POWERbreathe® Inspiratory Muscle Training in Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Interventions
2.3. Outcome Measures
2.3.1. Maximum Inspiration Pressure
2.3.2. Heart Rate and Variability
2.3.3. Quality of Life Impairment
2.3.4. Functionality
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hulisz, D. Amyotrophic Lateral Sclerosis: Disease State Overview. Am. J. Manag. Care 2018, 24, S320–S326. [Google Scholar] [PubMed]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral. Scler. Other. Motor. Neuron. Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Pichardo, J.; Abdullah, H. A Rare Case of Amyotrophic Lateral Sclerosis with Asymmetrical Phrenic Nerve Lesion Presenting with Acute Respiratory Failure as an Initial Manifestation. Cureus 2021, 13, e12547. [Google Scholar] [CrossRef] [PubMed]
- Digala, L.P.; Govindarajan, R. Thickening Fraction as a Measure of Ultrasonographic Diaphragm Dysfunction in Amyotrophic Lateral Sclerosis. Clin. Neurophysiol. Pract. 2020, 5, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Fantini, R.; Tonelli, R.; Castaniere, I.; Tabbì, L.; Pellegrino, M.R.; Cerri, S.; Livrieri, F.; Giaroni, F.; Monelli, M.; Ruggieri, V.; et al. Serial Ultrasound Assessment of Diaphragmatic Function and Clinical Outcome in Patients with Amyotrophic Lateral Sclerosis. BMC Pulm. Med. 2019, 19, 160. [Google Scholar] [CrossRef]
- Cheah, B.C.; Boland, R.A.; Brodaty, N.E.; Zoing, M.C.; Jeffery, S.E.; McKenzie, D.K.; Kiernan, M.C. INSPIRATIonAL--INSPIRAtory Muscle Training in Amyotrophic Lateral Sclerosis. Amyotroph. Lateral. Scler. 2009, 10, 384–392. [Google Scholar] [CrossRef]
- Gross, D.; Meiner, Z. The Effect of Ventilatory Muscle Training on Respiratory Function and Capacity in Ambulatory and Bed-Ridden Patients with Neuromuscular Disease. Monaldi. Arch. Chest. Dis. 1993, 48, 322–326. [Google Scholar]
- Pinto, S.; de Carvalho, M. Can Inspiratory Muscle Training Increase Survival in Early-Affected Amyotrophic Lateral Sclerosis Patients? Amyotroph. Lateral. Scler. Frontotemporal. Degener. 2013, 14, 124–126. [Google Scholar] [CrossRef]
- Cabrita, B.; Dias, S.; Fernandes, A.L.; Correia, S.; Ferreira, J.; Simão, P. Inspiratory Muscle Training in Neuromuscular Patients: Assessing the Benefits of a Novel Protocol. J. Back. Musculoskelet. Rehabil. 2021, 34, 537–543. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. Trials 2010, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods. 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Ferreira, G.D.; Costa, A.C.C.; Plentz, R.D.M.; Coronel, C.C.; Sbruzzi, G. Respiratory Training Improved Ventilatory Function and Respiratory Muscle Strength in Patients with Multiple Sclerosis and Lateral Amyotrophic Sclerosis: Systematic Review and Meta-Analysis. Physiotherapy 2016, 102, 221–228. [Google Scholar] [CrossRef]
- Smeltzer, S.C.; Lavietes, M.H.; Cook, S.D. Expiratory Training in Multiple Sclerosis. Arch. Phys. Med. Rehabil. 1996, 77, 909–912. [Google Scholar] [CrossRef]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef]
- Tarantino, N.; Canfora, I.; Camerino, G.M.; Pierno, S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022, 11, 415. [Google Scholar] [CrossRef]
- Guerrero-Berroa, E.; Kluger, A.; Schmeidler, J.; Sailor, K.; Lizardi, H.; Golomb, J.; Ferris, S.; Reisberg, B. Neuropsychological and Neuropsychiatric Prediction of Global Cognitive Status among Older Spanish-Speaking Hispanics and English-Speaking Whites. J. Geriatr. Psychiatry. Neurol. 2014, 27, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Holt, G.R. Declaration of Helsinki-the World’s Document of Conscience and Responsibility. S. Med. J. 2014, 107, 407. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Coll. Dent. 2014, 81, 14–18.
