Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pre–Post Elexacaftor/Tezacaftor/Ivacaftor Lung Morphology Comparison
3.2. Pre–Post Elexacaftor/Tezacaftor/Ivacaftor Ventilation Comparison
3.3. Correlation of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, P.G.; Mall, M.A.; Drevinek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; Van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Taylor-Cousar, J.L.; Davies, J.; Gibson, R.L.; Mall, M.A.; McKone, E.F.; McNally, P.; Ramsey, B.W.; Rayment, J.H.; Rowe, S.M.; et al. A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2021, 203, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Nissenbaum, C.; Davies, G.; Horsley, A.; Davies, J.C. Monitoring early stage lung disease in cystic fibrosis. Curr. Opin. Pulm. Med. 2020, 26, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Dave, K.; Dobra, R.; Scott, S.; Saunders, C.; Matthews, J.; Simmonds, N.J.; Davies, J.C. Entering the era of highly effective modulator therapies. Pediatr. Pulmonol. 2021, 56 (Suppl. S1), S79–S89. [Google Scholar] [CrossRef] [PubMed]
- McLeod, C.; Wood, J.; Schultz, A.; Norman, R.; Smith, S.; Blyth, C.C.; Webb, S.; Smyth, A.R.; Snelling, T.L. Outcomes and endpoints reported in studies of pulmonary exacerbations in people with cystic fibrosis: A systematic review. J. Cyst. Fibros. 2020, 19, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Hamblett, N.; Ramsey, B.W.; Kronmal, R.A. Advancing outcome measures for the new era of drug development in cystic fibrosis. Proc. Am. Thorac. Soc. 2007, 4, 370–377. [Google Scholar] [CrossRef]
- Puderbach, M.; Eichinger, M.; Gahr, J.; Ley, S.; Tuengerthal, S.; Schmähl, A.; Fink, C.; Plathow, C.; Wiebel, M.; Müller, F.M.; et al. Proton MRI appearance of cystic fibrosis: Comparison to CT. Eur. Radiol. 2007, 17, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, P.; Milla, C.; Aurora, P.; Davies, J.C.; Davis, S.D.; Hall, G.L.; Heltshe, S.; Latzin, P.; Lindblad, A.; Pittman, J.E.; et al. Multiple-Breath Washout as a Lung Function Test in Cystic Fibrosis. A Cystic Fibrosis Foundation Workshop Report. Ann. Am. Thorac. Soc. 2015, 12, 932–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culver, B.H.; Graham, B.L.; Coates, A.L.; Wanger, J.; Berry, C.E.; Clarke, P.K.; Hallstrand, T.S.; Hankinson, J.L.; Kaminsky, D.A.; MacIntyre, N.R.; et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am. J. Respir. Crit. Care Med. 2017, 196, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goralski, J.L.; Chung, S.H.; Glass, T.M.; Ceppe, A.S.; Akinnagbe-Zusterzeel, E.O.; Trimble, A.T.; Boucher, R.C.; Soher, B.J.; Charles, H.C.; Donaldson, S.H.; et al. Dynamic perfluorinated gas MRI reveals abnormal ventilation despite normal FEV1 in cystic fibrosis. JCI Insight 2020, 5, e133400. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, M.; Optazaite, D.E.; Kopp-Schneider, A.; Hintze, C.; Biederer, J.; Niemann, A.; Mall, M.A.; Wielputz, M.O.; Kauczor, H.U.; Puderbach, M. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur. J. Radiol. 2012, 81, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Graeber, S.Y.; Renz, D.M.; Stahl, M.; Pallenberg, S.T.; Sommerburg, O.; Naehrlich, L.; Berges, J.; Dohna, M.; Ringshausen, F.C.; Doellinger, F.; et al. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on Lung Clearance Index and Magnetic Resonance Imaging in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am. J. Respir. Crit. Care Med. 2022, 206, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.J.; Cremillieux, Y.; Fleck, R.J.; Brody, A.S.; Serai, S.D.; Szczesniak, R.D.; Kerlakian, S.; Clancy, J.P.; Woods, J.C. Ultrashort Echo-Time Magnetic Resonance Imaging Is a Sensitive Method for the Evaluation of Early Cystic Fibrosis Lung Disease. Ann. Am. Thorac. Soc. 2016, 13, 1923–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, S.H.; Laube, B.L.; Corcoran, T.E.; Bhambhvani, P.; Zeman, K.; Ceppe, A.; Zeitlin, P.L.; Mogayzel, P.J., Jr.; Boyle, M.; Locke, L.W.; et al. Effect of ivacaftor on mucociliary clearance and clinical outcomes in cystic fibrosis patients with G551D-CFTR. JCI Insight 2018, 3, e122695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCallister, A.; Chung, S.H.; Antonacci, M.; Powell, M.Z.; Ceppe, A.S.; Donaldson, S.H.; Lee, Y.Z.; Branca, R.T.; Goralski, J.L. Comparison of single breath hyperpolarized (129) Xe MRI with dynamic (19) F MRI in cystic fibrosis lung disease. Magn. Reson. Med. 2021, 85, 1028–1038. [Google Scholar] [CrossRef]
- Wucherpfennig, L.; Triphan, S.M.F.; Wege, S.; Kauczor, H.U.; Heussel, C.P.; Schmitt, N.; Wuennemann, F.; Mayer, V.L.; Sommerburg, O.; Mall, M.A.; et al. Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J. Cyst. Fibros. 2022. [Google Scholar] [CrossRef] [PubMed]
- Wielpütz, M.O.; Puderbach, M.; Kopp-Schneider, A.; Stahl, M.; Fritzsching, E.; Sommerburg, O.; Ley, S.; Sumkauskaite, M.; Biederer, J.; Kauczor, H.U.; et al. Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2014, 189, 956–965. [Google Scholar] [CrossRef]
- Wielpütz, M.O.; von Stackelberg, O.; Stahl, M.; Jobst, B.J.; Eichinger, M.; Puderbach, M.U.; Nährlich, L.; Barth, S.; Schneider, C.; Kopp, M.V.; et al. Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J. Cyst. Fibros. 2018, 17, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Veldhoen, S.; Heidenreich, J.F.; Metz, C.; Petritsch, B.; Benkert, T.; Hebestreit, H.U.; Bley, T.A.; Köstler, H.; Weng, A.M. Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. J. Thorac. Imaging 2021, 36, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Dournes, G.; Menut, F.; Macey, J.; Fayon, M.; Chateil, J.F.; Salel, M.; Corneloup, O.; Montaudon, M.; Berger, P.; Laurent, F. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur. Radiol. 2016, 26, 3811–3820. [Google Scholar] [CrossRef] [PubMed]
Total N = 8 with Paired Data | Baseline | Post Elexacaftor /Tezacaftor/Ivacaftor | Mean between Visit Change | p-Value |
---|---|---|---|---|
Female (n, %) | 5 (62.5%) | |||
Age, years (median, range) | 32 (22–45) | |||
FVC, liters (mean, SD) | 4.36 (1.33) | 4.67 (1.36) | 0.31 (0.11) | <0.001 |
FVC, % predicted (mean, SD) | 99.5% (11.46) | 106.6% (9.97) | 7.13% (1.96) | <0.001 |
FEV1, liters (mean, SD) | 3.12 (1.12) | 3.53 (1.27) | 0.41 (0.20) | <0.001 |
FEV1 % predicted (mean, SD) | 84.88% (16.55) | 95.89% (17.32) | 11.0 (0.78) | <0.001 |
