Screening and Management of Dyslipidemia in Children and Adolescents
Abstract
:1. Introduction
2. Heterozygous Familial Hypercholesterolemia (HeFH)
2.1. Diagnosis
Simon Broome criteria [11] | ||||
Definite or Probable diagnosis of HeFH requires elevated cholesterol:
One or more additional findings: Definite HeFH: additional findings 1. Tendon xanthoma in the child, first-degree relative, or second-degree relative 2. Genetic testing of a confirmed pathogenic variant (LDLR, ApoB, or PCSK9) POSSIBLE HeFH: additional findings 1. Family history of myocardial infarction ≤ 60 years in a first-degree relative or ≤50 years in a second-degree relative 2. Family history of a total cholesterol ≥ 290 mg/dL in a first or | ||||
MEDPED criteria [12] | ||||
A child is considered to have HeFH if total cholesterol meets or exceeds the threshold listed below. Thresholds vary based upon whether or not there is a first-, second-, or third-degree relative known to have HeFH. | ||||
Child’s age | Does the child have one or more relatives with HeFH? | |||
≤19 years | Yes | No | ||
First degree | Second degree | Third degree | N/A | |
Total cholesterol | ≥220 mg/dL | ≥230 mg/dL | ≥240 mg/dL | ≥270 mg/dL |
Dutch lipid clinic network criteria [13] | ||||
Diagnosis of HeFH is based on the total number of points obtained. Definite HeFH, >8 points. Probable HeFH, 6–8 points. Possible HeFH, 3–5 points. Unlikely HeFH, <3 points | ||||
Criterion: | Points: | |||
Family history: | ||||
First-degree relative with known premature ASCVD (<55 years in men, <60 years in women), OR first-degree relative with LDL-C ≥ 95%ile | 1 | |||
First-degree relative with tendinous xanthomata and/or arcus cornealis, OR pediatric first degree relative with LDL-C ≥ 95%ile | 2 | |||
Clinical history: | ||||
Patient with premature ASCVD (<55 years in men, <60 years in women) | 2 | |||
Patient with premature cerebral or peripheral vascular disease | 1 | |||
Physical Examination: | ||||
Tendinous xantomata | 6 | |||
Arcus cornealis with onset prior to 45 years | 4 | |||
Patient’s cholesterol levels: | ||||
LDL-C ≥ 330 mg/dL | 8 | |||
LDL-C 250–329 mg/dL | 5 | |||
LDL-C 190–249 mg/dL | 3 | |||
LDL-C 155–189 mg/dL | 1 | |||
Genetic testing | ||||
Pathogenic variant in LDLR, APOB, or PCSK9 | 8 | |||
American Heart Association criteria [8] | ||||
Children (≤18 years) with LDL-C ≥ 160 mg/dL AND Family history of elevated cholesterol or premature ASCVD AND No evidence of secondary causes of hypercholesterolemia |
2.2. Treatment of Pediatric HeFH
3. Atherogenic Dyslipidemia
3.1. Diagnosis
3.2. Treatment of Pediatric Atherogenic Dyslipidemia
4. Mixed Dyslipidemia
4.1. Diagnosis
4.2. Treatment
5. Rare Lipid Disorders
5.1. Homozygous Familial Hypercholesterolemia
5.2. Severe Hypertriglyceridemia
5.3. Hypobetalipoproteinemia and Abetalipoproteinemia
6. Lipoprotein(a)
7. Screening for Pediatric Dyslipidemias
7.1. Selective Screening
7.2. Universal Screening
7.3. Cascade Screening
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murphy, S.L.; Kochanek, K.D.; Xu, J.; Arias, E. Mortality in the United States, 2020. NCHS Data Brief 2021, 427, 1–8. [Google Scholar]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.; Tracy, R.E.; Wattigney, W. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1605–1606. [Google Scholar] [CrossRef] [PubMed]
- McGill, H.C.J.; McMahan, C.A. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am. J. Cardiol. 1998, 82, 30T–36T. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimäki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N. Engl. J. Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Benuck, I.; Christakis, D.A.; Dennison, B.A.; Gidding, S.S.; Gillman, M.W.; Gottesman, M.M.; Kwiterovich, P.O.; McBride, P.E.; McCrindle, B.W.; et al. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Beheshti, S.O.; Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Worldwide Prevalence of Familial Hypercholesterolemia: Meta-Analyses of 11 Million Subjects. J. Am. Coll. Cardiol. 2020, 75, 2553–2566. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; Rodday, A.M.; Mendelson, M.M.; Wong, J.B.; Leslie, L.K.; Sheldrick, R.C. Prevalence of Familial Hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES). Circulation 2016, 133, 1067–1072. [Google Scholar] [CrossRef]