- Huang, M.H.; Fry, D.; Doyle, L.; Burnham, A.; Houston, N.; Shea, K.; Smith, H.; Wiske, L.; Goode, J.; Khitrik, E.; et al. Effects of Inspiratory Muscle Training in Advanced Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 37, 101492. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Reyes, A.; Ziman, M.; Nosaka, K. Respiratory Muscle Training for Respiratory Deficits in Neurodegenerative Disorders: A Systematic Review. Chest 2013, 143, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Dal Bello-Haas, V.; Florence, J.M. Therapeutic Exercise for People with Amyotrophic Lateral Sclerosis or Motor Neuron Disease. Cochrane Database Syst. Rev. 2013, 2013, CD005229. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.; Khan, F.; Young, C.A.; Galea, M. Symptomatic Treatments for Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Cochrane Database Syst. Rev. 2017, 1, CD011776. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, C.; Pagnini, F.; Friede, T.; Young, C.A. Treatment of Fatigue in Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Cochrane Database Syst. Rev. 2018, 1, CD011005. [Google Scholar] [CrossRef] [PubMed]
- ATS/ERS. Statement on Respiratory Muscle Testing. Am. J. Respir. Crit. Care. Med. 2002, 166, 518–624. [Google Scholar] [CrossRef] [PubMed]
- Robison, R.; Tabor-Gray, L.C.; Wymer, J.P.; Plowman, E.K. Combined Respiratory Training in an Individual with C9orf72 Amyotrophic Lateral Sclerosis. Ann. Clin. Transl. Neurol. 2018, 5, 1134–1138. [Google Scholar] [CrossRef]
- Coelho, A.B.; Nakamura, F.Y.; Morgado, M.C.; Holmes, C.J.; Baldassarre, A.; Esco, M.R.; Rama, L.M. Heart Rate Variability and Stress Recovery Responses during a Training Camp in Elite Young Canoe Sprint Athletes. Sports 2019, 7, 126. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, A.S.; Jeklin, A.T.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E.R. Validity of the Elite HRV Smartphone Application for Examining Heart Rate Variability in a Field-Based Setting. J. Strength Cond. Res. 2017, 31, 2296–2302. [Google Scholar] [CrossRef]
- Kloter, E.; Barrueto, K.; Klein, S.D.; Scholkmann, F.; Wolf, U. Heart Rate Variability as a Prognostic Factor for Cancer Survival—A Systematic Review. Front. Physiol. 2018, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Salas, T.; Mora, J.; Esteban, J.; Rodríguez, F.; Díaz-Lobato, S.; Fajardo, M. Spanish Adaptation of the Amyotrophic Lateral Sclerosis Questionnaire ALSAQ-40 for ALS Patients. Amyotroph. Lateral. Scler. 2008, 9, 168–172. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Campos, T.S.; Rodríguez-Santos, F.; Esteban, J.; Vázquez, P.C.; Mora Pardina, J.S.; Carmona, A.C. Spanish Adaptation of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Amyotroph. Lateral Scler. 2010, 11, 475–477. [Google Scholar] [CrossRef]
