospective Study in the First Pandemic Year
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Data Management and Study Outcome
2.3. Statistical Analysis
3. Results
4. AUROC Analyses
5. Discussion
Study Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581, Erratum in JAMA 2021, 325, 2120. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Mostert, C.; Hentschker, C.; Voshaar, T.; Malzahn, J.; Schillinger, G.; Klauber, J.; Janssens, U.; Marx, G.; Weber-Carstens, S.; et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: An observational study. Lancet Respir. Med. 2020, 8, 853–862. [Google Scholar] [CrossRef]
- Dongelmans, D.A.; Termorshuizen, F.; Brinkman, S.; Bakhshi-Raiez, F.; Arbous, M.S.; de Lange, D.W.; van Bussel, B.C.T.; de Keizer, N.F.; Verbiest, D.P.; Velde, L.F.T.; et al. Characteristics and outcome of COVID-19 patients admitted to the ICU: A nationwide cohort study on the comparison between the first and the consecutive upsurges of the second wave of the COVID-19 pandemic in the Netherlands. Ann. Intensive Care 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guidet, B.; Jung, C.; Flaatten, H.; Fjølner, J.; Artigas, A.; Pinto, B.B.; Schefold, J.C.; Beil, M.; Sigal, S.; van Heerden, P.V.; et al. Increased 30-day mortality in very old ICU patients with COVID-19 compared to patients with respiratory failure without COVID-19. Intensive Care Med. 2022, 48, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328, Updated in BMJ 2021, 372, n236, Erratum in BMJ 2020, 369, m2204. [Google Scholar] [CrossRef]
- Adderley, N.J.; Taverner, T.; Price, M.J.; Sainsbury, C.; Greenwood, D.; Chandan, J.S.; Takwoingi, Y.; Haniffa, R.; Hosier, I.; Welch, C.; et al. Development and external validation of prognostic models for COVID-19 to support risk stratification in secondary care. BMJ Open 2022, 12, e049506. [Google Scholar] [CrossRef]
- Chatterjee, A.; Wilmink, G.; Woodruff, H.; Lambin, P. Improving and Externally Validating Mortality Prediction Models for COVID-19 Using Publicly Available Data. BioMed 2022, 2, 13–26. [Google Scholar] [CrossRef]
- Heber, S.; Pereyra, D.; Schrottmaier, W.C.; Kammerer, K.; Santol, J.; Rumpf, B.; Pawelka, E.; Hanna, M.; Scholz, A.; Liu, M.; et al. A Model Predicting Mortality of Hospitalized COVID-19 Patients Four Days after Admission: Development, Internal and Temporal-External Validation. Front. Cell. Infect. Microbiol. 2022, 11, 795026. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Poulakou, G.; de Nooijer, A.; Milionis, H.; Metallidis, S.; Ploumidis, M.; Grigoropoulou, P.; Rapti, A.; Segala, F.V.; Balis, E.; et al. Development and validation of SCOPE score: A clinical score to predict COVID-19 pneumonia progression to severe respiratory failure. Cell Rep. Med. 2022, 3, 100560. [Google Scholar] [CrossRef]
- Covino, M.; Sandroni, C.; Santoro, M.; Sabia, L.; Simeoni, B.; Bocci, M.G.; Ojetti, V.; Candelli, M.; Antonelli, M.; Gasbarrini, A.; et al. Predicting intensive care unit admission and death for COVID-19 patients in the emergency department using early warning scores. Resuscitation 2020, 156, 84–91. [Google Scholar] [CrossRef]
- van Dam, P.M.E.L.; Zelis, N.; van Kuijk, S.M.J.; Linkens, A.E.M.J.H.; Brüggemann, R.A.G.; Spaetgens, B.; van der Horst, I.C.C.; Stassen, P.M. Performance of prediction models for short-term outcome in COVID-19 patients in the emergency department: A retrospective study. Ann. Med. 2021, 53, 402–409. [Google Scholar] [CrossRef]
- Jones, A.; Pitre, T.; Junek, M.; Kapralik, J.; Patel, R.; Feng, E.; Dawson, L.; Tsang, J.L.Y.; Duong, M.; Ho, T.; et al. External validation of the 4C mortality score among COVID-19 patients admitted to hospital in Ontario, Canada: A retrospective study. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Kuroda, S.; Matsumoto, S.; Sano, T.; Kitai, T.; Yonetsu, T.; Kohsaka, S.; Torii, S.; Kishi, T.; Komuro, I.; Hirata, K.-I.; et al. External validation of the 4C Mortality Score for patients with COVID-19 and pre-existing cardiovascular diseases/risk factors. BMJ Open 2021, 11, e052708. [Google Scholar] [CrossRef]
- Lombardi, Y.; Azoyan, L.; Szychowiak, P.; Bellamine, A.; Lemaitre, G.; Bernaux, M.; Daniel, C.; Leblanc, J.; Riller, Q.; Steichen, O.; et al. External validation of prognostic scores for COVID-19: A multicenter cohort study of patients hospitalized in Greater Paris University Hospitals. Intensive Care Med. 2021, 47, 1426–1439. [Google Scholar] [CrossRef]
- Mohamed, R.A.E.; Abdelsalam, E.M.; Maghraby, H.M.; Al Jedaani, H.S.; Rakha, E.B.; Hussain, K.; Sultan, I. Performance features and mortality prediction of the 4C Score early in COVID-19 infection: A retrospective study in Saudi Arabia. J. Investig. Med. 2021, 70, 421–427. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C mortality score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC)—Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Providers. Updated 14 October 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 23 May 2022).
