The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. RDW and Stable COPD
3.2.1. Studies Selected
3.2.2. Risk of Bias
3.2.3. Results of Individual Studies and Syntheses
Presence of COPD
COPD Severity
Mortality
Other Clinical Endpoints
3.3. RDW and AECOPD
3.3.1. Studies Selected
3.3.2. Risk of Bias
3.3.3. Results of Individual Studies and Syntheses
Presence of AECOPD
AECOPD Severity
Mortality
Other Clinical Endpoints
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christenson, S.; Smith, B.M.; Bafadhel, M.; Putcha, N. Chronic obstructive pulmonary disease. Lancet 2022, 399, 2227–2242. [Google Scholar] [CrossRef]
- Khan, M.M.K.S.; Cole, A.G.; Mannino, D.M. Precision medicine in chronic obstructive pulmonary disease: How far have we come? Curr. Opin. Pulm. Med. 2021, 28, 115–120. [Google Scholar] [CrossRef]
- Wang, H.-H.; Cheng, S.-L. From Biomarkers to Novel Therapeutic Approaches in Chronic Obstructive Pulmonary Disease. Biomedicines 2021, 9, 1638. [Google Scholar] [CrossRef]
- He, G.; Dong, T.; Yang, Z.; Branstad, A.; Huang, L.; Jiang, Z. Point-of-care COPD diagnostics: Biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022, 147, 1273–1293. [Google Scholar] [CrossRef]
- Landry, V.; Coburn, P.; Kost, K.; Liu, X.; Li-Jessen, N.Y.K. Diagnostic Accuracy of Liquid Biomarkers in Airway Diseases: Toward Point-of-Care Applications. Front. Med. 2022, 9, 855250. [Google Scholar] [CrossRef]
- Pantazopoulos, I.; Magounaki, K.; Kotsiou, O.; Rouka, E.; Perlikos, F.; Kakavas, S.; Gourgoulianis, K. Incorporating Biomarkers in COPD Management: The Research Keeps Going. J. Pers. Med. 2022, 12, 379. [Google Scholar] [CrossRef]
- Sivapalan, P.; Jensen, J.-U. Biomarkers in Chronic Obstructive Pulmonary Disease: Emerging Roles of Eosinophils and Procalcitonin. J. Innate Immun. 2021, 14, 89–97. [Google Scholar] [CrossRef]
- Zinellu, A.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Fois, A.G.; Carru, C.; Mangoni, A.A. Platelet Count and Platelet Indices in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD: J. Chronic Obstr. Pulm. Dis. 2021, 18, 231–245. [Google Scholar] [CrossRef]
- Zinellu, A.; Zinellu, E.; Pau, M.C.; Carru, C.; Pirina, P.; Fois, A.G.; Mangoni, A.A. A Comprehensive Systematic Review and Meta-Analysis of the Association between the Neutrophil-to-Lymphocyte Ratio and Adverse Outcomes in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2022, 11, 3365. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Fois, A.G.; Sotgia, S.; A Mangoni, A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A. The neutrophil-to-lymphocyte ratio as a marker of chronic obstructive pulmonary disease and its exacerbations: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2018, 48, e12984. [Google Scholar] [CrossRef] [Green Version]
- Paliogiannis, P.; Fois, A.G.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Negri, S.; Carru, C.; Zinellu, A. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: Recent evidence and future perspectives. Eur. Respir. Rev. 2018, 27, 170113. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2014, 52, 86–105. [Google Scholar] [CrossRef]
- Ford, J. Red blood cell morphology. Int. J. Lab. Hematol. 2013, 35, 351–357. [Google Scholar] [CrossRef]
- Constantino, A.B.T. Red Cell Distribution Width, Revisited. Lab. Med. 2013, 44, e2–e9. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Zinellu, A.; Mangoni, A.A.; Capobianco, G.; Dessole, S.; Cherchi, P.L.; Carru, C. Red blood cell distribution width in pregnancy: A systematic review. Biochem. Med. 2018, 28, 030502. [Google Scholar] [CrossRef]
- Ai, L.; Mu, S.; Hu, Y. Prognostic role of RDW in hematological malignancies: A systematic review and meta-analysis. Cancer Cell Int. 2018, 18, 61. [Google Scholar] [CrossRef]
- Song, S.-Y.; Hua, C.; Dornbors, D.I.; Kang, R.-J.; Zhao, X.-X.; Du, X.; He, W.; Ding, Y.-C.; Meng, R. Baseline Red Blood Cell Distribution Width as a Predictor of Stroke Occurrence and Outcome: A Comprehensive Meta-Analysis of 31 Studies. Front. Neurol. 2019, 10, 1237. [Google Scholar] [CrossRef]
- Luo, R.; Hu, J.; Jiang, L.; Zhang, M. Prognostic Value of Red Blood Cell Distribution Width in Non-Cardiovascular Critically or Acutely Patients: A Systematic Review. PLoS ONE 2016, 11, e0167000. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Hu, Z.-D.; Liu, S.-J.; Sun, Y.; Qin, Q.; Qin, B.-D.; Zhang, W.-W.; Zhang, J.-R.; Zhong, R.-Q.; Deng, A.-M. Prognostic Value of Red Blood Cell Distribution Width for Patients with Heart Failure: A Systematic Review and Meta-Analysis of Cohort Studies. PLoS ONE 2014, 9, e104861. [Google Scholar] [CrossRef]