- Kelley, K.; Preacher, K.J. On Effect Size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Nardin, R.; O’Donnell, C.; Loring, S.H.; Nie, R.; Hembre, K.; Walsh, J.; Arboleda, B.W.; Muzikansky, A.; Nguyen, D.; Raynor, E. Diaphragm Training in Amyotrophic Lateral Sclerosis. J. Clin. Neuromuscul. Dis. 2008, 10, 56–60. [Google Scholar] [CrossRef]
- Pinto, S.; Swash, M.; de Carvalho, M. Respiratory Exercise in Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. 2012, 13, 33–43. [Google Scholar] [CrossRef]
- Fry, D.K.; Pfalzer, L.A.; Chokshi, A.R.; Wagner, M.T.; Jackson, E.S. Randomized Control Trial of Effects of a 10-Week Inspiratory Muscle Training Program on Measures of Pulmonary Function in Persons with Multiple Sclerosis. J. Neurol. Phys. Ther. 2007, 31, 162–172. [Google Scholar] [CrossRef]
- Klefbeck, B.; Hamrah Nedjad, J. Effect of Inspiratory Muscle Training in Patients with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2003, 84, 994–999. [Google Scholar] [CrossRef]
- Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M. Subtle Involvement of the Sympathetic Nervous System in Amyotrophic Lateral Sclerosis. Muscle Nerve 2002, 25, 402–408. [Google Scholar] [CrossRef]
- Shindo, K.; Shimokawa, C.; Watanabe, H.; Iida, H.; Ohashi, K.; Nitta, K.; Nagasaka, T.; Tsunoda, S.-I.; Shiozawa, Z. Chronological Changes of Sympathetic Outflow to Muscles in Amyotrophic Lateral Sclerosis. J. Neurol. Sci. 2004, 227, 79–84. [Google Scholar] [CrossRef]
- Baltadzhieva, R.; Gurevich, T.; Korczyn, A.D. Autonomic Impairment in Amyotrophic Lateral Sclerosis. Curr. Opin. Neurol. 2005, 18, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, S.; Stevic, Z.; Milovanovic, B.; Milicic, B.; Rakocevic-Stojanovic, V.; Lavrnic, D.; Apostolski, S. Impairment of Cardiac Autonomic Control in Patients with Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. 2010, 11, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Merico, A.; Cavinato, M. Autonomic Dysfunction in the Early Stage of ALS with Bulbar Involvement. Amyotroph. Lateral Scler. 2011, 12, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Pinto, A.; De Carvalho, M. Decreased Heart Rate Variability Predicts Death in Amyotrophic Lateral Sclerosis. Muscle Nerve 2012, 46, 341–345. [Google Scholar] [CrossRef]
- Pimentel, R.M.M.; Macedo, H.J.; Valenti, V.E.; Rocha, F.O.; Abreu, L.C.; de M. Monteiro, C.B.; Ferreira, C. Decreased Heart Rate Variability in Individuals with Amyotrophic Lateral Sclerosis. Respir. Care 2019, 64, 1088–1095. [Google Scholar] [CrossRef]
- Brown, A.A.; Ferguson, B.J.; Jones, V.; Green, B.E.; Pearre, J.D.; Anunoby, I.A.; Beversdorf, D.Q.; Barohn, R.J.; Cirstea, C.M. Pilot Study of Real-World Monitoring of the Heart Rate Variability in Amyotrophic Lateral Sclerosis. Front. Artif. Intell. 2022, 5, 910049. [Google Scholar] [CrossRef]
