Surgical Site Infection in Cardiac Surgery
Abstract
:1. Introduction
2. Definitions
3. Characteristics of SSIs in Cardiac Surgery
4. Clinical Symptoms of SSIs
5. Epidemiology
6. Risk Factors
7. Pathomechanism
8. Aetiology
9. Diagnostics
9.1. Microbiological Diagnostics
9.2. Diagnostic Imaging
10. SSI Prevention
10.1. Preoperative Optimisation of Patient Condition
10.2. Staphylococcus aureus Decolonisation
10.3. Preoperative Bathing
10.4. Surgical Site Preparation
10.5. Perioperative Antibiotic Prophylaxis—PAP
10.6. Topical Antibiotic Administration
Gentamicin-Impregnated Collagen Sponges
10.7. Negative Pressure Wound Therapy
11. SSI Therapy in Cardiac Surgery
Antibiotic Therapy SSIs in Cardiac Surgery
12. Summary
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ban, K.A.; Minei, J.P.; Laronga, C.; Harbrecht, B.G.; Jensen, E.H.; Fry, D.E.; Itani, K.M.; Dellinger, E.P.; Ko, C.Y.; Duane, T.M. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J. Am. Coll. Surg. 2017, 224, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Gao, H.; Zhang, Y.; Pei, L.; Huang, Y. Risk Stratification for Organ/Space Surgical Site Infection in Advanced Digestive System Cancer. Front. Oncol. 2021, 9, 705335. [Google Scholar] [CrossRef]
- Surgical Site Infection (SSI)|HAI|CDC; CDC: Atlanta, GA, USA, 2010.
- CDC/NHSN Surveillance Definitions for Specific Types of Infections January 2022. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf (accessed on 2 September 2022).
- Mangram, A.; Horan, T.; Pearson, M.; Silver, L.; Jarvis, W. Guideline for Prevention of Surgical Site Infection. Infect. Control. Hosp. Epidemiol. 1999, 20, 247–280. [Google Scholar] [CrossRef] [PubMed]
- El Oakley, R.M.; Wright, J.E. Postoperative mediastinitis: Classification and management. Ann. Thorac. Surg. 1996, 61, 1030–1036. [Google Scholar] [CrossRef]
- Lazar, H.L.; Salm, T.V.; Engelman, R.; Orgill, D.; Gordon, S. Prevention and management of sternal wound infections. J. Thorac. Cardiovasc. Surg. 2016, 152, 962–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Omar, Y.; Kocher, G.J.; Bosco, P.; Barbero, C.; Waller, D.; Gudbjartsson, T.; Sousa-Uva, M.; Licht, P.B.; Dunning, J.; Schmid, R.A.; et al. European Association for Cardio-Thoracic Surgery expert consensus statement on the prevention and management of mediastinitis. Eur. J. Cardiothorac. Surg. 2017, 51, 10–29. [Google Scholar] [CrossRef] [Green Version]
- van Wingerden, J.J.; Ubbink, D.T.; van der Horst, C.; de Mol, B. Poststernotomy mediastinitis: A classification to initiate and evaluate reconstructive management based on evidence from a structured review. J. Cardiothorac. Surg. 2014, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Gorski, A.; Hamouda, K.; Özkur, M.; Leistner, M.; Sommer, S.P.; Leyh, R.; Schimmer, C. Cardiac surgery antibiotic prophylaxis and calculated empiric antibiotic therapy. Asian Cardiovasc. Thorac. Ann. 2015, 23, 282–288. [Google Scholar] [CrossRef]
- Yusuf, E.; Chan, M.; Renz, N.; Trampuz, A. Current perspectives on diagnosis and management of sternal wound infections. Infect Drug Resist. 2018, 11, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Yusuf, E.; Giulieri, S.; Perrottet, N.; Von Segesser, L.; Borens, O.; Trampuz, A. A retrospective study of deep sternal wound infections: Clinical and microbiological characteristics, treatment, and risk factors for complications. Diagn. Microbiol. Infect. Dis. 2016, 84, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Lepelletier, D.; Bourigault, C.; Roussel, J.C.; Lasserre, C.; Leclère, B.; Corvec, S.; Pattier, S.; Lepoivre, T.; Baron, O.; Despins, P. Epidemiology and prevention of surgical site infections after cardiac surgery. Med. Mal. Infect. 2013, 43, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Peghin, M.; Pompei, E.; Vendramin, I.; Tascini, C. Gram-negative bacteria as a cause of mediastinitis after cardiac surgery. Curr. Opin. Infect. Dis. 2021, 34, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Surat, G.; Bernsen, D.; Schimmer, C. Antimicrobial stewardship measures in cardiac surgery and its impact on surgical site infections. J. Cardiothorac. Surg. 2021, 16, 309. [Google Scholar] [CrossRef]
- Damavandi, D.S.; Javan, M.; Moshashaei, H.; Forootan, M.; Darvishi, M. Microbial Contamination after Cardiac Surgery in a Hospital Cardiac Surgery Ward. J. Med. Life 2020, 13, 342–348. [Google Scholar] [CrossRef]
- Gelijns, A.C.; Moskowitz, A.J.; Acker, M.A.; Argenziano, M.; Geller, N.L.; Puskas, J.D.; Perrault, L.P.; Smith, P.K.; Kron, I.L.; Michler, R.E.; et al. Cardiothoracic Surgical Trials Network (CTSN). Management practices and major infections after cardiac surgery. J. Am. Coll. Cardiol. 2014, 64, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; He, L.; Weng, F.; Huang, F.; Teng, P. Effectiveness of chlorhexidine in preventing infections among patients undergoing cardiac surgeries: A meta-analysis and systematic review. Antimicrob. Resist. Infect. Control 2021, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Réseaux d’alerte, D’investigation et de Surveillance des Infections Nosocomiales (RAISIN). Surveillance des Infections du Site Opératoires, France 2011. Available online: https://www.cismef.org/mtph/?p=4739 (accessed on 2 September 2022).