- Su, C.; Liao, L.-Z.; Song, Y.; Xu, Z.-W.; Mei, W.-Y. The role of red blood cell distribution width in mortality and cardiovascular risk among patients with coronary artery diseases: A systematic review and meta-analysis. J. Thorac. Dis. 2014, 6, 1429–1440. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, C.-H.; Guo, K.-P.; Huang, C.-Z.; Mo, L.-Y. Prognostic role of red blood cell distribution width in patients with sepsis: A systematic review and meta-analysis. BMC Immunol. 2020, 21, 40. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A. Red Blood Cell Distribution Width, Disease Severity, and Mortality in Hospitalized Patients with SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 286. [Google Scholar] [CrossRef]
- Fancellu, A.; Zinellu, A.; Mangoni, A.A.; Popova, A.; Galotti, F.; Feo, C.F.; Attene, F.; Cossu, A.; Palmieri, G.; Paliogiannis, P. Red Blood Cell Distribution Width (RDW) Correlates to the Anatomical Location of Colorectal Cancer. Implications for Clinical Use. J. Gastrointest. Cancer 2021, 53, 259–264. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Mu, P.-F.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Systematic reviews of etiology and risk. In Joanna Briggs Institute Reviewer’s Manual; Aromataris, E., Munn, Z., Eds.; Johanna Briggs Institute: Adelaide, Australia, 2017. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sincer, I.; Zorlu, A.; Yilmaz, M.B.; Dogan, O.T.; Ege, M.R.; Amioglu, G.; Aydin, G.; Ardic, I.; Tandogan, I. Relationship between red cell distribution width and right ventricular dysfunction in patients with chronic obstructive pulmonary disease. Hear. Lung 2012, 41, 238–243. [Google Scholar] [CrossRef]
- Seyhan, E.C.; Özgül, M.A.; Tutar, N.; Ömür, I.; Uysal, A.; Altın, S. Red Blood Cell Distribution and Survival in Patients with Chronic Obstructive Pulmonary Disease. COPD: J. Chronic Obstr. Pulm. Dis. 2013, 10, 416–424. [Google Scholar] [CrossRef]
- Yasar, Z.; Buyuksirin, M.; Ucsular, F.D.; Kargi, A.; Erdem, F.; Talay, F.; Kurt, O.K. Is an elevated neutrophil-to-lymphocyte ratio a predictor of metabolic syndrome in patients with chronic obstructive pulmonary disease? Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 956–962. [Google Scholar]
- Tertemiz, K.; Alpaydin, A.O.; Sevinc, C.; Ellidokuz, H.; Acara, A.; Cimrin, A. Could “red cell distribution width” predict COPD severity? Rev. Port. Pneumol. Engl. Ed. 2016, 22, 196–201. [Google Scholar] [CrossRef]
- Ozgul, G.; Seyhan, E.C.; Ozgul, M.A.; Gunluoglu, M.Z. Red Blood Cell Distribution Width in Patients With Chronic Obstructive Pulmonary Disease and Healthy Subjects. Arch. Bronconeumol. 2017, 53, 107–113. [Google Scholar] [CrossRef]
- Kalemci, S.; Akin, F.; Sarihan, A.; Sahin, C.; Zeybek, A.; Yilmaz, N. The relationship between hematological parameters and the severity level of chronic obstructive lung disease. Pol. Arch. Intern. Med. 2018, 128, 171–177. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Li, L.; Tu, X.; Lu, Z. Red Blood Cell Distribution Width Predicts Pulmonary Hypertension Secondary to Chronic Obstructive Pulmonary Disease. Can. Respir. J. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Tao, X. Mean platelet volume combined red cell distribution width as biomarker of chronic obstructive pulmonary disease with pulmonary heart disease. Clin. Respir. J. 2020, 14, 1122–1130. [Google Scholar] [CrossRef]
- Çilingir, B.M.; Sunnetcioglu, A. Platelet Distribution With is A Usable Parameter in Chronic Obstructive Pulmonary Disease Severity. East. J. Med. 2020, 25, 97–102. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Z.; Liu, Q.; Wang, B.; Wang, L.; Yang, D.; Wang, L.; Hong, Y.; Zhu, R. Predictive Value of Red Blood Cell Distribution Width in Chronic Obstructive Pulmonary Disease Patients with Pulmonary Embolism. Anal. Cell. Pathol. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Shen, J.; Ma, J.; Miao, X.; Ding, K.; Jiang, B.; Hu, B.; Fu, F.; Huang, L.; et al. Relationship of Red Cell Index with the Severity of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 825–834. [Google Scholar] [CrossRef]
- Martunis, M.; Tarigan, A.P.; Muntasir, M.; Eyanoer, P.C. Correlation of Red Cell Distribution Width Value with Force Expiration Volume One Second in Patients with Stable Chronic Obstructive Lung Disease. Open Access Maced. J. Med Sci. 2021, 9, 48–51. [Google Scholar] [CrossRef]
