Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Liver Stiffness Measurement (LSM)
2.3. Liver Biopsy
2.4. Gene Expression
2.5. Luminex Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIM2 | absent in melanoma 2 |
ALT | alanine aminotransferase |
Ang-2 | angiopoietin-2 |
AST | aspartate aminotransferase |
AUC | area under the curve |
BMI | Body Mass Index |
BMP-9 | bone morphogenetic protein-9 |
CAP | controlled attenuation parameter |
CASP1 | caspase-1 |
CD105 | endoglin |
EGF | epidermal growth factor, |
ET1 | endothelin-1 |
FGF-1 | fibroblast growth factor-1 |
FGF-2 | fibroblast growth factor-2 |
FST | follistatin |
G-CSF | granulocyte colony-stimulating factor |
GGT | gamma-glutamyl transferase |
HB-EGF | heparin-binding EGF-like growth factor |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HDL | High-density lipoprotein |
HGF | hepatocyte growth factor, |
IL-2 | interleukin-2 |
IL-8 | interleukin-8 |
INR | International Normalized Ratio |
LDL | Low-density lipoprotein |
LEP | leptin |
LSM | Liver stiffness measurement |
NAFLD | Nonalcoholic fatty liver disease |
NASH | nonalcoholic steatohepatitis |
NRLP3 | Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 |
P2X4R | P2X purinoceptor 4 |
P2X7R | P2X purinoceptor 7 |
PLGF | placental growth factor |
ROC | receiver operating characteristics |
T/R | target-reference ratio |
VEGF-A | vascular endothelial growth factor-A |
VEGF-C | vascular endothelial growth factor-C |
VEGF-D | vascular endothelial growth factor-D |
References
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Ramai, D.; Facciorusso, A.; Vigandt, E.; Schaf, B.; Saadedeed, W.; Chauhan, A.; di Nunzio, S.; Shah, A.; Giacomelli, L.; Sacco, R. Progressive Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Cells 2021, 10, 3401. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Castro, C.; Martagón-Rosado, A.J.; Ortiz-Lopez, R.; Garrido-Treviño, L.F.; Villegas-Albo, M.; Bosques-Padilla, F.J. Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J. Hepatol. 2021, 13, 1494–1511. [Google Scholar] [CrossRef] [PubMed]
- Bocca, C.; Novo, E.; Miglietta, A.; Parola, M. Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poisson, J.; Lemoinne, S.; Boulanger, C.; Durand, F.; Moreau, R.; Valla, D.; Rautou, P.-E. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017, 66, 212–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.; Semela, D.; Bruix, J.; Colle, I.; Pinzani, M.; Bosch, J. Angiogenesis in liver disease. J. Hepatol. 2009, 50, 604–620. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, X.; Wang, S.; Yan, X.; Tang, Z.; Wu, K.; Li, Y.; Liu, F. Hepatitis C virus core protein induces hypoxia-inducible factor 1α-mediated vascular endothelial growth factor expression in Huh7.5.1 cells. Mol. Med. Rep. 2014, 9, 2010–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapp, C.; Diaz-Lezama, N.; Adan-Castro, E.; Ramirez-Hernandez, G.; Moreno-Carranza, B.; Sarti, A.C.; Falzoni, S.; Solini, A.; di Virgilio, F. Pharmacological blockade of the P2X7 receptor reverses retinal damage in a rat model of type 1 diabetes. Acta Diabetol. 2019, 56, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Manzoor, S.; Ahmad, H.; Asif, A.; Bangash, T.A.; Latif, A.; Jaleel, S. Purinoceptor expression in hepatocellular virus (HCV)-induced and non-HCV hepatocellular carcinoma: An insight into the proviral role of the P2X4 receptor. Mol. Biol Rep. 2018, 45, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, P.; Solini, A.; Banchi, M.; Brunetto, M.R.; Cioni, D.; Ghiadoni, L.; Bocci, G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals 2021, 14, 995. [Google Scholar] [CrossRef]