- Linden, D.; Diehl, R.R.; Berlit, P. Reduced Baroreflex Sensitivity and Cardiorespiratory Transfer in Amyotrophic Lateral Sclerosis. Electroencephalogr. Clin. Neurophysiol. 1998, 109, 387–390. [Google Scholar] [CrossRef]
Baseline Data | Total Sample (n = 20) Mean ± SD (95% CI) | Experimental (n = 10) Mean ± SD (95% CI) | Control (n = 10) Mean ± SD (95% CI) | Mean Difference (95% CI) | Statistics | p-Value |
---|---|---|---|---|---|---|
Age (years) | 49.6 ± 8.6 (45.6–53.6) | 49.1 ± 10.9 (41.3–56.9) | 50.1 ± 6.2 (45.7–54.6) | −1.00 (−9.3–7.3) | t = −0.253 | 0.803 * |
Weight (kg) | 67.9 ± 10.4 (63.1–72.8) | 68.5 ±14.4 (58.2–78.8) | 67.4 ± 4.3 (64.3–70.5) | 1.1 (−9.4–11.6) | t = 0.231 | 0.822 * |
Height (m) | 1.7 ± 0.1 (1.6–1.7) | 1.6 ± 0.1 (1.6–1.7) | 1.7 ± 0.1 (1.6–1.7) | −0.03 (−0.09–0.03) | t = −0.990 | 0.336 * |
PImax (cm H2O) | 50.8 ± 16.1 (43.3–58.3) | 50.3 ± 19.9 (36.0–64.6) | 51.3 ± 12.0 (42.7–59.9) | −1.0 (−16.5–14.5) | t = −0.136 | 0.894 * |
HR (bpm) | 90.6 ± 12.5 (84.8–96.4) | 93.0 ± 14.9 (82.3–103.7) | 88.2 ± 9.6 (81.3–91.1) | 4.8 (−6.9–16.6) | U = 41.500 | 0.529 † |
HRV (ms) | 44.4 ± 9.1 (40.1–48.7) | 44.1 ± 11.4 (35.9–52.2) | 44.7 ± 6.8 (39.8–49.6) | −0.6 (−9.4–8.2) | U = 57.500 | 0.579 † |
R-R interval (ms) | 658.3 ± 75.8 (622.9–693.8) | 657.7 ± 90.8 (592.8–722.6) | 659.00 ± 62.4 (614.4–703.6) | −1.3 (−74.5–71.9) | t = −0.037 | 0.971 * |
rMSSD (ms) | 23.4 ± 28.5 (10.0–36.7) | 22.9 ± 30.9 (0.8–45.1) | 23.8 ± 27.4 (4.2–43.5) | −0.9 (−28.4–26.6) | U = 55.500 | 0.684 † |
SDNN (ms) | 47.7 ± 31.3 (33.0–62.4) | 46.1 ± 33.3 (22.3–69.9) | 49.3 ± 31.0 (27.1–71.5) | −3.2 (−33.4–27.0) | U = 54.000 | 0.796 † |
ALSAQ-40 (scores) | 71.1 ± 30.7 (56.7–85.4) | 73.8 ± 33.6 (49.8–97.8) | 68.3 ± 29.1 (47.4–89.1) | 5.5 (−24.0–35.0) | t = 0.391 | 0.700 * |
ALSFRS-R (total score) | 34.4 ± 7.8 (31.1–37.7) | 33.5 ± 7.5 (28.1–38.9) | 35.3 ± 6.8 (30.4–40.2) | −1.8 (−8.5–4.9) | U = 61.500 | 0.393 † |
ALSFRS-R bulbar function (subscores) | 9.9 ± 1.5 (9.1–10.6) | 9.7 ± 1.7 (8.4–10.9) | 10.1 ± 1.2 (9.1–11.0) | −0.4 (−1.8–1.0) | U = 53.500 | 0.796 † |
ALSFRS-R language (subscores) | 3.3 ± 0.4 (3.1–3.5) | 3.3 ± 0.4 (2.9–3.6) | 3.4 ± 0.5 (3.0–3.7) | −0.1 (−0.5–0.3) | U = 55.000 | 0.739 † |
ALSFRS-R salivation (subscores) | 3.2 ± 0.6 (2.9–3.5) | 3.2 ± 0.7 (2.6–3.7) | 3.3 ± 0.4 (2.9–3.6) | −0.1 (−0.7–0.5) | U = 52.000 | 0.912 † |
ALSFRS-R swallowing (subscores) | 3.0 ± 0.9 (2.5–3.4) | 3.0 ± 1.1 (2.1–3.8) | 3.0 ± 0.6 (2.5–3.4) | 0.0 (−0.9–0.9) | U = 44.000 | 0.684 † |
Outcome Differences after Interventions | Experimental (n = 10) Mean ± SD (95% CI) | Control (n = 10) Mean ± SD (95% CI) | Mean Difference (95% CI) | Statistics | p-Value | Effect Size (Cohen d) |
---|---|---|---|---|---|---|
PImax (cm H2O) | 5.6 ± 9.8 (−1.4–12.6) | −5.2 ± 5.2 (−8.9–−1.5) | 10.8 (3.4–18.2) | U = 5.500 | <0.001 † | d = 1.37 |
