Admission Predictors of Mortality in Hospitalized COVID-19 Patients—A Serbian Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheervalilou, R.; Shirvaliloo, M.; Dadashzadeh, N.; Shirvalilou, S.; Shahraki, O.; Pilehvar-Soltanahmadi, Y.; Ghaznavi, H.; Khoei, S.; Nazarlou, Z. COVID-19 under spotlight: A close look at the origin, transmission, diagnosis, and treatment of the 2019-nCoV disease. J. Cell Physiol. 2020, 235, 8873–8924. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Al Khodor, S. Pathophysiology and treatment strategies for COVID-19. J Transl Med. 2020, 18, 353. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. COVID-19 Clinical Management: Living Guidance. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 (accessed on 6 August 2022).
- Bohn, M.-K.; Hall, A.; Sepiashvili, L.; Jung, B.; Steele, S.; Adeli, K. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology 2020, 35, 288–301. [Google Scholar] [CrossRef]
- Mejía, F.; Medina, C.; Cornejo, E.; Morello, E.; Vásquez, S.; Alave, J.; Schwalb, A.; Málaga, G. Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru. PLoS ONE 2020, 15, e0244171. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.J.; Siff, E. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Mesas, A.E.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Cabrera, M.A.S.; De Andrade, S.M.; Sequí-Dominguez, I.; Martínez-Vizcaíno, V. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS ONE 2020, 15, e0241742. [Google Scholar] [CrossRef]
- Obremska, M.; Pazgan-Simon, M.; Budrewicz, K.; Bilaszewski, L.; Wizowska, J.; Jagielski, D.; Jankowska-Polanska, B.; Nadolny, K.; Madowicz, J.; Zuwala-Jagiello, J.; et al. Simple demographic characteristics and laboratory findings on admission may predict in-hospital mortality in patients with SARS-CoV-2 infection: Development and validation of the COVID-19 score. BMC Infect. Dis. 2021, 21, 945. [Google Scholar] [CrossRef]
- Figliozzi, S.; Masci, P.G.; Ahmadi, N.; Tondi, L.; Koutli, E.; Aimo, A.; Stamatelopoulos, K.; Dimopoulos, M.; Caforio, A.L.P.; Georgiopoulos, G. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur. J. Clin. Invest. 2020, 50, e13362. [Google Scholar] [CrossRef]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef]
- Ruscica, M.; Macchi, C.; Iodice, S.; Tersalvi, G.; Rota, I.; Ghidini, S.; Terranova, L.; Valenti, L.; Amati, F.; Aliberti, S.; et al. Prognostic parameters of in-hospital mortality in COVID-19 patients-An Italian experience. Eur. J. Clin. Investig. 2021, 51, e13629. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Yang, L.; Li, Y.; Liang, B.; Li, L.; Ye, T.; Li, L.; Liu, D.; Gui, S.; Hu, Y.; et al. Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): A case-control study. Int. J. Med. Sci. 2020, 17, 1281–1292. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 Clinical Characteristics, and Sex-Specific Risk of Mortality: Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 452. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.; Zaki, N. Prediction of COVID-19 severity using laboratory findings on admission: Informative values, thresholds, ML model performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- Sharma, J.; Rajput, R.; Bhatia, M.; Arora, P.; Sood, V. Clinical Predictors of COVID-19 Severity and Mortality: A Perspective. Front. Cell Infect. Microbiol. 2021, 11, 674277. [Google Scholar] [CrossRef] [PubMed]