- Meszaros, K.; Fuehrer, U.; Grogg, S.; Sodeck, G.; Czerny, M.; Marschall, J.; Carrel, T. Risk Factors for Sternal Wound Infection After Open Heart Operations Vary According to Type of Operation. Ann. Thorac. Surg. 2016, 101, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Lemaignen, A.; Birgand, G.; Ghodhbane, W.; Alkhoder, S.; Lolom, I.; Belorgey, S.; Lescure, F.X.; Armand-Lefevre, L.; Raffoul, R.; Dilly, M.P.; et al. Sternal wound infection after cardiac surgery: Incidence and risk factors according to clinical presentation. Clin. Microbiol. Infect. 2015, 21, e11–e18. [Google Scholar] [CrossRef] [Green Version]
- Harrington, G.; Russo, P.; Spelman, D.; Borrell, S.; Watson, K.; Barr, W.; Martin, R.; Edmonds, D.; Cocks, J.; Greenbough, J.; et al. Surgical-site infection rates and risk factor analysis in coronary artery bypass graft surgery. Infect. Control Hosp. Epidemiol. 2004, 25, 472–476. [Google Scholar] [CrossRef]
- Mishra, P.K.; Ashoub, A.; Salhiyyah, K.; Aktuerk, D.; Ohri, S.; Raja, S.G.; Luckraz, H. Role of topical application of gentamicin containing collagen implants in cardiac surgery. J. Cardiothorac. Surg. 2014, 9, 122. [Google Scholar] [CrossRef]
- Vos, R.J.; Van Putte, B.P.; Kloppenburg, G.T.L. Prevention of deep sternal wound infection in cardiac surgery: A literature review. J. Hosp. Infect. 2018, 100, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, V.J.; Jääskeläinen, I.H.; Eklund, A.M.; Murto, E.S.; Mattila, K.J.; Juvonen, T.S.; Vento, A.E.; Järvinen, A.I. The Characteristics of Postoperative Mediastinitis During the Changing Phases of Cardiac Surgery. Ann. Thorac. Surg. 2021, 112, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; de Alarcón, A.; Fariñas, M.C.; Gálvez, J.; Goenaga, M.Á.; Gutiérrez-Díez, F.; Hortal, J.; Lasso, J.; Mestres, C.A.; Miró, J.M.; et al. Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES). J. Clin. Med. 2021, 10, 5566. [Google Scholar] [CrossRef]
- Wojnarski, C.M.; Elgudin, Y.; Rubelowsky, J.J.; Wilson, B.M.; Donskey, C.J.; Cmolik, B.L. Emerging trends in mediastinitis: National Veterans Health Administration experience with methicillin-resistant Staphylococcus aureus prevention. J. Thorac. Cardiovasc. Surg. 2021, 162, 1125–1130.e1. [Google Scholar] [CrossRef] [PubMed]
- Chello, C.; Lusini, M.; Nenna, A.; Nappi, F.; Spadaccio, C.; Satriano, U.M.; Cardetta, F.; Mastroianni, C.; Chello, M. Deep Sternal Wound Infection (DSWI) and Mediastinitis After Cardiac Surgery: Current Approaches and Future Trends in Prevention and Management. Surg. Technol. Int. 2020, 36, 212–216. [Google Scholar] [PubMed]
- Hirahara, N.; Miyata, H.; Motomura, N.; Kohsaka, S.; Nishimura, T.; Takamoto, S. Procedure- and Hospital-Level Variation of Deep Sternal Wound Infection from All-Japan Registry. Ann. Thorac. Surg. 2020, 109, 547–554. [Google Scholar] [CrossRef]
- Ohira, S.; Miyata, H.; Yamazaki, S.; Numata, S.; Motomura, N.; Takamoto, S.; Yaku, H. Deep sternal wound infection after bilateral internal thoracic artery grafting: Insights from a Japanese national database. J. Thorac. Cardiovasc. Surg. 2019, 157, 166–173.e1. [Google Scholar] [CrossRef]
- Goh, S.S.C. Post-sternotomy mediastinitis in the modern era. J. Card. Surg. 2017, 32, 556–566. [Google Scholar] [CrossRef]
- Bryan, C.S.; Yarbrough, W.M. Preventing deep wound infection after coronary artery bypass grafting: A review. Tex. Heart Inst. J. 2013, 40, 125–139. [Google Scholar]
- Rehman, S.M.; Elzain, O.; Mitchell, J.; Shine, B.; Bowler, I.C.; Sayeed, R.; Westaby, S.; Ratnatunga, C. Risk factors for mediastinitis following cardiac surgery: The importance of managing obesity. J. Hosp. Infect. 2014, 88, 96–102. [Google Scholar] [CrossRef]
- Lemaignen, A.; Armand-Lefevre, L.; Birgand, G.; Mabileau, G.; Lolom, I.; Ghodbane, W.; Dilly, M.P.; Nataf, P.; Lucet, J.C. Thirteen-year experience with universal Staphylococcus aureus nasal decolonization prior to cardiac surgery: A quasi-experimental study. J. Hosp. Infect. 2018, 100, 322–328. [Google Scholar] [CrossRef]
- Phoon, P.H.Y.; Hwang, N.C. Deep Sternal Wound Infection: Diagnosis, Treatment and Prevention. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1602–1613. [Google Scholar] [CrossRef] [PubMed]
- Abdelnoor, M.; Sandven, I.; Vengen, Ø.; Risnes, I. Mediastinitis in open heart surgery: A systematic review and meta-analysis of risk factors. Scand. Cardiovasc. J. 2019, 53, 226–234. [Google Scholar] [CrossRef]
