No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Mutation Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohnai, G.; Nakamura, R.; Atsuta, N.; Nakatochi, M.; Hayashi, N.; Ito, D.; Watanabe, H.; Watanabe, H.; Katsuno, M.; Izumi, Y.; et al. Mutation screening of the DNAJC7 gene in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2022, 113, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Pegat, A.; Vallet, A.E.; Leblanc, P.; Lumbroso, S.; Mouzat, K.; Latour, P. Juvenile amyotrophic lateral sclerosis associated with biallelic c.757delG mutation of sorbitol dehydrogenase gene. Amyotroph. Lateral Scler. Front. Degener. 2021, 23, 473–475. [Google Scholar] [CrossRef]
- Gabbay, K.H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 1973, 288, 831–836. [Google Scholar] [CrossRef]
- Dewey, C.M.; Cenik, B.; Sephton, C.F.; Dries, D.R.; Mayer, P., 3rd; Good, S.K.; Johnson, B.A.; Herz, J.; Yu, G. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell Biol. 2011, 31, 1098–1108. [Google Scholar] [CrossRef] [Green Version]
- Cortese, A.; Zhu, Y.; Rebelo, A.P.; Negri, S.; Courel, S.; Abreu, L.; Bacon, C.J.; Bai, Y.; Bis-Brewer, D.M.; Bugiardini, E.; et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat. Genet. 2020, 52, 473–481. [Google Scholar] [CrossRef]
- Dong, H.L.; Li, J.Q.; Liu, G.L.; Yu, H.; Wu, Z.Y. Biallelic SORD pathogenic variants cause Chinese patients with distal hereditary motor neuropathy. NPJ Genom. Med. 2021, 6, 1. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yilihamu, M.; Duan, X.; Fan, D. Clinical and Genetic Features of Biallelic Mutations in SORD in a Series of Chinese Patients with Charcot-Marie-Tooth and Distal Hereditary Motor Neuropathy. Front. Neurol. 2021, 12, 733926. [Google Scholar] [CrossRef]
- Yuan, R.Y.; Ye, Z.L.; Zhang, X.R.; Xu, L.Q.; He, J. Evaluation of SORD mutations as a novel cause of Charcot-Marie-Tooth disease. Ann. Clin. Transl. Neurol. 2021, 8, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Record, C.; Pipis, M.; Rossor, A.; Laura, M.; Skorupinska, M.; Cortese, A.; Reilly, M. SORD-related CMT: Expanding the phenotype. J. Peripher. Nerv. Syst. 2021, 26, 340–341. [Google Scholar]
- Rebelo, A.; Cortese, A.; Zuchner, S.; Huang, J.Y. Detection of increased sorbitol levels by ultra performance liquid chromatography-tandem mass spectrometry in CMT PATIENTS with SORD mutations. J. Peripher. Nerv. Syst. 2021, 26, 130. [Google Scholar]
- Laššuthová, P.; Mazanec, R.; Staněk, D.; Sedláčková, L.; Plevová, B.; Haberlová, J.; Seeman, P. Biallelic variants in the SORD gene are one of the most common causes of hereditary neuropathy among Czech patients. Sci. Rep. 2021, 11, 8443. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Dohrn, M.; Stojkovic, T.; Schenone, A.; Kennerson, M.; Sevilla, T.; Manganelli, F.; Zhang, R.; Houlden, H.; Hermann, D.; et al. Genotype and phenotype spectrum of SORD neuropathy. J. Peripher. Nerv. Syst. 2021, 26, 431. [Google Scholar]