- Gidding, S.S.; Champagne, M.A.; de Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; et al. The Agenda for Familial Hypercholesterolemia. Circulation 2015, 132, 2167–2192. [Google Scholar] [CrossRef]
- Peretti, N.; Vimont, A.; Mas, E.; Ferrières, J.; Tounian, P.; Lemale, J.; Boccara, F.; di Filippo, M.; Charriere, S.; Moulin, P.; et al. Factors predicting statin initiation during childhood in familial hypercholesterolemia: Importance of genetic diagnosis. J. Pediatr. 2022. [Google Scholar] [CrossRef]
- Peterson, A.L.; McNeal, C.J.; Wilson, D.P. Prevention of Atherosclerotic Cardiovascular Disease in Children with Familial Hypercholesterolemia. Curr. Atheroscler. Rep. 2021, 23, 64. [Google Scholar] [CrossRef]
- Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ 1991, 303, 893–896. [CrossRef] [PubMed]
- Williams, R.R.; Hunt, S.C.; Schumacher, M.C.; Hegele, R.A.; Leppert, M.F.; Ludwig, E.H.; Hopkins, P.N. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 1993, 72, 171–176. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.H.; Defesche, J.C.; et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.A.; Wilson, D.P. Nutritional Management of Pediatric Dyslipidemia. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK395582/ (accessed on 30 June 2022).
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; US Dept of Agriculture: Washington, DC, USA, 2020. Available online: DietaryGuidelines.gov (accessed on 15 July 2022).
- De Ferranti, S.D.; Steinberger, J.; Ameduri, R.; Baker, A.; Gooding, H.; Kelly, A.S.; Mietus-Snyder, M.; Mitsnefes, M.M.; Peterson, A.L.; St-Pierre, J.; et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e603–e634. [Google Scholar] [CrossRef]
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; et al. Familial Hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients: Clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5 (Suppl. 3), S1–S8. [Google Scholar] [CrossRef]
- Watts, G.F.; Gidding, S.; Wierzbicki, A.S.; Toth, P.P.; Alonso, R.; Virgil Brown, W.; Bruckert, E.; Defesche, J.; Kah Lin, K.; Livingston, M.; et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol. 2014, 171, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, P.; Vaitsi, K.; Kleitsioti, P.; Mantsiou, C.; Pavlogiannis, K.; Athyros, V.G.; Mikhailidis, D.P.; Goulis, D.G. Efficacy and safety of statin use in children and adolescents with familial hypercholesterolaemia: A systematic review and meta-analysis of randomized-controlled trials. Endocrine 2020, 69, 249–261. [Google Scholar] [CrossRef]
- Vuorio, A.; Kuoppala, J.; Kovanen, P.T.; Kovanen, P.T.; Humphries, S.E.; Tonstad, S.; Wiegman, A.; Drogari, E.; Ramaswami, U.; Cochrane Cystic Fibrosis and Genetic Disorders Group. Statins for children with familial hypercholesterolemia. Cochrane Database Syst. Rev. 2019, 7. [Google Scholar] [CrossRef]