- Hysi, I.; Pinçon, C.; Guesnier, L.; Gautier, L.; Renaut, C.; Géronimi, H.; Jasaitis, L.; Fabre, O. Results of elective cardiac surgery in patients with severe obesity (body mass index ≥ 35 kg/m2). Arch. Cardiovasc. Dis. 2014, 107, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sá, M.P.; Soares, E.F.; Santos, C.A.; Figueiredo, O.J.; Lima, R.O.; Escobar, R.R.; de Rueda, F.G.; Lima Rde, C. Risk factors for mediastinitis after coronary artery bypass grafting surgery. Rev. Bras. Cir. Cardiovasc. 2011, 26, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buğra, A.K.; Göde, S.; Buğra, A.; Eltutan, S.; Arafat, Z.; Şen, O.; Erentuğ, V. Mediastinitis after cardiac surgery: Risk factors and our vacuum-assisted closure results. Kardiochir. Torakochirurgia Pol. 2021, 18, 195–202. [Google Scholar] [CrossRef]
- Balachandran, S.; Lee, A.; Denehy, L.; Lin, K.Y.; Royse, A.; Royse, C.; El-Ansary, D. Risk Factors for Sternal Complications After Cardiac Operations: A Systematic Review. Ann. Thorac. Surg. 2016, 102, 2109–2117. [Google Scholar] [CrossRef] [Green Version]
- Galindo, R.J.; Fayfman, M.; Umpierrez, G.E. Perioperative management of hyperglycemia and diabetes in cardiac surgery patients. Endocrinol. Metab. Clin. 2018, 47, 203–222. [Google Scholar] [CrossRef]
- Latham, R.; Lancaster, A.D.; Covington, J.F.; Pirolo, J.S.; Thomas, C.S., Jr. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect. Control. Hosp. Epidemiol. 2001, 22, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Talbot, T.R. Diabetes mellitus and cardiothoracic surgical site infections. Am. J. Infect. Control. 2005, 33, 353–359. [Google Scholar] [CrossRef]
- Lazar, H.L.; McDonnell, M.; Chipkin, S.R.; Furnary, A.P.; Engelman, R.M.; Sadhu, A.R.; Bridges, C.R.; Haan, C.K.; Svedjeholm, R.; Taegtmeyer, H.; et al. Society of Thoracic Surgeons Blood Glucose Guideline Task Force. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. Ann. Thorac. Surg. 2009, 87, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Lazar, H.L. A review of the AATS guidelines for the prevention and management of sternal wound infections. Indian J. Thorac. Cardiovasc. Surg. 2018, 34 (Suppl. 3), 349–354. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Uva, M.; Head, S.J.; Milojevic, M.; Collet, J.P.; Landoni, G.; Castella, M.; Dunning, J.; Gudbjartsson, T.; Linker, N.J.; Sandoval, E.; et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur. J. Cardiothorac. Surg. 2018, 53, 5–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, H.; Miyata, H.; Motomura, N.; Ono, M.; Takamoto, S.; Harii, K.; Oura, N.; Hirabayashi, S.; Kyo, S. Deep sternal wound infection after cardiac surgery. J. Cardiothorac. Surg. 2013, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Raja, S.G.; Rochon, M.; Jarman, J.W.E. Brompton Harefield Infection Score (BHIS): Development and validation of a stratification tool for predicting risk of surgical site infection after coronary artery bypass grafting. Int. J. Surg. 2015, 16, 69–73. [Google Scholar] [CrossRef]
- Benedetto, U.; Raja, S.G. Harefield Cardiac Outcomes Research Group. Scoring system to guide decision making for the use of gentamicin-impregnated collagen sponge to prevent deep sternal wound infection. J. Thorac. Cardiovasc. Surg. 2014, 148, 2390–2396.e1. [Google Scholar] [CrossRef] [Green Version]
- Gatti, G.; Dell’Angela, L.; Barbati, G.; Benussi, B.; Forti, G.; Gabrielli, M.; Rauber, E.; Luzzati, R.; Sinagra, G.; Pappalardo, A. A predictive scoring system for deep sternal wound infection after bilateral internal thoracic artery grafting. Eur. J. Cardiothorac. Surg. 2016, 49, 910–917. [Google Scholar] [CrossRef]
- Perrotti, A.; Gatti, G.; Dorigo, E.; Sinagra, G.; Pappalardo, A.; Chocron, S. Validation of a Predictive Scoring System for Deep Sternal Wound Infection after Bilateral Internal Thoracic Artery Grafting in a Cohort of French Patients. Surg. Infect. 2017, 18, 181–188. [Google Scholar] [CrossRef]
- Sá, M.P.B.O.; Ferraz, P.E.; Soares, A.F.; Miranda, R.G.A.; Araújo, M.L.; Silva, F.V.; Lima, R.C. Development and Validation of a Stratification Tool for Predicting Risk of Deep Sternal Wound Infection after Coronary Artery Bypass Grafting at a Brazilian Hospital. Braz. J. Cardiovasc. Surg. 2017, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Munguira, J.; Herrera-Gómez, F.; Ruiz-Álvarez, M.; Figuerola-Tejerina, A.; Hernández-Aceituno, A. A New Surgical Site Infection Risk Score: Infection Risk Index in Cardiac Surgery. J. Clin. Med. 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Lord, J.M.; Midwinter, M.J.; Chen, Y.F.; Belli, A.; Brohi, K.; Kovacs, E.J.; Koenderman, L.; Kubes, P.; Lilford, R.J. The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet 2014, 384, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.; Thiemermann, C.; Brohi, K. Trauma alarmins as activators of damage-induced inflammation. Br. J. Surg. 2012, 99 (Suppl. 