- Lan, W.; Liu, E.; Sun, D.; Li, W.; Zhu, J.; Jin, M.; Jiang, W. Red cell distribution in critically ill patients with chronic obstructive pulmonary disease. Pulmonology 2022. [Google Scholar] [CrossRef]
- Ljubičić, Đ.; Balta, V.; Dilber, D.; Vražić, H.; Đikić, D.; Odeh, D.; Habek, J.; Vukovac, E.L.; Tudorić, N. Association of chronic inflammation with cardiovascular risk in chronic obstructive pulmonary disease—A cross-sectional study. Heal. Sci. Rep. 2022, 5, e586. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.; Shen, N.; Wang, Q.; Chai, L.; Wang, J.; Zhang, Q.; Chen, Y.; Liu, J.; Li, D.; et al. Nomograms for Predicting Coexisting Cardiovascular Disease and Prognosis in Chronic Obstructive Pulmonary Disease: A Study Based on NHANES Data. Can. Respir. J. 2022, 2022, 5618376. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Z.; Gong, X.; Kang, S.; Cui, Z.; Yuan, Y. A Nomogram for Predicting the Risk of Pulmonary Hypertension for Patients with Chronic Obstructive Pulmonary Disease. Int. J. Gen. Med. 2022, 15, 5751–5762. [Google Scholar] [CrossRef]
- Rahimirad, S.; Ghafari, M.; Ansarin, K.; Rashidi, F.; Rahimi-Rad, M.H. Elevated red blood cell distribution width predicts mortality in acute exacerbation of COPD. Pneumologia 2016, 65, 85–89. [Google Scholar]
- Farah, R.; Ibrahim, R.; Nassar, M.; Najib, D.; Zivony, Y.; Eshel, E. The neutrophil/lymphocyte ratio is a better addition to C-reactive protein than CD64 index as a marker for infection in COPD. Panminerva Med. 2017, 59, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M.Z. Evaluation of red cell distribution width levels during acute exacerbation in patients with chronic obstructive pulmonary disease. Biomed. Res. 2017, 28, 3009–3011. [Google Scholar]
- Ragulan, R.; Viswambhar, V.; Krishnaveni, R.; Meenakshi, N.; Aruna, S.; Nisha, G.; Gangaiamaran, M. Evaluation of platelet indices among patients with exacerbation of COPD in a tertiary care center in South India. IAIM 2017, 4, 161–166. [Google Scholar]
- Epstein, D.; Nasser, R.; Mashiach, T.; Azzam, Z.S.; Berger, G. Increased red cell distribution width: A novel predictor of adverse outcome in patients hospitalized due to acute exacerbation of chronic obstructive pulmonary disease. Respir. Med. 2018, 136, 1–7. [Google Scholar] [CrossRef]
- Torabi, M.; Fekri, M.S.; Shoul, S.A.; Thahami, A.N.; Moeinaddini, S. Evaluation of Prognostic Factors of Mortality in Patients with Chronic Obstructive Pulmonary Disease. J. Adv. Med Biomed. Res. 2018, 26, 28–33. [Google Scholar] [CrossRef]
- Hu, G.-P.; Zhou, Y.-M.; Wu, Z.-L.; Li, Y.-Q.; Liang, W.-Q.; Wei, L.-P.; Ran, P.-X. Red blood cell distribution width is an independent predictor of mortality for an acute exacerbation of COPD. Int. J. Tuberc. Lung Dis. 2019, 23, 817–823. [Google Scholar] [CrossRef]
- Şahin, F.; Koşar, A.F.; Aslan, A.F.; Yiğitbaş, B.; Uslu, B. Serum biomarkers in patients with stable and acute exacerbation of chronic obstructive pulmonary disease: A comparative study. J. Med Biochem. 2019, 38, 503–511. [Google Scholar] [CrossRef]
- Karampitsakos, T.; Dimakou, K.; Papaioannou, O.; Chrysikos, S.; Kaponi, M.; Bouros, D.; Tzouvelekis, A.; Hillas, G. The role of increased red cell distribution width as a negative prognostic marker in patients with COPD. Pulm. Pharmacol. Ther. 2019, 60, 101877. [Google Scholar] [CrossRef]
- Long, J.; Ouyang, Y.; Duan, H.; Xiang, Z.; Ma, H.; Ju, M.; Sun, D. Multiple Factor Analysis of Depression and/or Anxiety in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1449–1464. [Google Scholar] [CrossRef]
- Garcia-Pachon, E.; Baeza-Martinez, C.; Ruiz-Alcaraz, S.; Grau-Delgado, J. Prediction of Three-Month Readmission Based on Haematological Parameters in Patients with Severe COPD Exacerbation. Adv. Respir. Med. 2021, 89, 501–504. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhao, P.; Chu, Y.; Zhao, N.; Cheng, J. Red blood cell distribution width and serum CA-125 level as prognostic markers in acute exacerbation of chronic obstructive pulmonary disease. J. Int. Med Res. 2021, 49. [Google Scholar] [CrossRef] [PubMed]