- Armirola-Ricaurte, C.; De Vriendt, E.; Candayan, A.; Asenov, O.; Parman, Y.; Chamova, T.; Tournev, I.; Battaloglu, E.; Jordanova, A. Screening of SORD mutations in a CMT cohort expands the clinical spectrum of SORD-related neuropathy. J. Peripher. Nerv. Syst. 2021, 26, 426. [Google Scholar]
- Carneiro, D.; Matos, A.; Freixo, J.; Oliveira, J.; Costa, C.; Fineza, I.; Ribeiro, J.A. Sensorymotor neuropathy with dysautonomia associated to SORD gene mutations. Eur. J. Neurol. 2021, 28, 541. [Google Scholar]
- Fischer, L.R.; Glass, J.D. Axonal degeneration in motor neuron disease. Neurodegener. Dis. 2007, 4, 431–442. [Google Scholar] [CrossRef]
- Gentile, F.; Scarlino, S.; Falzone, Y.M.; Lunetta, C.; Tremolizzo, L.; Quattrini, A.; Riva, N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front. Neurosci. 2019, 13, 601. [Google Scholar] [CrossRef]
- Rahman, M.R.; Islam, T.; Shahjaman, M.; Quinn, J.M.W.; Holsinger, D.; Moni, M.A. Identification of common molecular biomarker signatures in blood and brain of Alzheimer’s disease. bioRxiv 2018. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L.; World Federation of Neurology Research Group on Motor Neuron, D. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.; Newton, J.; Niven, E.; Foley, J.; Bak, T.H. Screening for cognition and behaviour changes in ALS. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilihamu, M.; He, J.; Liu, X.; Tian, J.; Fan, D. GLT8D1 may not be significant in Chinese sporadic amyotrophic lateral sclerosis patients. Neurobiol. Aging 2021, 102, 224.e1–224.e3. [Google Scholar] [CrossRef]
- Alluqmani, M.; Basit, S. Association of SORD mutation with autosomal recessive asymmetric distal hereditary motor neuropathy. BMC Med. Genom. 2022, 15, 88. [Google Scholar] [CrossRef]
- Wu, C.; Xiang, H.; Chen, R.; Zheng, Y.; Zhu, M.; Chen, S.; Yu, Y.; Peng, Y.; Yu, Y.; Deng, J.; et al. Genetic spectrum in a cohort of patients with distal hereditary motor neuropathy. Ann. Clin. Transl. Neurol. 2022, 9, 633–643. [Google Scholar] [CrossRef]
- Lin, Z.; Li, X.; Huang, S.; Zhao, H.; Liu, L.; Cao, W.; Liu, X.; Tang, B.; Zhang, R. Genetic and clinical features of sorbitol dehydrogenase gene-related Charcot-Marie-Tooth disease in Chinese population. Chin. J. Neurol. 2020, 12, 882–887. [Google Scholar]
- Frasquet, M.; Rojas-Garcia, R.; Argente-Escrig, H.; Vazquez-Costa, J.F.; Muelas, N.; Vilchez, J.J.; Sivera, R.; Millet, E.; Barreiro, M.; Diaz-Manera, J.; et al. Distal hereditary motor neuropathies: Mutation spectrum and genotype-phenotype correlation. Eur J. Neurol. 2021, 28, 1334–1343. [Google Scholar] [CrossRef]
cDNA | Amino Acid Change | Type | Exon | dbSNP | 1000 Genomes | GnomAD East Asian | ChinaMap | SALS | Controls |
---|---|---|---|---|---|---|---|---|---|
c.244T > A | p.Ser82Thr | Heterozygous | 3 | / | / | / | / | 1/601 | 0/174 |
c.247G > T | p.Val83Leu | Heterozygous | 3 | / | / | / | / | 0/601 | 1/174 |
c.418T > A | p.Cys140Ser | Heterozygous | 4 | rs569483540 | / | 0.0001087 | 0.000377786 | 1/601 | 0/174 |