- Manca, M.L.; Alunno, A.; D’Amato, C.; Bistoni, O.; Puxeddu, I.; Gerli, R.; Migliorini, P.; Pratesi, F. Anti -citrullinated peptide antibodies profiling in established rheumatoid arthritis. Jt. Bone Spine 2018, 85, 441–445. [Google Scholar] [CrossRef]
- Junjie, W. Advances in K-Means Clustering: A Data Mining Thinking; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-44757-0. [Google Scholar]
- Garuti, F.; Neri, A.; Avanzato, F.; Gramenzi, A.; Rampoldi, D.; Rucci, P.; Farinati, F.; Giannini, E.G.; Piscaglia, F.; ITA.LI.CA study group; et al. The changing scenario of hepatocellular carcinoma in Italy: An update. Liver Int. 2021, 41, 585–597. [Google Scholar] [CrossRef]
- Mantovani, A.; Csermely, A.; Petracca, G.; Beatrice, G.; Corey, K.E.; Simon, T.G.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 903–913. [Google Scholar] [CrossRef]
- Kim, O.K.; Nam, D.E.; Hahn, Y.S. The Pannexin 1/Purinergic Receptor P2X4 Pathway Controls the Secretion of MicroRNA-Containing Exosomes by HCV-Infected Hepatocytes. Hepatology 2021, 74, 3409–3426. [Google Scholar] [CrossRef] [PubMed]
- Toro, D.M.; Ramasawmy, R.; Silva Neto, P.V.; Pereira, G.L.; Sarmento, P.S.; Dray, H.L.S.N.; Sousa, K.S.; Affonso, J.S.; Silva, J.A.; Garcia, N.P.; et al. Inflammasome genes polymorphisms may influence the development of hepatitis C in the Amazonas, Brazil. PLoS ONE 2021, 16, e0253470. [Google Scholar] [CrossRef]
- Wu, C.; Borné, Y.; Gao, R.; López Rodriguez, M.; Roell, W.C.; Wilson, J.M.; Regmi, A.; Luan, C.; Aly, D.M.; Peter, A.; et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat. Commun. 2021, 12, 6486. [Google Scholar] [CrossRef] [PubMed]
- Yndestad, A.; Haukeland, J.W.; Dahl, T.B.; Bjøro, K.; Gladhaug, I.P.; Berge, C.; Damås, J.K.; Haaland, T.; Løberg, E.M.; Linnestad, P.; et al. A complex role of activin A in non-alcoholic fatty liver disease. Am. J. Gastroenterol. 2009, 104, 2196–2205. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D.; Triantafyllou, G.A.; Mantzoros, C.S. Activin A and follistatin in patients with nonalcoholic fatty liver disease. Metabolism 2016, 65, 1550–1558. [Google Scholar] [CrossRef] [Green Version]
- Bellan, M.; Castello, L.M.; Pirisi, M. Candidate Biomarkers of Liver Fibrosis: A Concise, Pathophysiology-oriented Review. J. Clin. Transl. Hepatol. 2018, 6, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.Q.; Liu, B.B.; Xu, K.S. New insights into BMP9 signaling in liver diseases. Mol. Cell Biochem. 2021, 476, 3591–3600. [Google Scholar] [CrossRef] [PubMed]
- Breitkopf-Heinlein, K.; Meyer, C.; König, C.; Gaitantzi, H.; Addante, A.; Thomas, M.; Wiercinska, E.; Cai, C.; Li, Q.; Wan, F.; et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 2017, 66, 939–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Li, Q.; Liu, B.; Li, G.; Riedemann, G.; Gaitantzi, H.; Breitkopf-Heinlein, K.; Zeng, A.; Ding, H.; Xu, K. BMP9 promotes methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis in non-obese mice by enhancing NF-κB dependent macrophage polarization. Int. Immunopharmacol. 2021, 96, 107591. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, B.; Breitkopf-Heinlein, K.; Weng, H.; Jiang, Q.; Dong, P.; Dooley, S.; Xu, K.; Ding, H. Adenovirus-mediated overexpression of bone morphogenetic protein-9 promotes methionine choline deficiency-induced non-alcoholic steatohepatitis in non-obese mice. Mol. Med. Rep. 2019, 20, 2743–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Li, Y.; Zhu, L.; Yang, Z.; He, J.; Wang, L.; Shang, Q.; Pan, H.; Wang, H.; Ma, X.; et al. Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 709–720. [Google Scholar] [CrossRef]