1), 12–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012, 72, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Fang, X. Pathogenesis of infection in surgical patients. Curr. Opin. Crit. Care 2015, 21, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Kühme, T.; Isaksson, B.; Dahlin, L.G. Wound contamination in cardiac surgery. A systematic quantitative and qualitative study of the bacterial growth in sternal wounds in cardiac surgery patients. APMIS 2007, 115, 1001–1007. [Google Scholar] [CrossRef]
- Wiley, A.M.; Ha’eri, G.B. Routes of infection. A study of using “tracer particles” in the orthopedic operating room. Clin. Orthop. Relat. Res. 1979, 139, 150–155. [Google Scholar]
- von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 2001, 344, 11–16. [Google Scholar] [CrossRef]
- Hetem, D.J.; Bootsma, M.C.; Bonten, M.J. Prevention of Surgical Site Infections: Decontamination with Mupirocin Based on Preoperative Screening for Staphylococcus aureus Carriers or Universal Decontamination? Clin. Infect. Dis. 2016, 62, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.J.; Kim, I.; Song, J.; Chung, E.S. The effect of first- and third-generation prophylactic antibiotics on hospitalization and medical expenditures for cardiac surgery. J. Cardiothorac. Surg. 2022, 17, 15. [Google Scholar] [CrossRef]
- Söderquist, B. Surgical site infections in cardiac surgery: Microbiology. APMIS 2007, 115, 1008–1011. [Google Scholar] [CrossRef]
- Charbonneau, H.; Maillet, J.M.; Faron, M.; Mangin, O.; Puymirat, E.; Le Besnerais, P.; Du Puy-Montbrun, L.; Achouh, P.; Diehl, J.L.; Fagon, J.Y.; et al. Mediastinitis due to Gram-negative bacteria is associated with increased mortality. Clin. Microbiol. Infect. 2014, 20, O197–O202. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef] [Green Version]
- Rapetto, F.; Bruno, V.D.; Guida, G.; Marsico, R.; Chivasso, P.; Zebele, C. Gentamicin-Impregnated Collagen Sponge: Effectiveness in Preventing Sternal Wound Infection in High-Risk Cardiac Surgery. Drug Target Insights 2016, 10 (Suppl. 1), 9–13. [Google Scholar] [CrossRef]
- Benlolo, S.; Matéo, J.; Raskine, L.; Tibourtine, O.; Bel, A.; Payen, D.; Mebazaa, A. Sternal puncture allows an early diagnosis of poststernotomy mediastinitis. J. Thorac. Cardiovasc. Surg. 2003, 125, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.B.; Yuh, D.D.; Schwartz, S.B.; Lange, R.A.; Hopkins, R.; Bauer, K.; Marders, J.A.; Delgado Donayre, J.; Milligan, N.; Wentz, C. Nontuberculous Mycobacterium Infections Associated with Heater-Cooler Devices. Ann. Thorac. Surg. 2017, 104, 1237–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, V.G., Jr.; Kaye, K.S.; Simel, D.L.; Cabell, C.H.; McClachlan, D.; Smith, P.K.; Levin, S.; Sexton, D.J.; Reller, L.B.; Corey, G.R.; et al. Staphylococcus aureus bacteremia after median sternotomy: Clinical utility of blood culture results in the identification of postoperative mediastinitis. Circulation 2003, 108, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tammelin, A.; Hambraeus, A.; Ståhle, E. Mediastinitis after cardiac surgery: Improvement of bacteriological diagnosis by use of multiple tissue samples and strain typing. J. Clin. Microbiol. 2002, 40, 2936–2941. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Daimon, T.; Mouri, N.; Masuda, H.; Sawa, Y. Staphylococcus aureus and repeat bacteremia in febrile patients as early signs of sternal wound infection after cardiac surgery. J. Cardiothorac. Surg. 2014, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Biefer, H.R.C.; Sündermann, S.H.; Emmert, M.Y.; Rancic, Z.; Salzberg, S.P.; Grünenfelder, J.; Falk, V.; Plass, A.R. Negative microbiological results are not mandatory in deep sternal wound infections before wound closure. Eur. J. Cardiothorac. Surg. 2012, 42, 306–310; discussion 310. [Google Scholar] [CrossRef] [Green Version]
- Melendez, J.H.; Frankel, Y.M.; An, A.T.; Williams, L.; Price, L.B.; Wang, N.Y.; Lazarus, G.S.; Zenilman, J.M. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin. Microbiol. Infect. 2010, 16, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- EU Protocol for Case Detection, Laboratory Diagnosis and Environmental Testing of Mycobacterium Chimaera Infections Pottentially Associate with Heater-Cooler Units: Case Definition and Environmental Testing Methodology; European Center for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2015.