c.545-6G > C | /, splicing | Heterozygous | intron 5–6 | / | / | / | / | 1/601 | 0/174 |
c.697G > A | p.Ala233Thr | Heterozygous | 7 | rs376874432 | / | / | / | 1/601 | 0/174 |
c.728A > G | p.Lys243Arg | Heterozygous | 7 | / | / | / | / | 1/601 | 0/174 |
c.745G > A | p.Glu249Lys | Heterozygous | 7 | rs776518780 | / | / | 0.000236116 | 1/601 | 0/174 |
c.757delG | p.Ala253Glnfs*27 | Heterozygous | 7 | rs55901542 | / | 0.0002528 | 0.00316396 | 4/601 | 0/174 |
c.908 + 1G > C | /, splicing | Heterozygous | intron 8–9 | / | / | / | / | 0/601 | 1/174 |
cDNA | Variant | Type | SIFT | PolyPhen-2 | MutationTaster | CADD | Evidence | ACMG | SALS | Controls |
---|---|---|---|---|---|---|---|---|---|---|
c.244T > A | p.Ser82Thr | Heterozygous | Tolerated | Benign | Polymorphism | 4.909 | PM2, BP4 | Uncertain significance | 1/601 | 0/174 |
c.247G > T | p.Val83Leu | Heterozygous | Deleterious | Probably damaging | Disease-causing | 5.800 | PM2, PP3 | Uncertain significance | 0/601 | 1/174 |
c.418T > A | p.Cys140Ser | Heterozygous | Deleterious | Probably damaging | Disease-causing | 25.4 | PP3 | Uncertain significance | 1/601 | 0/174 |
c.545-6G > C | /, splicing | Heterozygous | / | / | / | 3.039 | PM2 | Uncertain significance | 1/601 | 0/174 |
c.697G > A | p.Ala233Thr | Heterozygous | Tolerated | Benign | Disease-causing | 18.12 | PM2, BP4 | Uncertain significance | 1/601 | 0/174 |
c.728A > G | p.Lys243Arg | Heterozygous | Tolerated | Benign | Polymorphism | 20.2 | PM2, BP4 | Uncertain significance | 1/601 | 0/174 |
c.745G > A | p.Glu249Lys | Heterozygous | Deleterious | Probably damaging | Disease-causing | 26.4 | PM2, PP3 | Uncertain significance | 1/601 | 0/174 |
c.757delG | p.Ala253Glnfs*27 | Heterozygous | / | / | / | / | PVS1 | Uncertain significance | 4/601 | 0/174 |
c.908 + 1G > C | /, splicing | Heterozygous | / | / | / | 10.218 | PVS1, PM2 | Uncertain significance | 0/601 | 1/174 |
cDNA | Variant | ID | Sex | Age of Onset (Years) | Site of Onset | Disease Duration (Months) | Clinical Phenotype |
---|---|---|---|---|---|---|---|
c.244T > A | p.Ser82Thr | 9113 | Female | 50 | Right hand | 46 | Classic ALS |
c.545-6G > C | /, splicing | 8371 | Male | 58 | Right leg | 42 | Classic ALS |
c.728A > G | p.Lys243Arg | 7160 | Female | 56 | Right hand | 48 | Classic ALS |
c.757delG | p.Ala253Glnfs*27 | 7158 | Male | 53 | Left hand | 36 | Classic ALS |
8366 | Male | 55 | Left leg | 15 | Classic ALS | ||
8386 | Female | 37 | Right leg | 54 | Classic ALS | ||
8180 | Male | 56 | Left hand | 60 | Classic ALS |
Inherited Type | cDNA | Amino Acid Change | Count | Phenotype | Sex | Age at Onset (Years) | References | |
---|---|---|---|---|---|---|---|---|
Allele 1 | Allele 2 | |||||||
Homozygous | c.757del | c.757del | p.Ala253Glnfs*27 | 14 | dHMN | 9 male, 5 female | 12–40 | Cortese et al. [15] |
20 | CMT2 | 13 male, 7 female | 10–40 | Cortese et al. [15] | ||||
3 | CMT intermediate | male | 12–25 | Cortese et al. [15] | ||||