- Luirink, I.K.; Wiegman, A.; Kusters, D.M.; Hof, M.H.; Groothoff, J.W.; de Groot, E.; Kastelein, J.J.P.; Hutten, B.A. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N. Engl. J. Med. 2019, 381, 1547–1556. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Langslet, G.; Gidding, S.S.; Luirink, I.K.; Ruzza, A.; Kurtz, C.; Lu, C.; Romaratne, R.; Raal, F.J.; Wiegman, A. Efficacy, safety, and tolerability of evolocumab in pediatric patients with heterozygous familial hypercholesterolemia: Rationale and design of the HAUSER-RCT study. J. Clin. Lipidol. 2018, 12, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.D.; Ruzza, A.; Hovingh, G.K.; Wiegman, A.; Mach, F.; Kurtz, C.E.; Hamer, A.; Bridges, I.; Bartuli, A.; Begeron, J.; et al. Evolocumab in Pediatric Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.; Caprio, S.; Chaudhari, U.; Manvelian, G.; Baccara-Dinet, M.T.; Brunet, A.; Scemama, M.; Loizeau, V.; Bruckert, E. PCSK9 inhibition with alirocumab in pediatric patients with heterozygous familial hypercholesterolemia: The ODYSSEY KIDS study. J. Clin. Lipidol. 2020, 14, 322–330.e5. [Google Scholar] [CrossRef] [PubMed]
- Reijman, M.D.; Schweizer, A.; Peterson, A.L.; Bruckert, E.; Stratz, C.; Defesche, J.C.; Hegele, R.A.; Wiegman, A. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur. J. Prev. Cardiol. 2022, 29, 1361–1368. [Google Scholar] [CrossRef]
- CDC Obesity: Centers for Disease Control and Prevention (CDC). Prevalence of abnormal lipid levels among youths—United States, 1999–2006. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 29–33. [Google Scholar]
- Yan, Y.; Bazzano, L.A.; Juonala, M.; Raitakari, O.T.; Viikari, J.S.A.; Prineas, R.; Dwyer, T.; Sinaiko, A.; Burns, T.L.; Daniels, S.R.; et al. Long-Term Burden of Increased Body Mass Index from Childhood on Adult Dyslipidemia: The i3C Consortium Study. J. Clin. Med. 2019, 8, 1725. [Google Scholar] [CrossRef]
- Henriksson, P.; Sandborg, J.; Henström, M.; Nystrom, C.D.; Ek, E.; Ortega, F.B.; Lof, M. Body composition, physical fitness and cardiovascular risk factors in 9-year-old children. Sci. Rep. 2022, 12, 2665. [Google Scholar] [CrossRef]
- Turer, C.B.; Brady, T.M.; de Ferranti, S.D. Obesity, Hypertension, and Dyslipidemia in Childhood Are Key Modifiable Antecedents of Adult Cardiovascular Disease. Circulation 2018, 137, 1256–1259. [Google Scholar] [CrossRef]
- Nemet, D.; Barkan, S.; Epstein, Y.; Friedland, O.; Kowen, G.; Eliakim, A. Short- and Long-Term Beneficial Effects of a Combined Dietary–Behavioral–Physical Activity Intervention for the Treatment of Childhood Obesity. Pediatrics 2005, 115, e443–e449. [Google Scholar] [CrossRef] [Green Version]
- Becque, M.D.; Katch, V.L.; Rocchini, A.P.; Marks, C.R.; Moorehead, C. Coronary risk incidence of obese adolescents: Reduction by exercise plus diet intervention. Pediatrics 1988, 81, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Baker-Smith, C.M.; Bolick, J.; Carter, J.; Kirkpatrick, C.; Ley, S.L.; Peterson, A.L.; Shah, A.S.; Sikand, G.; Ware, A.L.; et al. Nutrition interventions for youth with dyslipidemia: A National Lipid Association clinical perspective. J. Clin. Lipidol. 2022, 11, 38. [Google Scholar] [CrossRef]
- Pahkala, K.; Laitinen, T.T.; Niinikoski, H.; Kartiosuo, N.; Rovio, S.P.; Langstrom, H.; Loo, B.M.; Salo, P.; Jokinen, E.; Magnussen, C.G.; et al. Effects of 20-year infancy-onset dietary counselling on cardiometabolic risk factors in the Special Turku Coronary Risk Factor Intervention Project (STRIP): 6-year post-intervention follow-up. Lancet Child Adolesc. Health 2020, 4, 359–369. [Google Scholar] [CrossRef]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Rhodes, K.S.; Karmally, W.; Welstead, L.A.; Alexander, L.; Sutton, L. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J. Clin. Lipidol. 2018, 12, 908–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.G.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [Green Version]
- Hartz, J.; Hegele, R.A.; Wilson, D.P. Low LDL cholesterol—Friend or foe? J. Clin. Lipidol. 2019, 13, 367–373. [Google Scholar] [CrossRef]
- Lee, J.; Hegele, R.A. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: A framework for diagnosis and management. J. Inherit. Metab. Dis. 2014, 37, 333–339. [Google Scholar] [CrossRef]