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Harrison, E.M.; Ho, A.; Docherty, A.B.; Knight, S.R.; van Smeden, M.; Abubakar, I.; Lipman, M.; Quartagno, M.; Pius, R.; et al. Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: A prospective cohort study. Lancet Respir. Med. 2021, 9, 349–359. [Google Scholar] [CrossRef]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef]
- Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-Calderón, C.L.; Robinson, K.; et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE 2020, 15, e0243262. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, M.J.R.; Covinsky, K.E.; Garcez, F.B.; Smith, A.K.; Curiati, P.K.; Lee, S.J.; Dias, M.B.; Melo, V.J.D.; Rego-Júnior, O.F.D.; Richinho, V.D.P.; et al. A fuller picture of COVID-19 prognosis: The added value of vulnerability measures to predict mortality in hospitalised older adults. Age Ageing 2020, 50, 32–39. [Google Scholar] [CrossRef]
- C Mortality Score for COVID-19. Available online: https://www.mdcalc.com/4c-mortality-score-covid-19 (accessed on 23 May 2022).
- COVID-GRAM Critical Illness Risk Score. Available online: https://www.mdcalc.com/covid-gram-critical-illness-risk-score (accessed on 23 May 2022).
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef]
- Moisa, E.; Corneci, D.; Negoita, S.; Filimon, C.R.; Serbu, A.; Negutu, M.I.; Grintescu, I.M. Dynamic Changes of the Neutrophil-to-Lymphocyte Ratio, Systemic Inflammation Index, and Derived Neutrophil-to-Lymphocyte Ratio Independently Predict Invasive Mechanical Ventilation Need and Death in Critically Ill COVID-19 Patients. Biomedicines 2021, 9, 1656. [Google Scholar] [CrossRef]
- COVIDAnalytics. Available online: https://covidanalytics.io/mortality_calculator (accessed on 23 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 23 May 2022).
- OECD. European Observatory on Health Systems and Policies Romania: Country Health Profile 2021; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Our World in Data. Available online: https://ourworldindata.org/coronavirus#coronavirus-country-profiles (accessed on 23 May 2022).
- Institutul National de Sănătate Publică (INSP) (The Romanian National Institute of Public Health)—Informare Privind Cazurile de COVID-19 Confirmate cu Variante ale SARS-CoV-2 Care Determină Îngrijorare (VOC). Available online: https://www.cnscbt.ro/index.php/analiza-cazuri-confirmate-covid19/3150-s-17-informare-cazuri-cu-variante-care-determina-ingrijorare-voc/file (accessed on 25 May 2022).
- European Center for Disease Control (ECDC). SARS-CoV-2 Variants of Concern as of 12 May 2022. Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 23 May 2022).