- van Wingerden, J.J.; Maas, M.; Braam, R.L.; de Mol, B.A. Diagnosing poststernotomy mediastinitis in the ED. Am. J. Emerg. Med. 2016, 34, 618–622. [Google Scholar] [CrossRef]
- Akman, C.; Kantarci, F.; Cetinkaya, S. Imaging in mediastinitis: A systematic review based on aetiology. Clin. Radiol. 2004, 59, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, C.S.; Martinez, S.; Lemos, D.F.; Washington, L.; McAdams, H.P.; Vargas, D.; Lemos, J.A.; Carrillo, J.A.; Diethelm, L. Imaging appearances of the sternum and sternoclavicular joints. Radiographics 2009, 29, 839–859. [Google Scholar] [CrossRef] [Green Version]
- Yamashiro, T.; Kamiya, H.; Murayama, S.; Unten, S.; Nakayama, T.; Gibo, M.; Kuniyoshi, Y. Infectious mediastinitis after cardiovascular surgery: Role of computed tomography. Radiat. Med. 2008, 26, 343–347. [Google Scholar] [CrossRef]
- Katabathina, V.S.; Restrepo, C.S.; Martinez-Jimenez, S.; Riascos, R.F. Nonvascular, nontraumatic mediastinal emergencies in adults: A comprehensive review of imaging findings. Radiographics 2011, 31, 1141–1160. [Google Scholar] [CrossRef]
- Vallejo, E.; Martinez, I.; Tejero, A.; Hernandez, S.; Jimenez, L.; Bialostozky, D.; Sanchez, G.; Ilarraza, H.; Ferro-Flores, G. Clinical utility of 99mTc-labeled ubiquicidin 29-41 antimicrobial peptide for the scintigraphic detection of mediastinitis after cardiac surgery. Arch. Med. Res. 2008, 39, 768–774. [Google Scholar] [CrossRef]
- Read, C.; Branford, O.A.; Verjee, L.S.; Wood, S.H. PET-CT imaging in patients with chronic sternal wound infections prior to reconstructive surgery: A case series. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Bischoff, P.; de Jonge, S.; Kubilay, N.Z.; Zayed, B.; Gomes, S.M.; Abbas, M.; Atema, J.J.; Gans, S.; van Rijen, M.; et al. WHO Guidelines Development Group. New WHO recommendations on preoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e276–e287. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. WHO Guidelines Development Group. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Tom, T.S.; Kruse, M.W.; Reichman, R.T. Update: Methicillin-resistant Staphylococcus aureus screening and decolonization in cardiac surgery. Ann. Thorac. Surg. 2009, 88, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Gorwitz, R.J.; Kruszon-Moran, D.; McAllister, S.K.; McQuillan, G.; McDougal, L.K.; Fosheim, G.E.; Jensen, B.J.; Killgore, G.; Tenover, F.C.; Kuehnert, M.J. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis. 2008, 197, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; McAllister, S.; Fosheim, G.; McDougal, L.K.; Carey, R.B.; Limbago, B.; Lonsway, D.; Patel, J.B.; Kuehnert, M.J.; Gorwitz, R. Characterization of Staphylococcus aureus isolates from nasal cultures collected from individuals in the United States in 2001 to 2004. J. Clin. Microbiol. 2008, 46, 2837–2841. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Verhoeven, P.O.; Gagnaire, J.; Botelho-Nevers, E.; Grattard, F.; Carricajo, A.; Lucht, F.; Pozzetto, B.; Berthelot, P. Detection and clinical relevance of Staphylococcus aureus nasal carriage: An update. Expert Rev. Anti. Infect. Ther. 2014, 12, 75–89. [Google Scholar] [CrossRef]
- Surgical Site Infections: Prevention and Treatment; National Institute for Health and Care Excellence (NICE): London, UK, 2020; p. 19.