- Marvisi, M.; Mancini, C.; Balzarini, L.; Ramponi, S. Red cell distribution width: A new parameter for predicting the risk of exacerbation in COPD patients. Int. J. Clin. Pr. 2021, 75, e14468. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, S.; Ishibashi, Y.; Ota, T.; Murano, H.; Furuyama, K.; Yang, S.; Machida, H.; Nakano, H.; Sato, M.; et al. Association between low mean corpuscular hemoglobin and prognosis in patients with exacerbation of chronic obstructive pulmonary disease. Respir. Investig. 2021, 59, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Song, W.; Wang, L.; Zeng, Q.; Zhao, Z.; Feng, N.; Fan, J.; Wang, Y.; Wang, J.; Ma, X. NT-pro BNP in AECOPD-PH: Old biomarker, new insights-based on a large retrospective case-controlled study. Respir. Res. 2021, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dai, L.; Wan, L.; Zhang, S.; Peng, H. Dynamic Increase of Red Cell Distribution Width Predicts Increased Risk of 30-Day Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 393–400. [Google Scholar] [CrossRef]
- Zhu, M.; Peng, H.; Wan, L.; Zhang, S.; Zeng, Y. The role of elevated red blood cell distribution width in the prognosis of AECOPD patients. Medicine 2021, 100, e25010. [Google Scholar] [CrossRef]
- Boudjeltia, K.Z.; Kotsalos, C.; Sousa, D.R.; Rousseau, A.; Lelubre, C.; Sartenaer, O.; Piagnerelli, M.; Dohet-Eraly, J.; Dubois, F.; Tasiaux, N.; et al. Spherization of red blood cells and platelet margination in COPD patients: A retrospective study. Ann. N. Y. Acad. Sci. 2020, 1485, 71–82. [Google Scholar] [CrossRef]
- Koç, Ç.; Şahin, F. What Are the Most Effective Factors in Determining Future Exacerbations, Morbidity Weight, and Mortality in Patients with COPD Attack? Medicina 2022, 58, 163. [Google Scholar] [CrossRef]
- Peng, G.; Chen, Z.; Zhang, H. Constructioin and efficacy of a nomogram prediction model for high risk of acute pulmonary embolism based on clinical and biochemical indexes. Acta Med. Mediterr. 2022, 38, 347–351. [Google Scholar]
- Günay, E.; Ulaşlı, S.S.; Akar, O.; Ahsen, A.; Günay, S.; Koyuncu, T.; Ünlü, M. Neutrophil-to-Lymphocyte Ratio in Chronic Obstructive Pulmonary Disease: A Retrospective Study. Inflammation 2013, 37, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Buttarello, M. Laboratory diagnosis of anemia: Are the old and new red cell parameters useful in classification and treatment, how? Int. J. Lab. Hematol. 2016, 38, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, P.; Maino, A.; Felicetta, I.; Abbattista, M.; Passamonti, S.M.; Artoni, A.; Martinelli, I. Association between red cell distribution width and risk of venous thromboembolism. Thromb. Res. 2015, 136, 590–594. [Google Scholar] [CrossRef]
- Mao, W.; Wu, J. Haematologic indices in hepatitis B virus-related liver disease. Clin. Chim. Acta 2019, 500, 135–142. [Google Scholar] [CrossRef]
- Hald, E.M.; Løchen, M.-L.; Lappegård, J.; Ellingsen, T.S.; Mathiesen, E.B.; Wilsgaard, T.; Njølstad, I.; Brækkan, S.K.; Hansen, J.-B. Red Cell Distribution Width and Risk of Atrial Fibrillation and Subsequent Thromboembolism: The Tromsø Study. TH Open 2020, 04, e280–e287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, S.; Wang, L.; Pan, T.; Zhong, X. The relationship between red blood cell distribution and islet β-cell function indexes in patients with type 2 diabetes. BMC Endocr. Disord. 2021, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, L.; Gui, X.; Chen, L.; Qiu, X.; Yu, M.; Xiao, Y. Association of Red Blood Cell Distribution Width Levels with Connective Tissue Disease-Associated Interstitial Lung Disease (CTD-ILD). Dis. Markers 2021, 2021, 5536360. [Google Scholar] [CrossRef]
- Lippi, G.; Filippozzi, L.; Montagnana, M.; Salvagno, G.L.; Franchini, M.; Guidi, G.C.; Targher, G. Clinical usefulness of measuring red blood cell distribution width on admission in patients with acute coronary syndromes. Clin. Chem. Lab. Med. CCLM 2009, 47, 353–357. [Google Scholar] [CrossRef]
- Ma, F.-L.; Li, S.; Li, X.-L.; Liu, J.; Qing, P.; Guo, Y.-L.; Xu, R.-X.; Zhu, C.-G.; Jia, Y.-J.; Liu, G.; et al. Correlation of red cell distribution width with the severity of coronary artery disease: A large Chinese cohort study from a single center. Chin. Med. J. 2013, 126, 1053–1057. [Google Scholar]
- Theurl, I.; Hilgendorf, I.; Nairz, M.; Tymoszuk, P.; Haschka, D.; Asshoff, M.; He, S.; Gerhardt, L.M.; Holderried, T.A.; Seifert, M.; et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 2016, 22, 945–951. [Google Scholar] [CrossRef]