FEF25:75, liters (mean, SD) | 2.38 (1.32) | 3.06 (1.72) | 0.68 (0.40) | 0.007 |
FEF25:75, % predicted (mean, SD) | 60.38% (29.12) | 77% (35.74) | 16.63% (11.07) | 0.004 |
LCI (mean, SD) | 14.62 (2.53) | 12.62 (2.59) | −2.00 (2.18) | 0.036 |
Total N = 8 with Paired Data | Baseline (Mean, SD) | Post E/T/I (Mean, SD) | Mean between Visit Change | p-Value |
---|---|---|---|---|
Morphology Structure score | 7.19 (4.61) | 4.25 (2.45) | −2.94 (3.22) | 0.04 |
Bronchiectasis/airway wall thickening sub-score | 3.81 (0.62) | 2.63 (0.57) | −1.19 (0.60) | 0.002 |
Mucus plugging sub-score | 3 (0.5) | 1.1875 (0.34) | −1.82 (0.44) | <0.001 |
Abscess/sacculation sub-score | 0 | 0 | 0 | -- |
Consolidation sub-score | 0.75 (0.44) | 0.31 (0.24) | v0.44 (0.36) | -- |
Special findings sub-score | 0.06 (0.07) | 0.06 (0.07) | 0 (0.07) | -- |
Baseline (Mean, SD) | Post E/T/I (Mean, SD) | p-Value | |
---|---|---|---|
Right upper lobe | 2.06 (0.98) | 1.38 (1.22) | 0.2 |
Right middle lobe | 1.44 (0.98) | 0.75 (0.6) | 0.008 |
Right lower lobe | 0.31 (0.59) | 0.06 0.18) | 0.23 |
Left upper lobe | 2 (2.1) | 1.19 (1.65) | 0.02 |
Lingula | 0.5 (0.76) | 0.75 (0.96) | 0.275 |
Left lower lobe | 0.5 (0.6) | 0.13 (0.35) | 0.048 |
Baseline Mean (SD) | Post E/T/I Mean (SD) | Mean between Visit Change | p-Value | |
---|---|---|---|---|
VDP | 8.36% (4.81) | 5.64% (3.53) | 2.71% (2.11) | 0.008 |
FLV↑tau2 | 5.04% (1.84) | 3.38% (1.84) | 1.66% (1.64) | 0.024 |
Combined abnormal ventilation score | 13.4% (6.93) | 9.03% (5.19) | 4.37% (2.78) | 0.002 |
FEV1 at Baseline | FEV1 Post E/T/I | Delta/Delta | LCI at Baseline | LCI Post E/T/I | Delta/Delta | |
---|---|---|---|---|---|---|
Morphological structure score | −0.92 * | −0.90 * | 0.17 | 0.81 * | 0.80 * | 0.27 |
Bronchiectasis/airway wall thickening score | −0.90 * | −0.91 * | 0.24 | 0.77 * | 0.84 * | −0.11 |
Mucus plugging score | −0.88 * | −0.26 | −0.09 | 0.88 * | 0.25 | 0.08 |
VDP | −0.86 * | −0.85 * | 0.12 | 0.61 | 0.68 | −0.22 |
FLV↑tau2 | −0.81 * | −0.93 * | −0.58 | 0.66 + | 0.87 * | 0.41 |
Abnormal Ventilation score | −0.89 * | −0.92 * | −0.27 | 0.66 + | 0.77 * | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goralski, J.L.; Chung, S.H.; Ceppe, A.S.; Powell, M.Z.; Sakthivel, M.; Handly, B.D.; Lee, Y.Z.; Donaldson, S.H. Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study. J. Clin. Med. 2022, 11, 6160. https://doi.org/10.3390/jcm11206160
Goralski JL, Chung SH, Ceppe AS, Powell MZ, Sakthivel M, Handly BD, Lee YZ, Donaldson SH. Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study. Journal of Clinical Medicine. 2022; 11(20):6160. https://doi.org/10.3390/jcm11206160
Chicago/Turabian StyleGoralski, Jennifer L., Sang Hun Chung, Agathe S. Ceppe, Margret Z. Powell, Muthu Sakthivel, Brian D. Handly, Yueh Z. Lee, and Scott H. Donaldson. 2022. "Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study" Journal of Clinical Medicine 11, no. 20: 6160. https://doi.org/10.3390/jcm11206160
APA StyleGoralski, J. L., Chung, S. H., Ceppe, A. S., Powell, M. Z., Sakthivel, M., Handly, B. D., Lee, Y. Z., & Donaldson, S. H. (2022). Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study. Journal of Clinical Medicine, 11(20), 6160. https://doi.org/10.3390/jcm11206160