- Yang, Z.; Li, P.; Shang, Q.; Wang, Y.; He, J.; Ge, S.; Jia, R.; Fan, X. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Sci. Adv. 2020, 6, eabc5022. [Google Scholar] [CrossRef]
- Zhang, L.; Li, R.; Wu, B.H.; Liang, T.T.; Liu, Z.; Ju, W.; Wang, Y.; Wen, Y.T.; Liu, M.C.; Du, J.H. Leptin activates the JAK/STAT pathway to promote angiogenesis in RF/6A cells in vitro. Int. J. Ophthalmol. 2022, 15, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Tahergorabi, Z.; Khazaei, M. Leptin and its cardiovascular effects: Focus on angiogenesis. Adv. Biomed. Res. 2015, 4, 79. [Google Scholar]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.; Behl, T.; Tit, D.; Banica, F.; Bratu, O.; Diaonu, C.; Nistor-Cseppento, C.; Bustea, C.; Corb Aron, R.A.; Vesa, C.M. Interactions between leptin and insulin resistance in patients with prediabetes, with and without NAFLD. Exp. Med. 2020, 20, 197. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, M.; Vlaicu, S.I.; Ciumărnean, L.; Milaciu, M.V.; Mărginean, C.; Florea, M.; Vesa, Ș.C.; Popa, M. Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina 2022, 58, 641. [Google Scholar] [CrossRef] [PubMed]
- Mulder, P.; Morrison, M.C.; Wielinga, P.Y.; Van Duyvenvoorde, W.; Kooistra, T.; Kleemann, R. Surgical removal of inflamed epididymal white adipose tissue attenuates the development of non-alcoholic steatohepatitis in obesity. Int. J. Obes. 2016, 40, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micu, E.S.; Amzolini, A.M.; Abu-Alhija, A.B.; Forţofoiu, M.C.; Vladu, I.M.; Clenciu, D.; Mitrea, A.; Mogoantă, S.Ș.; Crișan, A.E.; Predescu, O.I.; et al. Systemic and adipose tissue inflammation in NASH: Correlations with histopathological aspects. Rom. J. Morphol. Embryol. 2021, 62, 509–515. [Google Scholar] [CrossRef]
- Huang, G.; Besner, G.E.; Brigstock, D.R. Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice. Lab. Investig. 2012, 92, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Maretti-Mira, A.C.; Wang, X.; Wang, L.; DeLeve, L.D. Incomplete Differentiation of Engrafted Bone Marrow Endothelial Progenitor Cells Initiates Hepatic Fibrosis in the Rat. Hepatology 2019, 69, 1259–1272. [Google Scholar] [CrossRef]
- Kitade, M.; Yoshiji, H.; Kojima, H.; Ikenaka, Y.; Noguchi, R.; Kaji, K.; Yoshii, J.; Yanase, K.; Namisaki, T.; Asada, K.; et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006, 44, 983–991. [Google Scholar] [CrossRef]
- Ramirez-Pedraza, M.; Fernández, M. Interplay Between Macrophages and Angiogenesis: A Double-Edged Sword in Liver Disease. Front. Immunol. 2019, 10, 2882. [Google Scholar] [CrossRef]
Analytes (Cytokines) | miniDC (pg/mL) | miniDC (pg/mL) + 2SD | Intra-Assay %CV | Inter-Assay %CV (n = 6 Assays) |
---|---|---|---|---|
Ang-2 | 3.0 | 3.0 | <10 | <20 |
BMP-9 | 1.2 | 1.4 | <10 | <20 |
EGF | 1.0 | 1.2 | <10 | <20 |
CD105 | 17.0 | 22.6 | <10 | <20 |
ET1 | 1.4 | 1.9 | <10 | <20 |
FGF-1/FGF-acidic | 4.6 | 7.4 | <10 | <20 |
FGF-2/FGF-basic | 8.6 | 10.5 | <10 | <20 |
FST | 11.1 | 13.6 | <10 | <20 |
G-CSF | 5.4 | 6.4 | <10 | <20 |
HB-EGF | 0.4 | 0.6 | <10 | <20 |
HGF | 8.5 | 10.4 | <10 | <20 |
IL-8 | 0.2 | 0.3 | <10 | <20 |
LEP | 42.8 | 51.9 | <10 | <20 |
PLGF | 0.7 | 0.9 | <10 | <20 |
VEGF-A | 8.1 | 10.6 | <10 | <20 |
VEGF-C | 7.6 | 10.7 | <10 | <20 |
VEGF-D | 1.9 | 2.4 | <10 | <20 |
Variable | NAFLD/NASH n = 21 | HCV n = 25 | p Value |
---|---|---|---|
Age | 46.1 (38–53) | 43.9 (37–48) | 0.26 |