- Minakata, Y.; Ueda, H.; Akamatsu, K.; Kanda, M.; Yanagisawa, S.; Ichikawa, T.; Koarai, A.; Hirano, T.; Sugiura, H.; Matsunaga, K.; et al. High COPD Prevalence in Patients with Liver Disease. Intern. Med. 2010, 49, 2687–2691. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.W.; Kim, S.Y.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Chang, J.; Ro, J.-S.; Lee, Y.-H.; Lee, S.H. Relationship between obstructive lung disease and non-alcoholic fatty liver disease in the Korean population: Korea National Health and Nutrition Examination Survey, 2007–2010. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2603–2611. [Google Scholar] [CrossRef]
- Rybak, D.; Fallon, M.B.; Krowka, M.J.; Brown, R.S., Jr.; Reinen, J.; Stadheim, L.; Faulk, D.; Nielsen, C.; Al-Naamani, N.; Roberts, K.; et al. Risk factors and impact of chronic obstructive pulmonary disease in candidates for liver transplantation. Liver Transplant. 2008, 14, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Fois, A.G.; Sotgia, S.; Zinellu, E.; Bifulco, F.; Pintus, G.; Mangoni, A.A.; Carru, C.; Pirina, P. Plasma protein thiols: An early marker of oxidative stress in asthma and chronic obstructive pulmonary disease. Eur. J. Clin. Investig. 2015, 46, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, E.; Zinellu, A.; Pau, M.C.; Piras, B.; Fois, A.G.; Mellino, S.; Carru, C.; Mangoni, A.A.; Pirina, P. Glutathione Peroxidase in Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Antioxidants 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Pasini, A.M.F.; et al. Biomarkers of Oxidative Stress and Inflammation in Chronic Airway Diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, E.; Zinellu, A.; Fois, A.; Pau, M.; Scano, V.; Piras, B.; Carru, C.; Pirina, P. Oxidative Stress Biomarkers in Chronic Obstructive Pulmonary Disease Exacerbations: A Systematic Review. Antioxidants 2021, 10, 710. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Med. Cell. Longev. 2020, 2020, 7092151. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid. Med. Cell Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.F.; Hariharan, S.; Little, J.A. Stress erythropoiesis: Definitions and models for its study. Exp. Hematol. 2020, 89, 43–54.e2. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.F.; Ruan, B.; Hao, S.; Chen, Y. Stress Erythropoiesis is a Key Inflammatory Response. Cells 2020, 9, 634. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Richards, R.S.; Bwititi, P.T.; Nwose, E.U. Association of abnormal erythrocyte morphology with oxidative stress and inflammation in metabolic syndrome. Blood Cells, Mol. Dis. 2015, 54, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Tanaka, T.; Semba, R.D.; Fantoni, G.; Moaddel, R.; Candia, J.; Simonsick, E.M.; Bandinelli, S.; Ferrucci, L. Proteins in the pathway from high red blood cell width distribution to all-cause mortality. eBioMedicine 2022, 76, 103816. [Google Scholar] [CrossRef]
First Author, Year, Country [Ref] | Study Design | N | COPD Diagnosis | Main Comorbidities MCV Haemoglobin Vitamin B12 Folate | Main Results | Significant Associations between RDW and Other Parameters |
---|---|---|---|---|---|---|
Sincer I, 2012, Turkey [26] | P | 39 | GOLD | Hypertension Diabetes Normal MCV Normal haemoglobin B12 deficiency EC Folate deficiency EC | RDW significantly higher in COPD patients than healthy controls RDW independently associated with right ventricular dysfunction in COPD patients (RDW cut-off = 17.7%) | TAPSE (r = −0.538, p < 0.001) Systolic velocity (r = −0.532, p = 0.004) |
Seyhan EC, 2013, Turkey [27] | R | 270 | GOLD | Hypertension Cardiovascular disease Normal MCV Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with five-year mortality in COPD patients | COPD duration (r = 0.21, p = 0.02) Long-term O2 therapy (r = 0.16, p = 0.03) PaCO2 (r = 0.17, p = 0.04) Albumin (r = −0.22, p = 0.02) Haemoglobin (r = −0.18, p = 0.04) MCV (r = −0.37, p < 0.001) CRP (r = 0.21, p = 0.008) RVD (r = 0.25, p < 0.001) PAH (r = 0.14, p = 0.03) LVEF (r = −0.15, p = 0.02) RVEDD (r = 0.17, p = 0.03) LVEDD (r = 0.15, p = 0.04) |
Gunay E, 2014, Turkey, [62] | R | 178 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in COPD patients than healthy controls RDW not significantly associated with GOLD stage | NLR (r = 0.268, p < 0.001) |
Yasar Z, 2015, Turkey [28] | R | 140 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in COPD patients than healthy controls RDW not significantly associated with the presence of metabolic syndrome in COPD patients | NR |