- Mudatsir, M.; Wulandari, L.; Fajar, J.K.; Soegiarto, G.; Ilmawan, M.; Purnamasari, Y.; Mahdi, B.A.; Jayanto, G.D.; Suhendra, S.; Setianingsih, Y.A.; et al. Predictors of COVID-19 severity: A systematic review and meta-analysis. F1000Research 2020, 9, 1107. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.; Sigurslid, H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- de Guadiana-Romualdo, L.G.; Morell-García, D.; Morales-Indiano, C.; Bauça, J.M.; Martín, M.J.A.; del Valle, C.E.; Revilla, J.I.G.; Urrechaga, E.; Álamo, J.M.; Holgado, A.M.H.; et al. Characteristics and laboratory findings on admission to the emergency department among 2873 hospitalized patients with COVID-19: The impact of adjusted laboratory tests in multicenter studies. A multicenter study in Spain (BIOCOVID-Spain study). Scand. J. Clin. Lab. Investig. 2021, 81, 187–193. [Google Scholar] [CrossRef]
- Dhont, S.; Derom, E.; Van Braeckel, E.; Depuydt, P.; Lambrecht, B.N. The pathophysiology of “happy” hypoxemia in COVID-19. Respir Res. 2020, 21, 198. [Google Scholar] [CrossRef]
- Pranata, R.; Supriyadi, R.; Huang, I.; Permana, H.; Lim, M.A.; Yonas, E.; Soetedjo, N.N.M.; Lukito, A.A. The Association Between Chronic Kidney Disease and New Onset Renal Replacement Therapy on the Outcome of COVID-19 Patients: A Meta-analysis. Clin. Med. Insights Circ. Respir Pulm Med. 2020, 14, 1179548420959165. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M.; Kaskel, F. Update on Inflammation in Chronic Kidney Disease. Blood Purif 2015, 39, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Tseng, L.; Hittesdorf, E.; Berman, M.F.; Jordan, D.A.; Yoh, N.; Elisman, K.; Eiseman, K.A.; Miao, Y.; Wang, S.; Wagener, G. Predicting Poor Outcome of COVID-19 Patients on the Day of Admission with the COVID-19 Score. Crit. Care Res. Pract. 2021, 2021, 5585291. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Salah, H.M.; Mehta, J.L. Hypothesis: Sex-Related Differences in ACE2 Activity May Contribute to Higher Mortality in Men Versus Women with COVID-19. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Volgman, A.; Michos, E. Sex Differences in Mortality From COVID-19 Pandemic. J. Am. Coll. Cardiol. Case Rep. 2020, 2, 1407–1410. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Rusu, I.; Turlacu, M.; Micheu, M.M. Acute myocardial injury in patients with COVID-19: Possible mechanisms and clinical implications. World J. Clin. Cases 2022, 10, 762–776. [Google Scholar] [CrossRef]
- Babapoor-Farrokhran, S.; Gill, D.; Walker, J.; Rasekhi, R.T.; Bozorgnia, B.; Amanullah, A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020, 253, 117723. [Google Scholar] [CrossRef]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef]