HR (bpm) | −6.8 ± 17.1 (−19.1–5.4) | 2.0 ± 2.3 (0.4–3.6) | −8.8 (−20.3–2.7) | U = 79.500 | 0.023 † | d = 0.72 |
HRV (ms) | 5.1 ± 23.9 (−12.0–22.2) | −3.5 ± 3.2 (−5.8–−1.2) | 8.6 (−7.4–24.6) | U = 30.500 | 0.143 † | d = 0.50 |
R-R interval (ms) | 44.3 ± 105.1 (−30.9–119.5) | −34.0 ± 42.6 (−64.5–−3.5) | 78.3 (2.9–153.7) | U = 19.000 | 0.019 † | d = 0.97 |
rMSSD (ms) | 1.7 ± 38.9 (−26.1–29.6) | −2.6 ± 3.5 (−5.1–−0.1) | 4.31 (−21.7–30.3) | U = 30.000 | 0.143 † | d = 0.15 |
SDNN (ms) | 0.1 ± 42.4 (−30.3–30.4) | −5.5 ± 9.6 (−12.3–1.4) | 5.53 (−23.4–34.4) | U = 44.000 | 0.684 † | d = 0.17 |
ALSAQ-40 (scores) | 5.2 ± 6.9 (0.2–10.2) | 20.9 ± 23.5 (4.0–37.7) | −15.7 (−32.9–1.5) | t = −2.022 | 0.069 * | d = 0.90 |
ALSFRS-R (total score) | −4.3 ± 3.2 (−6.6–−1.9) | −9.6 ± 7.1 (−14.6–−4.5) | 5.3 (−0.03–10.6) | U = 23.500 | 0.043 † | d = 0.94 |
ALSFRS-R bulbar function (subscores) | −0.8 ± 1.6 (−2.0–0.4) | −1.0 ± 1.6 (−2.1–0.1) | 0.2 (−1.3–1.7) | U = 42.000 | 0.579 † | d = 0.12 |
ALSFRS-R language (subscores) | −0.1 ± 0.5 (−0.5–0.3) | 0.0 ± 0.4 (−0.3–0.3) | −0.1 (−0.5–0.3) | U = 54.500 | 0.739 † | d = 0.09 |
ALSFRS-R salivation (subscores) | −0.3 ± 0.6 (−0.7–0.1) | −0.2 ± 0.7 (−0.7–0.3) | −0.1 (−0.7–0.5) | U = 57.000 | 0.631 † | d = 0.15 |
ALSFRS-R swallowing (subscores) | 0.0 ± 0.6 (−0.4–0.4) | 0.0 ± 0.6 (−0.4–0.4) | 0.0 (−0.6–0.6) | U = 50.000 | 1.000 † | d = 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente-Campos, D.; Sanchez-Jorge, S.; Chicharro, J.L.; Becerro-de Bengoa-Vallejo, R.; Rodriguez-Sanz, D.; García, A.R.; Rivoire, M.; Benet, A.; Boubekeur, S.; Calvo-Lobo, C. POWERbreathe® Inspiratory Muscle Training in Amyotrophic Lateral Sclerosis. J. Clin. Med. 2022, 11, 6655. https://doi.org/10.3390/jcm11226655
Vicente-Campos D, Sanchez-Jorge S, Chicharro JL, Becerro-de Bengoa-Vallejo R, Rodriguez-Sanz D, García AR, Rivoire M, Benet A, Boubekeur S, Calvo-Lobo C. POWERbreathe® Inspiratory Muscle Training in Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine. 2022; 11(22):6655. https://doi.org/10.3390/jcm11226655
Chicago/Turabian StyleVicente-Campos, Davinia, Sandra Sanchez-Jorge, J. L. Chicharro, Ricardo Becerro-de Bengoa-Vallejo, David Rodriguez-Sanz, Arianne R. García, Marie Rivoire, Astrid Benet, Sofía Boubekeur, and César Calvo-Lobo. 2022. "POWERbreathe® Inspiratory Muscle Training in Amyotrophic Lateral Sclerosis" Journal of Clinical Medicine 11, no. 22: 6655. https://doi.org/10.3390/jcm11226655
APA StyleVicente-Campos, D., Sanchez-Jorge, S., Chicharro, J. L., Becerro-de Bengoa-Vallejo, R., Rodriguez-Sanz, D., García, A. R., Rivoire, M., Benet, A., Boubekeur, S., & Calvo-Lobo, C. (2022). POWERbreathe® Inspiratory Muscle Training in Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine, 11(22), 6655. https://doi.org/10.3390/jcm11226655