Tertemiz KC, 2016, Turkey [29] | R | 385 | GOLD | Cardiovascular disease MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW independently associated with nine-year mortality in COPD patients RDW significantly associated with GOLD stage | 6MWT (r−0.279, p < 0.001) %FEV1 (r = −0.290, p < 0.001) %FVC (r = −0.285, p < 0.001) FEF25–75% (r = −0.303, p < 0.01) %PEF (r = −0.227, p < 0.01) O2 saturation (r = −0.260, p < 0.001) Age (r = 0.182, p < 0.001) BODE index (r = 0.407, p < 0.001) |
Ozgul G, 2017, Turkey [30] | P | 175 | GOLD | NR MCV NR Normal haemoglobin B12 deficiency EC Folate deficiency EC | RDW significantly higher in COPD patients than healthy controls RDW independently associated with cardiovascular disease and right ventricular dysfunction (RDW cut-off = 16.9%) | CRP (r = 0.27, p = 0.001) Haemoglobin (r = −0.26, p < 0.001) Albumin (r = −0.23, p = 0.04) PAH (r = 0.1, p = 0.02) |
Kalemci S, 2018, Turkey [31] | R | 153 | GOLD | Hypertension Diabetes MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with severe disease in COPD patients (RDW cut-off = 14.45%) | NR |
Yang J, 2019, China [32] | R | 213 | GOLD | Hypertension Diabetes IHD MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with PAH in COPD patients (RDW cut-off = 14.65%) | BNP (r = 0.513, p < 0.001) PASP (r = 0.390, p = 0.014) PA:A (r = 0.502, p < 0.001) |
Bai Y, 2020, China [33] | R | 229 | GOLD | Hypertension Diabetes MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW independently associated with pulmonary heart disease in COPD patients (RDW-SD cut-off = 48 fL) | COPD %FEV1 (r = −0.838, p < 0.001) PAP (r = 0.734, p < 0.001) RVS (r = 0.546, p < 0.001) COPD with pulmonary heart disease %FEV1 (r = −0.768, p < 0.001) PAP (r = 0.820, p < 0.001) RVS (r = 0.845, p < 0.001) |
Çilingir BM, 2020, Turkey [34] | R | 201 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW not significantly different between COPD patients and healthy controls RDW not significantly associated with disease severity in patients with COPD | NR |
Wang J, 2020, China [35] | R | 125 | GOLD | Hypertension Diabetes Normal MCV Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with pulmonary embolism in patients with COPD (RDW-SD cut-off = 44.5 fL) | NR |
Huang Y, 2021, China [36] | P | 100 | GOLD | Hypertension Diabetes MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW not significantly different between COPD patients and healthy controls | NR |
Martunis M, 2021, Indonesia [37] | NR | 30 | NR | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW not significantly associated with disease severity in patients with COPD | NR |
Lan W, 2022, China [38] | R | 3244 | NR | Heart failure Arrhythmia Hypertension Diabetes Renal failure Liver disease Sepsis Anaemia MCV NR Low haemoglobin B12 status NR Folate status NR | RDW independently associated with 28-day mortality | Significant differences across RDW tertiles for: Age (p = 0.02) Ethnicity (p = 0.03) Blood pressure (p < 0.001) Respiratory rate (p = 0.001) Temperature (p = 0.04) SpO2 (p = 0.03) Haemoglobin (p < 0.001) White blood cells (p = 0.02) Anion gap (p < 0.001) Bicarbonate (p = 0.002) Creatinine (p < 0.001) SOFA (p < 0.001) SAPS II (p < 0.001) Heart failure (p < 0.001) Arrhythmias (p < 0.001) Diabetes (p < 0001) Renal failure (p < 0.001) Renal replacement therapy (p < 0.001) Liver disease (p < 0.001) Sepsis (p < 0.001) Anaemia (p < 0.001) Ventilation (p < 0.001) |
Ljubičić D, 2022, Croatia [39] | P | 61 | GOLD | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW not significantly different between COPD patients and healthy controls | None |
Qiu Y, 2022, China [40] | R | 540 | Interview questionnaires | Cardiovascular disease MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with the presence of cardiovascular disease in patients with COPD RDW independently associated with the risk of ten-year mortality in patients with COPD | NR |
Wang N, 2022, China [41] | R | 527 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with the presence of pulmonary hypertension in patients with COPD | NR |
First Author, Year, Country [Ref] | Study Design | N | COPD Diagnosis | Main Comorbidities MCV Haemoglobin Vitamin B12 Folate | Main Result | Significant Association between RDW and Other Parameters |
---|---|---|---|---|---|---|
Gunay E, 2014, Turkey [62] | R | 269 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease and healthy controls No significant differences in RDW between disease severity classes in AECOPD | NLR (r = 0.292, p = 0.005) |