- Han, X.; Ye, Q. Kidney involvement in COVID-19 and its treatments. J. Med. Virol. 2021, 93, 1387–1395. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Q.; Huang, C.; Shi, C.; Wang, L.; Shi, N.; Fang, C.; Shan, F.; Mei, X.; Shi, J.; et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics 2020, 10, 5613–5622. [Google Scholar] [CrossRef]
- Malécot, N.; Chrusciel, J.; Sanchez, S.; Sellès, P.; Goetz, C.; Lévêque, H.-P.; Parizel, E.; Pradel, J.; Almhana, M.; Bouvier, E.; et al. Chest CT Characteristics are Strongly Predictive of Mortality in Patients with COVID-19 Pneumonia: A Multicentric Cohort Study. Acad. Radiol. 2022, 29, 851–860. [Google Scholar] [CrossRef] [PubMed]
Cohort Characteristics | Frequency (Number of Cases) or Median Value (with IQR) | ||||
---|---|---|---|---|---|
Cohort | Survivors | Non-Survivors | p Value | ||
Age | 69.0 (IQR 17.0) | 67.0 (IQR 19.0) | 73.0 (IQR 13.0) | <0.001 * | |
Gender | Male | 57.9% (n = 407) | 73.1% (n = 297) | 26.9% (n = 110) | 0.353 |
Female | 42.1% (n = 296) | 69.6% (n = 206) | 30.4% (n = 90) | ||
Comorbidities | |||||
Arterial hypertension | 68.2% (n = 477) | 66.1% (n = 331) | 73.7% (n = 146) | 0.061 | |
Diabetes mellitus | 28.1% (n = 197) | 26.7% (n = 134) | 31.8% (n = 63) | 0.211 | |
Chronic kidney disease | 22.9% (n = 161) | 17.7% (n = 89) | 36.4% (n = 72) | <0.001 * | |
Neurological condition 1 | 9.6% (n = 67) | 8% (n = 40) | 13.6% (n = 27) | 0.032 * | |
Atrial fibrillation | 7.6% (n = 53) | 7% (n = 35) | 9.1% (n = 18) | 0.420 | |
Previous myocardial infarction | 6.4% (n = 45) | 6.8% (n = 34) | 5.6% (n = 11) | 0.681 | |
Malignancy | 6.3% (n = 44) | 6.4% (n = 32) | 6.1% (n = 12) | 1.000 | |
Obstructive lung disease 2 | 4.6% (n = 32) | 4% (n = 20) | 6% (n = 12) | 0.332 | |
Charlson Comorbidity Index | 3.0 (IQR 2.0) | 3.0 (IQR 2.0) | 4.0 (IQR 2.0) | <0.001 * | |
Disease Course and Outcome | |||||
Days from disease onset to hospital admission | 7.0 (IQR 5.0) | 7.0 (IQR 5.0) | 6.0 (IQR 4.0) | <0.001 * | |
Days from SARS-CoV-2 verification to hospital admission | 5.0 (IQR 6.0) | 6.0 (IQR 6.0) | 4.0 (IQR 6.0) | <0.001 * | |
Critical form development | 33.7% (n = 236) | 20.5% | 66.8% | <0.001 * | |
ICU admission | 50.1% (n = 351) | 34.5% (n = 243) | 89.4% (n = 628) | <0.001 * | |
Hospital stay (days) | 14.0 (IQR 10.0) | 15.0 (IQR 12.0) | 12.0 (IQR 10.0) | <0.001 * | |
Oxygen support requirement on admission | 93.3% (n = 656) | 91.8% (n = 645) | 97.0% (n = 682) | 0.022 * |
Laboratory Analysis | Median Values (IQR) | |||
---|---|---|---|---|
Cohort | Survivors | Nonsurvivors | p Value | |
PaO2 [kPa] | 7.1 (IQR 1.4) | 7.2 (IQR 1.5) | 6.7 (IQR 1.5) | <0.001 * |
SaO2 [%] | 89 (IQR 7) | 90 (IQR 6) | 87 (IQR 9) | <0.001 * |
WBC [109/L] | 7.84 (IQR 4.7) | 7.94 (IQR 4.7) | 7.66 (IQR 4.9) | 0.198 |
Gran [109/L] | 6.3 (IQR 4.4) | 6.30 (IQR 4.39) | 6.30 (IQR 4.89) | 0.560 |
Lym [109/L] | 0.7 (IQR 0.5) | 0.73 (IQR 0.5) | 0.68 (IQR 0.43) | 0.001 * |
RBC [1012/L] | 4.5 (IQR 0.77) | 4.52 (IQR 0.76) | 4.34 (IQR 0.73) | <0.001 * |
