Clinical Progression of Metabolic-Associated Fatty Liver Disease Is Rare in a Danish Tertiary Liver Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. Liver Biopsies
2.3. Study Parameters
2.4. Disease Progression and Regression
2.5. Statistical Analysis
3. Results
3.1. Patients and Follow-Up
3.2. Parameters to Separate Simple Steatosis from MAFLD with Steatohepatitis at Baseline
3.3. Histological Progression
3.4. Clinical Progression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Younossi, Z.M.; Stepanova, M.; Afendy, M.; Fang, Y.; Younossi, Y.; Mir, H.; Srishord, M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol. 2011, 9, 524–530. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Cortez-Pinto, H.; Camilo, M.E.; Baptista, A.; De Oliveira, A.G.; De Moura, M.C. Non-alcoholic fatty liver: Another feature of the metabolic syndrome? Clin. Nutr. 1999, 18, 353–358. [Google Scholar] [CrossRef]
- Adams, L.A.; Lymp, J.F.; St Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. Gastroenterology 2005, 129, 113–121. [Google Scholar] [CrossRef]
- Dam-Larsen, S.; Franzmann, M.; Andersen, I.B.; Christoffersen, P.; Jensen, L.B.; Sørensen, T.I.; Becker, U.; Bendtsen, F. Long term prognosis of fatty liver: Risk of chronic liver disease and death. Gut 2004, 53, 750–755. [Google Scholar] [CrossRef] [Green Version]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic fatty liver vs. nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 2015, 13, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Bedossa, P.; Poitou, C.; Veyrie, N.; Bouillot, J.L.; Basdevant, A.; Paradis, V.; Tordjman, J.; Clement, K. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 2012, 56, 1751–1759. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Le, M.H.; Cheung, R.C.; Nguyen, M.H. Differential Clinical Characteristics and Mortality Outcomes in Persons with NAFLD and/or MAFLD. Clin. Gastroenterol. Hepatol. 2021, 19, 2172–2181. [Google Scholar] [CrossRef]
- Niriella, M.A.; Ediriweera, D.S.; Kasturiratne, A.; De Silva, S.T.; Dassanayaka, A.S.; De Silva, A.P.; Kato, N.; Pathmeswaran, A.; Wickramasinghe, A.R.; de Silva, H.J. Outcomes of NAFLD and MAFLD: Results from a community-based, prospective cohort study. PLoS ONE 2021, 16, e0245762. [Google Scholar] [CrossRef]
- Golabi, P.; Otgonsuren, M.; de Avila, L.; Sayiner, M.; Rafiq, N.; Younossi, Z.M. Components of metabolic syndrome increase the risk of mortality in nonalcoholic fatty liver disease (NAFLD). Medicine 2018, 97, e0214. [Google Scholar] [CrossRef]
- Stepanova, M.; Rafiq, N.; Younossi, Z.M. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: A population-based study. Gut 2010, 59, 1410–1415. [Google Scholar] [CrossRef]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef]
- Pais, R.; Charlotte, F.; Fedchuk, L.; Bedossa, P.; Lebray, P.; Poynard, T.; Ratziu, V. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 2013, 59, 550–556. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 2015, 62, 1148–1155. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Choi, P.C.; Chan, A.W.; Li, M.K.; Chan, H.Y.; Chim, A.M.; Yu, J.; Sung, J.J.; Chan, H.L. Disease progression of non-alcoholic fatty liver disease: A prospective study with paired liver biopsies at 3 years. Gut 2010, 59, 969–974. [Google Scholar] [CrossRef]