Rahimirad S, 2016, Iran [42] | R | 330 | NR | Diabetes Hypertension IHD Heart failure Normal MCV Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with in-hospital mortality in patients with AECOPD (RDW-SD cut-off = 46 fL) | Haemoglobin (r = −1.42, p = 0.01) |
Farah R, 2017, Israel [43] | P | 85 | NR | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease and healthy controls | None |
Koçak MZ, 2017, Turkey [44] | R | 81 | NR | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease | WBC (r = 0.244, p = 0.029) |
Ragulan R, 2017, India [45] | P | 135 | GOLD | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease | Sex (males > females, p < 0.001) |
Epstein D, 2018, Israel [46] | R | 539 | NR | Diabetes Hypertension Anaemia Heart failure MCV NR Low haemoglobin B12 status NR Folate status NR | RDW independently associated with 60-day readmission due to AECOPD, 60-day readmission from any reason, and 60-day composite endpoint of readmission or death (RDW cut-off = 14.3%) | NR |
Torabi M, 2018, Iran [47] | P | 1078 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW independently associated with in-hospital mortality in patients with AECOPD | NR |
Hu GP, 2019, China [48] | P | 442 | GOLD | Hypertension IHD Heart failure Normal MCV Low haemoglobin B12 status NR Folate status NR | RDW independently associated with one-year mortality in patients with AECOPD | NR |
Şahin F, 2019, Turkey [49] | R | 250 | GOLD | NR MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease and healthy controls | NR |
Karampitsakos T, 2020, Greece [50] | P | 160 | NR | NR MCV NR Low haemoglobin B12 status NR Folate status NR | RDW independently associated with the need for non-invasive mechanical ventilation and long-term oxygen therapy in patients with AECOPD | NR |
Long J, 2020, China [51] | P | 307 | GOLD | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW significantly higher in patients with AECOPD and depression/anxiety compared to patients with AECOPD without depression/anxiety and healthy controls (RDW cut-off = 14.0%) | HAMA score (r = 0.116, p = 0.042) HAMD score (p = 0.156, p = 0.006) |
Garcia-Pachon E, 2021, Spain [52] | P | 106 | NR | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW not significantly associated with risk of three-month readmission in patients with AECOPD | NR |
He F, 2021, China [53] | R | 132 | Chinese COPD guidelines | NR MCV NR Haemoglobin NR B12 status NR Folate status NR | RDW independently associated with one-year mortality in patients with AECOPD (RDW cut-off = 12.75%) | NR |
Marvisi M, 2021, Italy [54] | R | 249 | GOLD | NR MCV NR Normal haemoglobin B12 deficiency EC Folate deficiency EC | RDW significantly higher in patients with AECOPD when compared to COPD patients with stable disease and healthy subjects | CRP (r = 0.375, p < 0.01) CAT Score (r = 0.811, p < 0.01) Number of exacerbations (r = 0.538, p = 0.002) GOLD score (r = 0.547, p = 0.05) Number of packs smoked (r = 0.372, p < 0.01) |
Sato K, 2021, Japan [55] | R | 195 | GOLD | NR Normal MCV Low haemoglobin B12 status NR Folate status NR | RDW not independently associated with 30-day mortality in patients with AECOPD | NR |
Tian F, 2021, China [56] | R | 1072 | GOLD | Diabetes IHD Hypertension Stroke MCV NR Low haemoglobin B12 status NR Folate status NR | RDW significantly higher in AECOPD patients that patients with stable COPD RDW independently associated with pulmonary hypertension in AECOPD patients | NT-pro BNP (r = 0.359, p < 0.001) |
Zhu M (a), 2021, China [57] | R | 239 | GOLD | Hypertension Diabetes IHD Heart failure MCV NR Low haemoglobin B12 status NR Folate status NR | Persistently high RDW on admission independently associated with 30-day readmission compared to decreasing RDW and normal RDW in AECOPD patients No significant differences in length of stay between the three groups | NR |
Zhu M (b), 2021, China [58] | R | 286 | GOLD | Hypertension Diabetes Atrial fibrillation Heart failure MCV NR Low haemoglobin B12 status NR Folate status NR | RDW independently associated with length of stay in patients with AECOPD (RDW cut-off = 13.35%) | Haemoglobin, (r = −0.470, p < 0.001) %FEV1 (r = −0.142, p = 0.016) |
Zouaoui Boudjeltia K, 2021, Belgium [59] | P | 73 | GOLD | Hypertension Diabetes Normal MCV Normal haemoglobin B12 status NR Folate status NR | RDW not significantly different between patients with AECOPD and patients with stable COPD | NR |