- Frampton, D.; Rampling, T.; Cross, A.; Bailey, H.; Heaney, J.; Byott, M.; Scott, R.; Sconza, R.; Price, J.; Margaritis, M.; et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: A whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. 2021, 21, 1246–1256. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid.-Based Med. 2020, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, J.; Shang, J.; Wang, Y.; Wan, J.; Yan, Y.-Q.; Liu, W.-B.; Zhang, H.-P.; Wang, J.-P.; Wang, X.-Y.; et al. Clinical value of laboratory indicators for predicting disease progression and death in patients with COVID-19: A retrospective cohort study. BMJ Open 2021, 11, e043790. [Google Scholar] [CrossRef]
- Stoian, A.P.; Pricop-Jeckstadt, M.; Pana, A.; Ileanu, B.-V.; Schitea, R.; Geanta, M.; Catrinoiu, D.; Suceveanu, A.I.; Serafinceanu, C.; Pituru, S.; et al. Death by SARS-CoV 2: A Romanian COVID-19 multi-centre comorbidity study. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Mota, M.; Popa, S.G.; Mota, E.; Mitrea, A.; Catrinoiu, D.; Cheta, D.M.; Guja, C.; Hancu, N.; Ionescu-Tirgoviste, C.; Lichiardopol, R.; et al. Prevalence of diabetes mellitus and prediabetes in the adult Romanian population: PREDATORR study. J. Diabetes 2015, 8, 336–344. [Google Scholar] [CrossRef]
- Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia 2020, 63, 1500–1515. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001343. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Tang, Y.; Cheng, Q. Diabetes increases the mortality of patients with COVID-19: A meta-analysis. Acta Diabetol. 2021, 58, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Seiglie, J.; Platt, J.; Cromer, S.J.; Bunda, B.; Foulkes, A.S.; Bassett, I.V.; Hsu, J.; Meigs, J.B.; Leong, A.; Putman, M.S.; et al. Diabetes as a Risk Factor for Poor Early Outcomes in Patients Hospitalized With COVID-19. Diabetes Care 2020, 43, 2938–2944. [Google Scholar] [CrossRef]
- Gregory, J.M.; Slaughter, J.C.; Duffus, S.H.; Smith, T.J.; LeStourgeon, L.M.; Jaser, S.S.; McCoy, A.B.; Luther, J.M.; Giovannetti, E.R.; Boeder, S.; et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care 2020, 44, 526–532. [Google Scholar] [CrossRef]
- Gregory, J.M.; Moore, D.J. The Dual Burden of Type 1 Diabetes and COVID-19. Ann. Intern. Med. 2021, 174, 703–704. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Bacon, S.; Evans, S.J.; Bates, C.J.; Rentsch, C.T.; MacKenna, B.; Tomlinson, L.; Walker, A.J.; Schultze, A.; Morton, C.E.; et al. Factors associated with deaths due to COVID-19 versus other causes: Population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet Reg. Health-Eur. 2021, 6, 100109. [Google Scholar] [CrossRef]
- Orlando, V.; Rea, F.; Savaré, L.; Guarino, I.; Mucherino, S.; Perrella, A.; Trama, U.; Coscioni, E.; Menditto, E.; Corrao, G. Development and validation of a clinical risk score to predict the risk of SARS-CoV-2 infection from administrative data: A population-based cohort study from Italy. PLoS ONE 2021, 16, e0237202. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- The Romanian National Institute of Public Health. Available online: https://www.cnscbt.ro/index.php/analiza-cazuri-confirmate-covid19/2307-raport-saptamanal-episaptamana08-2021/file (accessed on 23 May 2022).
Details | Deceased | Survivors | Total | Univariate Analysis p Value for the Applied Tests | |
---|---|---|---|---|---|
158 | 316 | 474 | |||
Age | n (%) Median (IQR) | 158 (100%) 75 (65–81) | 316 (100%) 75 (65–81) | 75 (65–81) | MW: p = 0.632 |
Gender female | 67 (42.4%) | 151 (47.8%) | 218 (46.0%) | p = 0.266 | |
Risk scores | Median (IQR) | ||||
4CM Score | 14 (11.25–16) | 11 (9–13) | 12 (10–14) | MW: p < 0.001 | |
COVID-GRAM | 87.32 (66.73–96.16) | 61.94 (46.63–77.67) | 67.73 (50.15–87.92) | MW: p < 0.001 | |
COVIDAnalytics | 48 (34–61.25) | 28 (20–41.5) | 34 (22.5–50) | MW: p < 0.001 | |
Physiological parameters at admission | |||||
Peripheral oxygen saturation | % | 88.5 (80–94) | 92 (88–96) | 91 (85–95) | MW: p < 0.001 |
Respiratory rate (breaths/min) | Median (IQR) | 29.5 (24–34) | 27 (22–30) | 28 (24–30) | MW: p = 0.037 |