HGB [g/L] | 133 (IQR 3) | 134 (IQR 11) | 129 (IQR 25) | 0.002 * |
PLT [109/L] | 195 (IQR 103) | 205 (IQR 108) | 170 (IQR 83) | <0.001 * |
INR | 1.07 (IQR 0.19) | 1.07 (IQR 0.19) | 1.09 (IQR 0.2) | 0.252 |
aPTT [s] | 31.95 (IQR 7.67) | 31.4 (IQR 7.7) | 33.1 (IQR 8.0) | 0.004 * |
Fibrinogen [g/L] | 6.25 (IQR 2.0) | 6.26 (IQR 2.06) | 6.22 (IQR 2.09) | 0.219 |
DD [ug/mL] | 0.99 (IQR 1.25) | 0.94 (IQR 1.14) | 1.09 (IQR 1.51) | 0.058 |
Albumin [g/L] | 36 (IQR 5) | 36 (IQR 6) | 35 (IQR 5) | 0.055 |
AST [IU/L] | 42 (IQR 34) | 42 (IQR 34) | 42 (IQR 38) | 0.721 |
ALT [IU/L] | 35 (IQR 35) | 37 (IQR 37) | 31 (IQR 31) | 0.001 * |
GGT [IU/L] | 40 (IQR 57.25) | 41 (IQR 56.5) | 37 (IQR 56) | 0.139 |
BUN [mmol/L] | 7.9 (IQR 5.6) | 7.5 (IQR 5.2) | 9.2 (IQR 7.4) | <0.001 * |
Creatinine [mmol/L] | 95 (IQR 47) | 90.5 (IQR 41) | 109 (IQR 77) | <0.001 * |
LDH [U/L] | 784 (IQR 365.5) | 756 (IQR 355.25) | 889 (IQR 416) | <0.001 * |
Ferritin [ug/L] | 809 (IQR 965) | 798 (IQR 936) | 840 (IQR 1129) | 0.397 |
CK [U/L] | 114 (IQR 190) | 105 (IQR 170) | 150 (IQR 259.5) | 0.002 * |
CKMB [U/L] | 20 (IQR 11) | 19 (IQR 11) | 22 (IQR 12) | <0.001 * |
CRP [mg/L] | 104 (IQR 90.5) | 99.1 (IQR 88.5) | 109.1 (IQR 103.5) | 0.013 * |
PCT [ng/mL] | 0.116 (IQR 0.18) | 0.1 (IQR 0.14) | 0.17 (IQR 0.342) | <0.001 * |
hsTnI [ng/mL] | 0.006 (IQR 0.019) | 0.001 (IQR 0.012) | 0.016 (IQR 0.042) | <0.001 * |
pro-BNP [pg/mL] | 667 (IQR 1394) | 580 (IQR 976) | 1102 (IQR 3426) | <0.001 * |
IL-6 [pg/mL] | 67.85 (IQR 90.13) | 56.5 (IQR 79.15) | 98.1 (IQR 103.2) | <0.001 * |
Variable | Frequency of Mortality | Crude OR | Adjusted OR | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | aOR (95% CI) | p Value | |||
Age [years] | <69.5 | 18.2% | 1 | / | 1 | / |
>69.5 | 39.5% | 2.928 (2.075–4.131) | <0.001 * | 1.786 (1.017–3.138) | 0.044 * | |
PaO2 [kPa] | ≥6.75 | 22% | 1 | / | Excluded for multicollinearity ** | |
<6.75 | 38.3% | 2.200 (1.563–3.097) | <0.001 * | |||
SaO2 [%] | ≥88.5 | 21.8% | 1 | / | 1 | / |
<88.5 | 38.5% | 2.242 (1.595–3.151) | <0.001 * | 3.075 (1.919–4.928) | <0.001 * | |
Lym [109/L] | ≥1.2 × 109 /L | 20.5% | 1 | / | 1 | / |
<1.2 × 109 /L | 29.7% | 1.638 (1.002–2.678) | 0.049 * | 1.829 (0.914–3.661) | 0.088 | |
PLT [109/L] | ≥135 | 25.8% | 1 | / | 1 | / |
<135 | 43.3% | 2.189 (1.425–3.362) | <0.001 * | 1.605 (0.886–2.908) | 0.118 | |
HGB [g/L] | Male ≥ 138 Female ≥ 120 | 24.8% | 1 | / | 1 | / |
Male < 138 Female < 120 | 38.9% | 1.934 (1.350–2.771) | <0.001 * | 1.318 (0.784–2.214) | 0.298 | |
ALT [IU/L] | ≥41 | 23.9% | 1 | / | 1 | / |
<41 | 31.7% | 1.475 (1.050–2.072) | 0.025 * | 0.954 (0.579–1.571) | 0.853 | |
BUN [mmol/L] | <7.75 | 20.1% | 1 | / | 1 | / |
≥7.75 | 35.8% | 2.212 (0.573–3.125) | <0.001 * | 0.797 (0.437–1.456) | 0.461 | |
Creatinine [mmol/L] | Male < 107.5 Female < 86.5 | 20.6% | 1 | / | 1 | / |
Male ≥ 107.5 Female ≥ 86.5 | 37.8% | 2.312 (1.650–3.239) | <0.001 * | 1.815 (0.947–3.478) | 0.073 | |
LDH [U/L] | <804.5 | 21.1% | 1 | / | 1 | / |