Men (n, %) | 16, 76.2 | 21, 84.0 | 0.71 |
BMI (kg/m2) | 24.6 (24–29) | 24.50 (24–27) | 0.58 |
Glucose (mg/dL) | 85.0 (75–115) | 84.0 (70–88) | 0.14 |
Insulin (µU/mL) | 14.2 (9–22) | 7.3 (5–11) | 0.03 |
AST (UI/L) | 34.5 (26–49) | 44.5 (31–82) | 0.08 |
ALT (UI/L) | 52.5 (41–77) | 73.5 (46–126) | 0.08 |
GGT (U/L) | 92 (36–206) | 49 (25–89) | 0.09 |
Total bilirubin (mg/dL) | 0.68 (0.57–0.85) | 0.95 (0.54–1.29) | 0.26 |
Direct bilirubin (mg/dL) | 0.22 (0.18–0.27) | 0.22 (0.18–0.37) | 0.44 |
Fibroscan (kPa) | 6.2 (5.2–11.9) | 7.5 (6.1–12.4) | 0.14 |
Platelets (1000/μL) | 219 (168–267) | 207 (170–238) | 0.55 |
Triglycerides (mg/dL) | 108 (90–220) | 84 (69–128) | 0.16 |
HDL-cholesterol (mg/dL) | 45 (40–50) | 41 (29–46) | 0.24 |
LDL-cholesterol (mg/dL) | 124 (99–178) | 96.5 (66–135) | 0.19 |
Albumin (mg/dL) | 4.7 (4.2–4.8) | 4.6 (4.4–4.7) | 0.64 |
INR | 1.06 (1.00–1.12) | 1.03 (1.01–1.08) | 0.62 |
Only steatosis (grading 0; n) | 0 | 0 | == |
Ishak staging score > 1 (n) | == | 14 | == |
Ishak staging score 6 | == | 0 | == |
Brunt staging score 4 | 4 | 0 | == |
Variable | NAFLD/NASH | HCV | p Value |
---|---|---|---|
Tissue-Based Biomarkers | |||
P2X4 (T/R) | 0.5 (0.3–0.7) | 1.3 (0.7–2.6) | 0.02 |
P2X7 (T/R) | 0.3 (0.3–1.0) | 1.2 (0.8–2.2) | 0.12 |
NRLP3 (T/R) | 0.6 (0.5–1.4) | 1.0 (0.6–2.2) | 0.07 |
AIM2 (T/R) | 0.1 (0.0–0.3) | 0.5 (0.2–1.0) | 0.04 |
CASP1 (T/R) | 0.4 (0.4–0.6) | 0.9 (0.5–1.0) | 0.07 |
IL-2 (T/R) | 0.1 (0.0–0.7) | 0.9 (0.6–1.3) | 0.03 |
Circulating Biomarkers | |||
IL-8 (pg/mL) | 89.9 (46.1–204.3) | 24.7 (13.1–52.3) | 0.40 |
Follistatin (pg/mL) | 310.2 (240.1–420.6) | 197.4 (156.0–228.3) | 0.01 |
Angiopoietin (pg/mL) | 545.9 (430.1–1040.0) | 703.1 (376.6–1160.7) | 0.48 |
G-CSF (pg/mL) | 55.6 (36.4–66.6) | 73.4 (47.4–106.1) | 0.08 |
BMP-9 (pg/mL) | 1041.5 (408.9–1374.7) | 958.1 (686.8–1320.3) | 0.70 |
Endoglin (pg/mL) | 2364.2 (1629.6–2744.6) | 2362.0 (1854.7–2862.1) | 0.78 |
Leptin (pg/mL) | 6772.6 (3364.7–10,566.6) | 2908.4 (1603.8–7478.4) | 0.56 |
HGF (pg/mL) | 1184.9 (889.0–1567.2) | 937.3 (707.5–1339.8) | 0.13 |
EGF (pg/mL) | 515.5 (378.5–545.0) | 514.2 (366.0–657.4) | 0.41 |
HB-EGF (pg/mL) | 91.0 (44.9–107.5) | 48.8 (27.1–62.0) | 0.02 |
FGF-1 (pg/mL) | 1.6 (0.3–3.2) | 2.7 (1.1–4.3) | 0.86 |
FGF-2 (pg/mL) | 74.5 (51.4–85.5) | 99.1 (50.0–125.2) | 0.12 |
VEGF-A (pg/mL) | 435.6 (279.2–729.3) | 299.9 (193.3–385.8) | 0.08 |
VEGF-C (pg/mL) | 2668.6 (1852.5–2904.8) | 2244.7 (1247.0–3071.7) | 0.81 |
VEGF-D (pg/mL) | 892.7 (412.7–1349.0) | 968.5 (580.8–1964.7) | 0.96 |
PLGF (pg/mL) | 3.4 (1.8–4.9) | 5.1 (3.0–7.3) | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocci, G.; Orlandi, P.; Manca, M.L.; Rossi, C.; Salvati, A.; Brunetto, M.R.; Solini, A. Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases. J. Clin. Med. 2022, 11, 5985. https://doi.org/10.3390/jcm11205985
Bocci G, Orlandi P, Manca ML, Rossi C, Salvati A, Brunetto MR, Solini A. Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases. Journal of Clinical Medicine. 2022; 11(20):5985. https://doi.org/10.3390/jcm11205985
Chicago/Turabian StyleBocci, Guido, Paola Orlandi, Maria Laura Manca, Chiara Rossi, Antonio Salvati, Maurizia Rossana Brunetto, and Anna Solini. 2022. "Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases" Journal of Clinical Medicine 11, no. 20: 5985. https://doi.org/10.3390/jcm11205985
APA StyleBocci, G., Orlandi, P., Manca, M. L., Rossi, C., Salvati, A., Brunetto, M. R., & Solini, A. (2022). Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases. Journal of Clinical Medicine, 11(20), 5985. https://doi.org/10.3390/jcm11205985