Glasgow Coma score | Median (IQR) | 7 (3–10.75) | 13 (5.5–13.5) | 8 (3–13) | MW: p = 0.029 |
Heart rate (beats per minute) | Median (IQR) | 88.5 (75–100) | 82 (74–95) | 84 (74–96.25) | MW: p = 0.042 |
Comorbidities | |||||
Number | 5 (4–5) | 5 (3–5) | 5 (3–5) | MW: p = 0.002 | |
Malignancy | n (%) | 27 (17.1%) | 23 (7.3%) | 50 (10.5%) | OR = 2.63 [1.45, 4.75] (p = 0.001) |
Diabetes mellitus | n (%) | 71 (44.9%) | 106 (33.5%) | 177 (37.3%) | OR = 1.62 [1.09, 2.39] (p = 0.020) |
Chronic pulmonary disease (not asthma) | n (%) | 28 (17.9%) | 10 (3.16%) | 38 (8%) | OR = 6.59 [3.21–13.38] p< 0.0001 |
Chronic kidney disease | n (%) | 32 (20%) | 25 (7.9%) | 57 (12%) | OR = 2.95 [1.66–5.17] p= 0.0002 |
Moderate or severe liver disease | n (%) | 16 (10.1%) | 15 (4.7%) | 31 (6.5%) | OR = 2.26 [1.10–4.7] p= 0.030 |
Obesity and overweight | n (%) | 55 (34.8%) | 121 (38.3%) | 176 (37.1%) | OR = 0.86 [0.57–1.29] p = 0.48 |
Hypertension | n (%) | 120 (75.9%) | 240 (75.9%) | 360 (75.9%) | OR = 0.99 [0.63–1.54) p = 0.99 |
Chronic cardiac disease | n (%) | 89 (56.3%) | 153 (48.4%) | 242 (51%) | OR =1.37 [0.93–2.03] p= 0.12 |
Laboratory values | |||||
CRP (mg/L) | Median (IQR) | 124.7 (56.5–210) | 67.5 (23.1–142.9) | 87.2 (34.5–161.9) | MW: p < 0.001 |
LDH (IU/L) | Median (IQR) | 432 (327–569) | 302.5 (226.25–402) | 341 (241–466.5) | MW: p < 0.001 |
ALT (IU/L) | Median (IQR) | 28 (19–60) | 31 (19–48) | 30 (19–49) | MW: p = 0.918 |
AST (IU/L) | Median (IQR) | 41 (30–74) | 33 (24–49) | 36 (25–54) | MW: p < 0.001 |
BUN (mg/dL) | Median (IQR) | 82 (57.1–131) | 48 (37–71) | 56.1 (39–89) | MW: p < 0.001 |
Creatinine (mg/dL) | Median (IQR) | 1.35 (0.88–2.12) | 0.9 (0.72–1.19) | 0.98 (0.75–1.41) | MW: p < 0.001 |
Neutrophil count (×109/L) | Median (IQR) | 7.62 (4.58–11.75) | 5.49 (3.34–8.95) | 6.04 (3.59–9.71) | MW: p < 0.001 |
Lymphocyte count (×109/L) | Median (IQR) | 0.66 (0.44–1.02) | 0.9 (0.61–1.28) | 0.82 (0.54–1.21) | MW: p < 0.001 |
4CM Score by Risk Level | Deceased 158 | Survivors 316 | Mortality per Risk Level | Mortality per Risk Level with the Original 4CM Score * | |
---|---|---|---|---|---|
Low (0–3) | 0 | 3 (0.9%) | 0 (0%) | p = 0.22 | 1.2% |
Intermediate (4–8) | 8 (5%) | 51 (16.1%) | 8 (13%) | p = 0.0006 | 9.9% |
High (9–14) | 83 (52.5%) | 220 (69.6%) | 83 (27%) | p = 0.0003 | 31.4% |
Very high (15–21) | 67 (42.4%) | 42 (13.3%) | 67 (61%) | p < 0.0001 | 61.5% |
AUROC (95% CI) | AUROC in the Original Study | |
---|---|---|
4C Mortality Score [17] | 0.72 (0.67–0.77) | 0.767 (0.760–0.773) |
COVID-GRAM Score [21] | 0.74 (0.69–0.79) | 0.880 [0.840–0.930] * |
COVIDAnalytics Score [22] | 0.76 (0.71–0.8) | 0.90 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rădulescu, A.; Lupse, M.; Istrate, A.; Calin, M.; Topan, A.; Kormos, N.F.; Macicasan, R.V.; Briciu, V. External Validation of Mortality Scores among High-Risk COVID-19 Patients: A Romanian Retrospective Study in the First Pandemic Year. J. Clin. Med. 2022, 11, 5630. https://doi.org/10.3390/jcm11195630
Rădulescu A, Lupse M, Istrate A, Calin M, Topan A, Kormos NF, Macicasan RV, Briciu V. External Validation of Mortality Scores among High-Risk COVID-19 Patients: A Romanian Retrospective Study in the First Pandemic Year. Journal of Clinical Medicine. 2022; 11(19):5630. https://doi.org/10.3390/jcm11195630
Chicago/Turabian StyleRădulescu, Amanda, Mihaela Lupse, Alexandru Istrate, Mihai Calin, Adriana Topan, Nicholas Florin Kormos, Raul Vlad Macicasan, and Violeta Briciu. 2022. "External Validation of Mortality Scores among High-Risk COVID-19 Patients: A Romanian Retrospective Study in the First Pandemic Year" Journal of Clinical Medicine 11, no. 19: 5630. https://doi.org/10.3390/jcm11195630
APA StyleRădulescu, A., Lupse, M., Istrate, A., Calin, M., Topan, A., Kormos, N. F., Macicasan, R. V., & Briciu, V. (2022). External Validation of Mortality Scores among High-Risk COVID-19 Patients: A Romanian Retrospective Study in the First Pandemic Year. Journal of Clinical Medicine, 11(19), 5630. https://doi.org/10.3390/jcm11195630