- Ng, C.H.; Xiao, J.; Lim, W.H.; Chin, Y.H.; Yong, J.N.; Tan, D.J.H.; Tay, P.; Syn, N.; Foo, R.; Chan, M.; et al. Placebo effect on progression and regression in NASH: Evidence from a meta-analysis. Hepatology 2022. [Google Scholar] [CrossRef]
- Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology 2020, 72, 1605–1616. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef]
- Kazankov, K.; Moller, H.J.; Lange, A.; Birkebaek, N.H.; Holland-Fischer, P.; Solvig, J.; Horlyck, A.; Kristensen, K.; Rittig, S.; Handberg, A.; et al. The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatric Obes. 2015, 10, 226–233. [Google Scholar] [CrossRef]
- Kazankov, K.; Tordjman, J.; Moller, H.J.; Vilstrup, H.; Poitou, C.; Bedossa, P.; Bouillot, J.L.; Clement, K.; Gronbaek, H. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery. J. Gastroenterol. Hepatol. 2015, 30, 1293–1300. [Google Scholar] [CrossRef]
- Rosso, C.; Kazankov, K.; Younes, R.; Esmaili, S.; Marietti, M.; Sacco, M.; Carli, F.; Gaggini, M.; Salomone, F.; Møller, H.J.; et al. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J. Hepatol. 2019, 71, 1012–1021. [Google Scholar] [CrossRef]
- Kazankov, K.; Bojsen-Møller, K.N.; Møller, H.J.; Madsbad, S.; Grønbaek, H. Macrophage activation marker sCD163 is associated with liver injury and hepatic insulin resistance in obese patients before and after Roux-en-Y gastric bypass. Physiol. Rep. 2022, 10, e15157. [Google Scholar] [CrossRef]
- Rodgaard-Hansen, S.; St George, A.; Kazankov, K.; Bauman, A.; George, J.; Gronbaek, H.; Jon Moller, H. Effects of lifestyle intervention on soluble CD163, a macrophage activation marker, in patients with non-alcoholic fatty liver disease. Scand. J. Clin. Lab. Investig. 2017, 77, 498–504. [Google Scholar] [CrossRef]
- Semnani-Azad, Z.; Blanco Mejia, S.; Connelly, P.W.; Bazinet, R.P.; Retnakaran, R.; Jenkins, D.J.A.; Harris, S.B.; Hanley, A.J. The association of soluble CD163, a novel biomarker of macrophage activation, with type 2 diabetes mellitus and its underlying physiological disorders: A systematic review. Obes. Rev. 2021, 22, e13257. [Google Scholar] [CrossRef]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; et al. Association between Fibrosis Stage and Outcomes of Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- Vilar-Gomez, E.; Calzadilla-Bertot, L.; Wai-Sun Wong, V.; Castellanos, M.; Aller-de la Fuente, R.; Metwally, M.; Eslam, M.; Gonzalez-Fabian, L.; Alvarez-Quiñones Sanz, M.; Conde-Martin, A.F.; et al. Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients with Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. Gastroenterology 2018, 155, 443–457. [Google Scholar] [CrossRef]
- Ratziu, V.; Charlotte, F.; Heurtier, A.; Gombert, S.; Giral, P.; Bruckert, E.; Grimaldi, A.; Capron, F.; Poynard, T. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005, 128, 1898–1906. [Google Scholar] [CrossRef]
MAFLD (n = 129) | MAFLD Simple Steatosis (n = 72) | MAFLD Steatohepatitis (n = 57) | Non-MAFLD (n = 6) | |
---|---|---|---|---|
Sex (male/female) | 66/63 (51%/49%) | 39/33 (54%/46%) | 27/30 (53%/47%), p = 0.48 | 3/3 (50%/50%) |
Age (years) | 46 (31–546) | 42 (27–54) | 50 (33–59), p = 0.11 | 33 (21–62) |
BMI (kg/m2) | 33 (29–36) | 31 (28–35) | 34 (29–37), p = 0.03 | 23 (20–23) |