- Sultan, S.M.; Schupf, N.; Dowling, M.M.; DeVeber, G.A.; Kirton, A.; Elkind, M.S.V. Review of Lipid and Lipoprotein(a) Abnormalities in Childhood Arterial Ischemic Stroke. Int. J. Stroke 2014, 9, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Boffa, M.B.; Koschinsky, M.L. Lipoprotein (a): Truly a direct prothrombotic factor in cardiovascular disease? J. Lipid Res. 2016, 57, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.P.; Jacobson, T.A.; Jones, P.H.; Koschinsky, M.L.; McNeal, C.J.; Nordestgaard, B.G.; Orringer, C.E. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J. Clin. Lipidol. 2019, 13, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.K.; Murphy, E.C.S.; Ice, C.; Cottrell, L.A.; Minor, V.; Elliott, E.; Neal, W. Universal Versus Targeted Blood Cholesterol Screening Among Youth: The CARDIAC Project. Pediatrics 2010, 126, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Psaty, B.M.; Rivara, F.P. Universal Screening and Drug Treatment of Dyslipidemia in Children and Adolescents. JAMA 2012, 307, 257–258. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force. Screening for Lipid Disorders in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2016, 316, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biro, F.M.; Greenspan, L.C.; Galvez, M.P.; Pinney, S.M.; Teitelbaum, S.; Windham, G.C.; Deardorff, J.; Herrick, R.L.; Succop, P.A.; Hiatt, R.A.; et al. Onset of Breast Development in a Longitudinal Cohort. Pediatrics 2013, 132, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- De Ferranti, S.D.; Rodday, A.M.; Parsons, S.K.; Cull, W.L.; O’Connor, K.G.; Daniels, S.R.; Leslie, L.K. Cholesterol Screening and Treatment Practices and Preferences: A Survey of United States Pediatricians. J. Pediatr. 2017, 185, 99–105.e2. [Google Scholar] [CrossRef] [Green Version]
- Allen-Tice, C.; Steinberger, J.; Murdy, K.; Zierhut, H. Pediatric cholesterol screening practices in 9- to 11-year-olds in a large midwestern primary care setting. J. Clin. Lipidol. 2020, 14, 224–230. [Google Scholar] [CrossRef]
- Zhang, X.; DeSantes, K.; Dodge, A.; Larson, M.; Eichoff, J.; Moreno, M.; Peterson, A.L. Practices and Attitudes Regarding Pediatric Cholesterol Screening Recommendations Differ Between Pediatricians and Family Medicine Clinicians. Pediatr. Cardiol. 2022, 43, 631–635. [Google Scholar] [CrossRef]
- Morris, J.K.; Wald, D.S.; Wald, N.J. The evaluation of cascade testing for familial hypercholesterolemia. Am. J. Med. Genet. A 2012, 158, 78–84. [Google Scholar] [CrossRef]
- Jackson, C.L.; Huschka, T.; Borah, B.; Agre, K.; Sordok, M.; Farwati, M.; Moriarty, J.; Kullo, I.J. Cost-effectiveness of cascade genetic testing for familial hypercholesterolemia in the United States: A simulation analysis. Am. J. Prev. Cardiiol. 2021, 8, 100245. [Google Scholar] [CrossRef]
- Hokanson, J.S.; Arce, A.B.; Ahmed, S.A.; Zhang, X.; Dodge, A.M.; Peterson, A.L. Preventive Medicine in Pediatric Cardiology Practice. J. Pediatr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Block, R.C.; Bang, M.; Peterson, A.; Wong, N.D.; Karalis, D.G. Awareness, diagnosis and treatment of heterozygous familial hypercholesterolemia (HeFH)—Results of a US national survey. J. Clin. Lipidol. 2021, 15, 682–689. [Google Scholar] [CrossRef] [PubMed]
Acceptable | Borderline | High | |
---|---|---|---|
Total Cholesterol | <170 | 170–199 | ≥200 |
LDL-C | <110 | 110–129 | ≥130 |
HDL-C | >45 | 40–45 | <40 |
Non-HDL-C | <120 | 120–144 | ≥145 |
Triglycerides | |||
0–9 years old | <75 | 75–99 | ≥100 |
10–19 years old | <90 | 90–129 | ≥130 |
Apolipoprotein B | <90 | 90–109 | ≥110 |
Apolipoprotein A-I | >120 | 115–120 | <115 |
Activity | |
Increase physical activity | Recommend 60 min daily of moderate to vigorous physical activity which increases the heart rate, such as running, walking, dancing, biking, swimming, or sports like soccer or tennis. |