- San-Juan, R.; Gotor-Pérez, C.A.; López-Medrano, F.; Fernández-Ruiz, M.; Lora, D.; Lizasoain, M.; Silva, J.T.; Ruiz-Ruigómez, M.; Corbella, L.; Rodríguez-Goncer, I.; et al. Eradication of Staphylococcus aureus Post-Sternotomy Mediastinitis Following the Implementation of Universal Preoperative Nasal Decontamination with Mupirocin: An Interrupted Time-Series Analysis. Clin. Infect. Dis. 2021, 73, 1685–1692. [Google Scholar] [CrossRef]
- Saraswat, M.K.; Magruder, J.T.; Crawford, T.C.; Gardner, J.M.; Duquaine, D.; Sussman, M.S.; Maragakis, L.L.; Whitman, G.J. Preoperative Staphylococcus Aureus Screening and Targeted Decolonization in Cardiac Surgery. Ann. Thorac. Surg. 2017, 104, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- George, S.; Leasure, A.R.; Horstmanshof, D. Effectiveness of Decolonization with Chlorhexidine and Mupirocin in Reducing Surgical Site Infections: A Systematic Review. Dimens. Crit. Care Nurs. 2016, 35, 204–222. [Google Scholar] [CrossRef]
- Schweizer, M.; Perencevich, E.; McDanel, J.; Carson, J.; Formanek, M.; Hafner, J.; Braun, B.; Herwaldt, L. Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: Systematic review and meta-analysis. BMJ 2013, 346, f2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, M.L.; Chiang, H.Y.; Septimus, E.; Moody, J.; Braun, B.; Hafner, J.; Ward, M.A.; Hickok, J.; Perencevich, E.N.; Diekema, D.J.; et al. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA 2015, 313, 2162–2171. [Google Scholar] [CrossRef]
- Liu, Z.; Norman, G.; Iheozor-Ejiofor, Z.; Wong, J.K.; Crosbie, E.J.; Wilson, P. Nasal decontamination for the prevention of surgical site infection in Staphylococcus aureus carriers. Cochrane Database Syst. Rev. 2017, 5, CD012462. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Hui, J.; Ma, J.; Mingquan, C. Nasal decolonization of Staphylococcus aureus and the risk of surgical site infection after surgery: A meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ji, Q.; Hu, X. Role of targeted and universal mupirocin-based decolonization for preventing surgical-site infections in patients undergoing cardiothoracic surgery: A systematic review and meta-analysis. Exp. Ther. Med. 2021, 21, 416. [Google Scholar] [CrossRef]
- Engelman, R.; Shahian, D.; Shemin, R.; Guy, T.S.; Bratzler, D.; Edwards, F.; Jacobs, M.; Fernando, H.; Bridges, C. Workforce on Evidence-Based Medicine, Society of Thoracic Surgeons. The Society of Thoracic Surgeons practice guideline series: Antibiotic prophylaxis in cardiac surgery, part II: Antibiotic choice. Ann. Thorac. Surg. 2007, 83, 1569–1576. [Google Scholar] [CrossRef]
- Cardiothoracic Interdisciplinary Research Network. National Cardiac Benchmarking Collaborative; Public Health England; Cardiothoracic Interdisciplinary Research Network. National survey of variations in practice in the prevention of surgical site infections in adult cardiac surgery, United Kingdom and Republic of Ireland. J. Hosp. Infect. 2020, 106, 812–819. [Google Scholar] [CrossRef]
- Madden, G.R.; Sifri, C.D. Antimicrobial Resistance to Agents Used for Staphylococcus aureus Decolonization: Is There a Reason for Concern? Curr. Infect. Dis. Rep. 2018, 20, 26. [Google Scholar] [CrossRef]
- Bebko, S.P.; Green, D.M.; Awad, S.S. Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation. JAMA Surg. 2015, 150, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Hibbard, J.S.; Mulberry, G.K.; Brady, A.R. A clinical study comparing the skin antisepsis and safety of ChloraPrep, 70% isopropyl alcohol, and 2% aqueous chlorhexidine. J. Infus. Nurs. 2002, 25, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Allport, J.; Choudhury, R.; Bruce-Wootton, P.; Reed, M.; Tate, D.; Malviya, A. Efficacy of mupirocin, neomycin and octenidine for nasal Staphylococcus aureus decolonisation: A retrospective cohort study. Antimicrob. Resist. Infect. Control. 2022, 11, 5. [Google Scholar] [CrossRef]
- Poovelikunnel, T.; Gethin, G.; Humphreys, H. Mupirocin resistance: Clinical implications and potential alternatives for the eradication of MRSA. J. Antimicrob. Chemother. 2015, 70, 2681–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Healthcare Infection Control Practices Advisory Committee. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791, Erratum in JAMA Surg. 2017, 152, 803. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.M.; Cota, G.F.; Pinto, T.S.; Ercole, F.F. Preoperative bathing of the surgical site with chlorhexidine for infection prevention: Systematic review with meta-analysis. Am. J. Infect. Control. 2017, 45, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst. Rev. 2015, 2, CD004985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillis, L.D.; Smith, P.K.; Anderson, J.L.; Bittl, J.A.; Bridges, C.R.; Byrne, J.G.; Cigarroa, J.E.; DiSesa, V.J.; Hiratzka, L.F.; Hutter, A.M., Jr.; et al. E.; et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Thorac. Cardiovasc. Surg. 2012, 143, 4–34, Erratum in J. Thorac. Cardiovasc. Surg. 2012, 143, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surgical Antimicrobial Prophylaxis Prescribing Guideline. By South Australian expert Advisory Group on Antibiotic Resistance (SAAGAR), Version No. 3.0 Approval Date: 7/12/2021. Surgical+Prophylaxis+Antimicrobial+guideline+3.0+FINAL+March+2022.pdf. Available online: sahealth.sa.gov.au (accessed on 15 September 2022).