Diabetes (n) | 30 (23%) | 7 (10%) | 23 (40%), p < 0.0001 | 1 (17%) |
Metabolic syndrome (n) | 89 (69%) | 44 (61%) | 45 (79%), p = 0.03 | 1 (17%) |
Weekly alcohol consumption (0–7/8–14/15–21/>21) a | 111/9/4/2 | 63/5/2/0 | 48/4/2/2, p = 0.46 | 5/1/0/0 |
MELD score | 6 (6–7) | 6 (6–7) | 6 (6–7), p = 0.48 | 6.5 (6–8) |
Histology: | ||||
Activity (n = A0/1/2/3/4) | 30/39/31/20/9 | 30/39/3/0/0 | 0/0/28/20/9, p < 0.0001 | 2/4/0/0/0 |
Fibrosis (n = F0/1/2/3/4) | 63/44/13/6/3 | 57/14/1/0/0 | 6/30/12/6/3, p < 0.0001 | 4/1/1/0/0 |
Liver stiffness (kPa) | 7.4 (5.4–11.4) | 5.3 (4.2–7.4) | 9.4 (6.8–12.5), p = 0.001 | N/A |
Haemoglobin (mmol/L) | 9.2 (8.8–9.8) | 9.2 (8.8–9.7) | 9.2 (8.6–10.0), p = 0.82 | 9.5 (9.5–10.2) |
HbA1c (mmol/mol) | 40 (35–47) | 38 (34–41) | 46 (40–53), p < 0.0001 | 26 (23–84) |
ALT (IU/L) | 111 (78–155) | 110 (73–157) | 120 (82–154), p = 0.45 | 124 (98–151) |
Alkaline phosphatase (IU/L) | 84 (69–111) | 82 (68–113) | 85 (71–110), p = 0.69 | 91 (60–123) |
Bilirubin (umol/L) | 8 (6–11) | 8 (6–11) | 8 (6 -11), p = 0.45 | 14 (10–21) |
Ferritin (ug/L) | 233 (122–390) | 233 (102–382) | 253 (152–452), p = 0.35 | 183 (129–715) |
CRP (mg/L) | 3 (2.5–6.0) | 2.65 (1.45–4.6) | 3.7 (1.7–9.2), p = 0.03 | 1.25 (0.6–3) |
GGT (U/I) | 104.5 (69–214) | 90 (46–150) | 126 (88–224), p = 0.07 | 56 (42–70) |
Amylase (U/I) | 29 (21- 43) | 31 (24- 51) | 24 (17–44), p = 0.002 | 25 (14–46) |
Triglycerides (mmol/L) | 1.9 (1.4– 3.0) | 1.8 (1.3–2.8) | 2.3 (1.5–3.7), p = 0.03 | 1.3 (1.0–2.2) |
HDL (mmol/L) | 1.2 (1.0–1.3) | 1.2 (1.0–1.3) | 1.1 (0.9–1.2), p = 0.04 | 1.5 (1–1.6) |
LDL (mmol/L) | 2.4 (3–3.8) | 3.2 (2.7–4.8) | 2.5 (2.1–3.6), p = 0.006 | 1.4 (1.2–2) |
Leukocytes (109/L) | 6.9 (5.6–8.5) | 6.7 (5.6–8.2) | 7–0 (6.1–9.0), p = 0.22 | 8 (6.1–10.4) |
sCD163 (mg/L) | 2.7 (2.1–4.2) | 2.2 (1.9–2.9) | 4.12 (2.6–5.6), p < 0.0001 | 2.0 (2.0–2.0) |
OR (95% CI) | p-Value | |
---|---|---|
Sex (male) | 0.12 (0.03–0.59) | 0.01 |
Fibrosis stage | 1.57 (0.95–2.58) | 0.07 |
Activity score | 1.74 (1.08–2.82) | 0.02 |
Ballooning | 2.03 (1.01–4.10) | 0.04 |
NAS score | 1.74 (1.06–2.55) | 0.02 |
sCD163 | 2.6 (1.27–5.31) | 0.01 |
Creatinine | 0.95 (0.92–0.99) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laursen, T.L.; Kjær, M.B.; Kristensen, L.; Grønbæk, H. Clinical Progression of Metabolic-Associated Fatty Liver Disease Is Rare in a Danish Tertiary Liver Center. J. Clin. Med. 2022, 11, 2271. https://doi.org/10.3390/jcm11092271
Laursen TL, Kjær MB, Kristensen L, Grønbæk H. Clinical Progression of Metabolic-Associated Fatty Liver Disease Is Rare in a Danish Tertiary Liver Center. Journal of Clinical Medicine. 2022; 11(9):2271. https://doi.org/10.3390/jcm11092271
Chicago/Turabian StyleLaursen, Tea Lund, Mikkel Breinholt Kjær, Louise Kristensen, and Henning Grønbæk. 2022. "Clinical Progression of Metabolic-Associated Fatty Liver Disease Is Rare in a Danish Tertiary Liver Center" Journal of Clinical Medicine 11, no. 9: 2271. https://doi.org/10.3390/jcm11092271
APA StyleLaursen, T. L., Kjær, M. B., Kristensen, L., & Grønbæk, H. (2022). Clinical Progression of Metabolic-Associated Fatty Liver Disease Is Rare in a Danish Tertiary Liver Center. Journal of Clinical Medicine, 11(9), 2271. https://doi.org/10.3390/jcm11092271