Include muscle strengthening | Recommend 3 days per week, which can be integrated with the 60 min of daily activity above. This could include activities such as climbing on playground equipment, jumping rope, gymnastics, or skiing or snowboarding. |
Diet | |
Emphasize nutritionally dense foods | Encourage diets rich in a variety of fruits and vegetables, whole grains, proteins such as lean meat, seafood, and eggs, legumes, unsalted nuts and seeds, as well as dairy products including fat-free or low-fat options, yogurt, and cheese in appropriate portion sizes |
Decrease saturated fat and trans fat intake | Saturated fats are included in red or fatty meats (such as sausage or bacon), high- fat dairy products, butter and other cooking fats. Trans fats are often found in processed foods and snacks including such as baked or fried goods. |
Minimize sugar-sweetened beverages | Common sugar-sweetened beverages include soda, sports drinks, and coffee or tea drinks with added sugars. Consuming excess amounts of otherwise healthy beverages (such as fruit juice or chocolate milk) can be unwitting sources of sugar in the diet as well. |
Increase beverages without added sugars | Encourage beverages such as water, fat-free or low-fat plain milk, or lactose free or fortified soy milk alternatives. |
Eat the whole fruit | Try to eat fruits in whole forms when possible. While 100% fruit juice can be part of a healthy diet, it is lower in fiber than its whole fruit counterpart, and can be very calorie dense. Stick to the serving sizes to avoid excess sugar intake! |
Behaviors | |
Smoking | Counsel children and parents about smoking cessation and encourage against initiating smoking. |
Atorvastatin | Fluvastatin | Lovastatin | Pravastatin | Simvastatin | Rosuvastatin | Pitavastatin | |
---|---|---|---|---|---|---|---|
Ages approved by FDA | ≥10 years | ≥10 years | ≥10 years | ≥8 years | ≥10 years | ≥8 years | ≥8 years |
Approved Pediatric Doses | 5 mg, 10 mg, 20 mg, 40 mg | 20 mg, 40 mg, 80 mg | 10 mg, 20 mg, 40 mg, 80 mg | 10 mg, 20 mg, 40 mg | 5 mg, 10 mg, 20 mg, 40 mg | 5 mg, 10 mg, 20 mg | 1 mg, 2 mg, 4 mg |
Expected LDL reduction at maximum pediatric dose (%) [23] | ≥50% | 30–49% | 30–49% | 30–49% | 30–49% | ≥50% | 38% |
Supplied as | 10 mg, 20 mg, 40 mg, 80 mg tablets | 20 mg and 40 mg capsules; 80 mg XR tablet | 10 mg, 20 mg, 40 mg tablets; 20 mg, 40 mg, 60 mg XR tablets | 10 mg, 20 mg, 40 mg, 80 mg tablets | 5 mg, 10 mg, 20 mg, 40 mg, 80 mg tablets; Suspension: 20 mg/5 mL, 40 mg/5 mL | 5 mg, 10 mg, 20 mg, 40 mg tablets; 5 mg, 10 mg, 20 mg, 40 mg sprinkle capsule | 1 mg, 2 mg, 4 mg tablets |
Notes | If LDL-C reduction ≥ 50% is needed, select a higher intensity statin (atorvastatin or rosuvastatin) | If LDL-C reduction ≥ 50% is needed, select a higher intensity statin (atorvastatin or rosuvastatin) | If LDL-C reduction ≥ 50% is needed, select a higher intensity statin (atorvastatin or rosuvastatin) | Simvastatin 80 mg should not be used due to myopathy risk. If LDL-C reduction goal cannot be achieved with simvastatin 40 mg, switch to higher intensity statin (atorvastatin or rosuvastatin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schefelker, J.M.; Peterson, A.L. Screening and Management of Dyslipidemia in Children and Adolescents. J. Clin. Med. 2022, 11, 6479. https://doi.org/10.3390/jcm11216479
Schefelker JM, Peterson AL. Screening and Management of Dyslipidemia in Children and Adolescents. Journal of Clinical Medicine. 2022; 11(21):6479. https://doi.org/10.3390/jcm11216479
Chicago/Turabian StyleSchefelker, Juliette M., and Amy L. Peterson. 2022. "Screening and Management of Dyslipidemia in Children and Adolescents" Journal of Clinical Medicine 11, no. 21: 6479. https://doi.org/10.3390/jcm11216479
APA StyleSchefelker, J. M., & Peterson, A. L. (2022). Screening and Management of Dyslipidemia in Children and Adolescents. Journal of Clinical Medicine, 11(21), 6479. https://doi.org/10.3390/jcm11216479