Koç C, 2022, Turkey [60] | P | 160 | GOLD | Hypertension Diabetes Heart failure IHD MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW significantly higher in AECOPD patients admitted to ICU compared to those not admitted RDW not significantly different in AECOPD readmitted vs. not readmitted at six months RDW not independently associated with six-month mortality | NR |
Peng G, 2022, China [61] | R | 262 | NR | Diabetes IHD MCV NR Normal haemoglobin B12 status NR Folate status NR | RDW not independently associated with pulmonary embolism in patients with AECOPD | NR |
Study | Were the Groups Comparable Cther than the RDW? | Were the Same Criteria Used for Identification of Cases and Controls? | Was Exposure Measured in a Valid and Reliable Way? Was is Capitalized Because It Is the First Word of the Title. More Information on Capita | Was Exposure Measured in the Same Way for Cases and Controls? | Were Confounding Factors Identified? | Were Strategies to Deal with Confounding Factors Stated? | SWere Outcomes Assessed in a Standard, Valid, and Reliable Way for Cases and Controls? | Was the Exposure Period of Interest Long Enough to Be Meaningful? | Was Appropriate Statistical Analysis Used? | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|---|
Sincer I [26] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Seyhan EC [27] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Gunay E [62] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Yasar Z [28] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Tertemiz KC [29] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Ozgul G [30] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Kalemci S [31] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Yang J [32] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Bai Y [33] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Çilingir BM [34] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Wang J [35] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Huang Y [36] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Martunis M [37] | No | Yes | No | Yes | No | No | Yes | Yes | No | High |
Lan W [38] | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Ljubičić D [39] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Qiu Y [40] | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Wang N [41] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Rahimirad S [42] | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Farah R [43] | No | Yes | No | Yes | No | No | Yes | Yes | No | High |
Koçak MZ [44] | No | Yes | No | Yes | No | No | Yes | Yes | No | High |
Ragulan R [45] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Epstein D [46] | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Torabi M [47] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Hu GP [48] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Şahin F [49] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Karampitsakos T [50] | No | Yes | No | Yes | No | No | Yes | Yes | No | High |
Long J [51] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Garcia-Pachon E [52] | No | Yes | No | Yes | No | No | Yes | Yes | No | High |
He F [53] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Marvisi M [54] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Sato K [55] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Tian F [56] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Zhu M (a) [57] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Zhu M (b) [58] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Zouaoui Boudjeltia K [59] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | High |
Koç C [60] | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Peng G [61] | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinellu, A.; Mangoni, A.A. The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review. J. Clin. Med. 2022, 11, 5642. https://doi.org/10.3390/jcm11195642
Zinellu A, Mangoni AA. The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review. Journal of Clinical Medicine. 2022; 11(19):5642. https://doi.org/10.3390/jcm11195642
Chicago/Turabian StyleZinellu, Angelo, and Arduino A. Mangoni. 2022. "The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review" Journal of Clinical Medicine 11, no. 19: 5642. https://doi.org/10.3390/jcm11195642
APA StyleZinellu, A., & Mangoni, A. A. (2022). The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review. Journal of Clinical Medicine, 11(19), 5642. https://doi.org/10.3390/jcm11195642