≥804.5 | 36.2% | 2.126 (1.483–3.049) | <0.001 * | 2.069 (1.233–3.472) | 0.006 * | |
CKMB [U/L] | ≤25 | 24.5% | 1 | / | 1 | / |
>25 | 36.3% | 1.775 (1.202–2.560) | 0.004 * | 0.689 (0.392–1.210) | 0.194 | |
CK [U/L] | ≤171 | 24.4% | 1 | / | 1 | / |
>171 | 35.3% | 1.691 (1.208–2.368) | 0.002 * | 0.996 (0.591–1.678) | 0.988 | |
CRP [mg/L] | <107.5 | 25.4% | 1 | / | 1 | / |
≥107.5 | 31.6% | 1.359 (0.978–1.889) | 0.068 | 1.245 (0.748–2.071) | 0.399 | |
PCT [ng/mL] | <0.129 | 20.7% | 1 | / | 1 | / |
≥0.129 | 36.4% | 2.195 (1.562–3.085) | <0.001 * | 0.716 (0.419–1.222) | 0.221 | |
hsTnI [ng/mL] | Males < 0.0342 Females < 0.0156 | 21.6% | 1 | / | 1 | / |
Males ≥ 0.0342 Females ≥ 0.0156 | 53% | 4.081 (2.795–5.959) | <0.001 * | 1.765 (0.978–3.184) | 0.059 | |
NT pro-BNP [pg/mL] | <759 | 20.6% | 1 | / | 1 | / |
≥759 | 37.4% | 2.299 (1.639–3.224) | <0.001 * | 0.808 (0.471–1.385) | 0.438 | |
IL-6 [pg/mL] | <74.6 | 18.7% | 1 | / | 1 | / |
≥74.6 | 38.8% | 2.761 (1.942–3.926) | <0.001 * | 2.389 (1.442–3.957) | 0.001 * | |
Days from symptom onset | / | / | 0.899 (0.857–0.944) | <0.001 * | 0.925 (0.824–1.037) | 0.181 |
Days from disease confirmation | / | / | 0.901 (0.860–0.945) | <0.001 * | Excluded for multicollinearity ** | |
CCI | / | / | 1.406 (1.277–1.549) | <0.001 * | 1.138 (0.951–1.361) | 0.157 |
Neurological condition | No | 27.1% | 1 | / | 1 | / |
Yes | 40.3% | 1.820 (1.083–3.057) | 0.024 * | 1.289 (0.628–2.645) | 0.488 | |
e-GFR | C-G ≥ 60 | 23.4% | 1 | / | 1 | / |
C-G < 60 | 44.7% | 2.652 (1.833–3.836) | <0.001 * | 1.852 (0.941–3.646) | 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poskurica, M.; Stevanović, Đ.; Zdravković, V.; Čekerevac, I.; Ćupurdija, V.; Zdravković, N.; Nikolić, T.; Marković, M.; Jovanović, M.; Popović, M.; et al. Admission Predictors of Mortality in Hospitalized COVID-19 Patients—A Serbian Cohort Study. J. Clin. Med. 2022, 11, 6109. https://doi.org/10.3390/jcm11206109
Poskurica M, Stevanović Đ, Zdravković V, Čekerevac I, Ćupurdija V, Zdravković N, Nikolić T, Marković M, Jovanović M, Popović M, et al. Admission Predictors of Mortality in Hospitalized COVID-19 Patients—A Serbian Cohort Study. Journal of Clinical Medicine. 2022; 11(20):6109. https://doi.org/10.3390/jcm11206109
Chicago/Turabian StylePoskurica, Mina, Đorđe Stevanović, Vladimir Zdravković, Ivan Čekerevac, Vojislav Ćupurdija, Nebojša Zdravković, Tomislav Nikolić, Marina Marković, Marina Jovanović, Marija Popović, and et al. 2022. "Admission Predictors of Mortality in Hospitalized COVID-19 Patients—A Serbian Cohort Study" Journal of Clinical Medicine 11, no. 20: 6109. https://doi.org/10.3390/jcm11206109
APA StylePoskurica, M., Stevanović, Đ., Zdravković, V., Čekerevac, I., Ćupurdija, V., Zdravković, N., Nikolić, T., Marković, M., Jovanović, M., Popović, M., Vesić, K., Azanjac Arsić, A., Lazarević, S., Jevtović, A., Patrnogić, A., Anđelković, M., & Petrović, M. (2022). Admission Predictors of Mortality in Hospitalized COVID-19 Patients—A Serbian Cohort Study. Journal of Clinical Medicine, 11(20), 6109. https://doi.org/10.3390/jcm11206109