- Zelenitsky, S.A.; Calic, D.; Arora, R.C.; Grocott, H.P.; Lakowski, T.M.; Lillico, R.; Ariano, R.E. Antimicrobial Prophylaxis for Patients Undergoing Cardiac Surgery: Intraoperative Cefazolin Concentrations and Sternal Wound Infections. Antimicrob. Agents Chemother. 2018, 62, e01360-18. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, S.W.; Gans, S.L.; Atema, J.J.; Solomkin, J.S.; Dellinger, P.E.; Boermeester, M.A. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: A systematic review and meta-analysis. Medicine 2017, 96, e6903. [Google Scholar] [CrossRef] [PubMed]
- Ackah, J.K.; Neal, L.; Marshall, N.R.; Panahi, P.; Lloyd, C.; Rogers, L.J. Antimicrobial prophylaxis in adult cardiac surgery in the United Kingdom and Republic of Ireland. J, Infect. Prev. 2021, 22, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Branch-Elliman, W.; Ripollone, J.E.; O’Brien, W.J.; Itani, K.M.F.; Schweizer, M.L.; Perencevich, E.; Strymish, J.; Gupta, K. Risk of surgical site infection, acute kidney injury, and Clostridium difficile infection following antibiotic prophylaxis with vancomycin plus a beta-lactam versus either drug alone: A national propensity-score-adjusted retrospective cohort study. PLoS Med. 2017, 14, e1002340. [Google Scholar] [CrossRef] [Green Version]
- Paruk, F.; Sime, F.B.; Lipman, J.; Roberts, J.A. Dosing antibiotic prophylaxis during cardiopulmonary bypass-a higher level of complexity? A structured review. Int. J. Antimicrob. Agents. 2017, 49, 395–402. [Google Scholar] [CrossRef]
- Asada, M.; Nagata, M.; Mizuno, T.; Uchida, T.; Kurashima, N.; Takahashi, H.; Makita, K.; Arai, H.; Echizen, H.; Yasuhara, M. Effects of cardiopulmonary bypass on the disposition of cefazolin in patients undergoing cardiothoracic surgery. Pharmacol. Res. Perspect. 2018, 6, e00440. [Google Scholar] [CrossRef]
- Edwards, F.H.; Engelman, R.M.; Houck, P.; Shahian, D.M.; Bridges, C.R.; Society of Thoracic Surgeons. The Society of Thoracic Surgeons Practice Guideline Series: Antibiotic Prophylaxis in Cardiac Surgery, Part I: Duration. Ann. Thorac. Surg. 2006, 81, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg. 2019, 154, 755–766. [Google Scholar] [CrossRef]
- Hamouda, K.; Oezkur, M.; Sinha, B.; Hain, J.; Menkel, H.; Leistner, M.; Leyh, R.; Schimmer, C. Different duration strategies of perioperative antibiotic prophylaxis in adult patients undergoing cardiac surgery: An observational study. J. Cardiothorac. Surg. 2015, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Branch-Elliman, W.; O’Brien, W.; Strymish, J.; Itani, K.; Wyatt, C.; Gupta, K. Association of Duration and Type of Surgical Prophylaxis with Antimicrobial-Associated Adverse Events. JAMA Surg. 2019, 154, 590–598. [Google Scholar] [CrossRef]
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of Adverse Events with Antibiotic Use in Hospitalized Patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, P.L.; Sousa Uva, M. Does routine topical antimicrobial administration prevent sternal wound infection after cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2021, 32, 452–456. [Google Scholar] [CrossRef]
- Osawa, H.; Yoshii, S.; Abraham, S.J.; Okamoto, Y.; Hosaka, S.; Fukuda, S.; Tsuchiya, K.; Nakajima, M.; Honda, Y.; Takizawa, K. Topical spraying of cefazolin and gentamicin reduces deep sternal wound infections after heart surgery: A multicenter, large volume, retrospective study. Gen. Thorac. Cardiovasc. Surg. 2016, 64, 197–202. [Google Scholar] [CrossRef]
- Kowalewski, M.; Raffa, G.M.; Szwed, K.A.; Anisimowicz, L. Meta-analysis to assess the effectiveness of topically used vancomycin in reducing sternal wound infections after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2017, 154, 1320–1323.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalewski, M.; Raffa, G.M.; Lorusso, R.; Anisimiowicz, L.; Lazar, H.L.; Suwalski, P. Vancomycin paste in sternal wound infection prophylaxis-a genuine debate or futile attempts to justify flawed study? J. Thorac. Cardiovasc. Surg. 2018, 156, 1128–1130. [Google Scholar] [CrossRef] [Green Version]
- Lander, H.L.; Ejiofor, J.I.; McGurk, S.; Tsuyoshi, K.; Shekar, P.; Body, S.C. Vancomycin Paste Does Not Reduce the Incidence of Deep Sternal Wound Infection after Cardiac Operations. Ann. Thorac. Surg. 2017, 103, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside Revival: Review of a Historically Important Class of Antimicrobials Undergoing Rejuvenation. EcoSal Plus. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Böttger, E.C.; Crich, D. Aminoglycosides: Time for the Resurrection of a Neglected Class of Antibacterials? ACS Infect. Dis. 2020, 6, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Kępa, K.; Krzych, Ł.; Krejca, M. Gentamicin-containing collagen implant reduces sternal wound complications after cardiac surgery: A retrospective analysis. Int. J. Surg. 2015, 13, 198–206. [Google Scholar] [CrossRef]