1 | dHMN | male | 26 | Alluqmani et al. [25] | ||||
2 | dHMN | female | 4, 14 | Wu et al. [26] | ||||
2 | CMT2 | male, female | 17, 16 | Yuan et al. [11] | ||||
2 | CMT2 | male | 5, 16 | Lin et al. [27] | ||||
2 | dHMN | male, female | 10, 12 | Lin et al. [27] | ||||
1 | dHMN | male | 10 | Laššuthová et al. [14] | ||||
1 | CMT intermediate | male | 13 | Laššuthová et al. [14] | ||||
9 | CMT2 | 5 male, 4 female | 0–40 | Laššuthová et al. [14] | ||||
3 | dHMN | male | 9, 10, 15 | Dong et al. [9] | ||||
1 | dHMN | female | 21–30 | Frasquet et al. [28] | ||||
2 | dHMN | female | 17, 6 | Liu et al. [10] | ||||
Compound heterogeneous | c.757del | c.298C > T | p.Arg100Ter | 1 | CMT2 | male | 15 | Cortese et al. [15] |
c.329G > C | p.Arg110Pro | 1 | CMT intermediate | male | 13 | Cortese et al. [15] | ||
c.458C > A | p.Ala153Asp | 2 | CMT2 | male, female | 10, 20 | Cortese et al. [15] | ||
1 | dHMN | female | 10–20 | Laššuthová et al. [14] | ||||
5 | CMT2 | 3 male, 2 female | 0–51 | Laššuthová et al. [14] | ||||
1 | dHMN | female | 2–10 | Frasquet et al. [28] | ||||
1 | unclear | female | unclear | Frasquet et al. [28] | ||||
c.964G > A | p.Val322Ile | 1 | CMT2 | male | 2 | Cortese et al. [15] | ||
c.316_425 + 165del | / | 1 | CMT2 | male | 15 | Cortese et al. [15] | ||
c.28C > T | p.Leu10Phe | 1 | dHMN | male | 18 | Cortese et al. [15] | ||
c.895C > T | p.Arg299Ter | 1 | CMT2 | male | 15 | Cortese et al. [15] | ||
c.625C > T | p.Arg209Ter | 1 | CMT2 | male | 15 | Yuan et al. [11] | ||
c.553G > A | p.Gly185Arg | 1 | CMT2 | male | 49 | Laššuthová et al. [14] | ||
c.218C > T | p.Ser73Leu | 1 | CMT intermediate | male | 10–20 | Laššuthová et al. [14] | ||
c.503G > A | p.Gly168Asp | 1 | CMT2 | male | 20–25 | Laššuthová et al. [14] | ||
c.776C > T | p.Ala259Val | 1 | dHMN | male | 16 | Liu et al. [10] | ||
c.731C > T | p.Pro244Leu | 1 | dHMN | female | 15 | Liu et al. [10] | ||
c.851T > C | p.Leu284Pro | 1 | dHMN | male | 16 | Liu et al. [10] | ||
c.908 + 1G > C | c.404A > G | p.His135Arg | 1 | dHMN | male | 16 | Dong et al. [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilihamu, M.; He, J.; Tang, L.; Chen, Y.; Liu, X.; Fan, D. No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort. J. Clin. Med. 2022, 11, 6834. https://doi.org/10.3390/jcm11226834
Yilihamu M, He J, Tang L, Chen Y, Liu X, Fan D. No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort. Journal of Clinical Medicine. 2022; 11(22):6834. https://doi.org/10.3390/jcm11226834
Chicago/Turabian StyleYilihamu, Mubalake, Ji He, Lu Tang, Yong Chen, Xiaoxuan Liu, and Dongsheng Fan. 2022. "No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort" Journal of Clinical Medicine 11, no. 22: 6834. https://doi.org/10.3390/jcm11226834
APA StyleYilihamu, M., He, J., Tang, L., Chen, Y., Liu, X., & Fan, D. (2022). No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort. Journal of Clinical Medicine, 11(22), 6834. https://doi.org/10.3390/jcm11226834