- Kowalewski, M.; Pawliszak, W.; Zaborowska, K.; Navarese, E.P.; Szwed, K.A.; Kowalkowska, M.E.; Kowalewski, J.; Borkowska, A.; Anisimowicz, L. Gentamicin-collagen sponge reduces the risk of sternal wound infections after heart surgery: Meta-analysis. J. Thorac. Cardiovasc. Surg. 2015, 149, e1–e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formanek, M.B.; Herwaldt, L.A.; Perencevich, E.N.; Schweizer, M.L. Gentamicin/collagen sponge use may reduce the risk of surgical site infections for patients undergoing cardiac operations: A meta-analysis. Surg. Infect. 2014, 15, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Konstantelias, A.A.; Polyzos, K.A.; Falagas, M.E. Gentamicin-Collagen Sponges for the Prevention of Surgical Site Infections: A Meta-Analysis of Randomized Controlled Trials. Surg. Infect. 2016, 17, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Friberg, Ö.; Bodin, L. Collagen gentamicin for prevention of sternal wound infection: Effective or not? Thorac. Cardiovasc. Surg. 2013, 61, 185–193. [Google Scholar] [CrossRef]
- Chang, W.K.; Srinivasa, S.; MacCormick, A.D.; Hill, A.G. Gentamicin-collagen implants to reduce surgical site infection: Systematic review and meta-analysis of randomized trials. Ann. Surg. 2013, 258, 59–65. [Google Scholar] [CrossRef]
- Mavros, M.N.; Mitsikostas, P.K.; Alexiou, V.G.; Peppas, G.; Falagas, M.E. Gentamicin collagen sponges for the prevention of sternal wound infection: A meta-analysis of randomized controlled trials. J. Thorac. Cardiovasc. Surg. 2012, 144, 1235–1240. [Google Scholar] [CrossRef] [Green Version]
- Nordmeyer, M.; Pauser, J.; Biber, R.; Jantsch, J.; Lehrl, S.; Kopschina, C.; Rapke, C.; Bail, H.J.; Forst, R.; Brem, M.H. Negative pressure wound therapy for seroma prevention and surgical incision treatment in spinal fracture care. Int. Wound. J. 2016, 13, 1176–1179. [Google Scholar] [CrossRef] [Green Version]
- Stannard, J.P.; Volgas, D.A.; McGwin, G., 3rd; Stewart, R.L.; Obremskey, W.; Moore, T.; Anglen, J.O. Incisional negative pressure wound therapy after high-risk lower extremity fractures. J. Orthop. Trauma 2012, 26, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grauhan, O.; Navasardyan, A.; Tutkun, B.; Hennig, F.; Müller, P.; Hummel, M.; Hetzer, R. Effect of surgical incision management on wound infections in a poststernotomy patient population. Int. Wound J. 2014, 11 (Suppl. 1), 6–9. [Google Scholar] [CrossRef] [PubMed]
- Tabley, A.; Aludaat, C.; Le Guillou, V.; Gay, A.; Nafeh-Bizet, C.; Scherrer, V.; Bouchart, F.; Doguet, F. A Survey of Cardiac Surgery Infections with PICO Negative Pressure Therapy in High-Risk Patients. Ann. Thorac. Surg. 2020, 110, 2034–2040. [Google Scholar] [CrossRef] [PubMed]
- Martino, A.; Re, F.D.; Falcetta, G.; Morganti, R.; Ravenni, G.; Bortolotti, U. Sternal Wound Complications: Results of Routine Use of Negative Pressure Wound Therapy. Braz. J. Cardiovasc. Surg. 2020, 35, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, A.; Hosono, M.; Murakami, T.; Sakaguchi, M.; Suehiro, Y.; Nishimura, S.; Sakon, Y.; Yasumizu, D.; Kawase, T.; Shibata, T. Effect of negative pressure wound therapy followed by tissue flaps for deep sternal wound infection after cardiovascular surgery: Propensity score matching analysis. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohmen, P.M.; Markou, T.; Ingemansson, R.; Rotering, H.; Hartman, J.M.; van Valen, R.; Brunott, M.; Segers, P. Use of incisional negative pressure wound therapy on closed median sternal incisions after cardiothoracic surgery: Clinical evidence and consensus recommendations. Med. Sci. Monit. 2014, 20, 1814–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.W.; Rippel, R.A.; Smock, E.; Jarral, O.A. In patients with post-sternotomy mediastinitis is vacuum-assisted closure superior to conventional therapy? Interact. Cardiovasc. Thorac. Surg. 2013, 17, 861–865. [Google Scholar] [CrossRef]
- Deschka, H.; Erler, S.; El-Ayoubi, L.; Vogel, C.; Vöhringer, L.; Wimmer-Greinecker, G. Suction-irrigation drainage: An underestimated therapeutic option for surgical treatment of deep sternal wound infections. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, J.; Malmsjö, M.; Gustafsson, R.; Ingemansson, R. Poststernotomy mediastinitis: A review of conventional surgical treatments, vacuum-assisted closure therapy and presentation of the Lund University Hospital mediastinitis algorithm. Eur. J. Cardiothorac. Surg. 2006, 30, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.G.; An, J.X. Deep sternal wound infection after cardiac surgery: A comparison of three different wound infection types and an analysis of antibiotic resistance. J. Thorac. Dis. 2018, 10, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Dubert, M.; Pourbaix, A.; Alkhoder, S.; Mabileau, G.; Lescure, F.X.; Ghodhbane, W.; Belorgey, S.; Rioux, C.; Armand-Lefèvre, L.; Wolff, M.; et al. Sternal Wound Infection after Cardiac Surgery: Management and Outcome. PLoS ONE 2015, 10, e0139122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
Preventive Measures for SSI in Cardiac Surgery |
---|
|
Cardiac Procedures | Recommended Prophylaxis | Patients at High Risk of MRSA Infection | Patients at High Risk Penicillin/Cephalosporin/Beta-Lactam Allergy |
---|---|---|---|
CABG Cardiac Valve Surgery Aortic surgery | cefazolin 2–3 g IV based on the patient’s weight: 2 g < 120 kg 3 g > 120 kg | cefazolin 2–3 g IV based on the patient’s weight: 2 g < 120 kg 3 g > 120 kg PLUS vancomycin 1–1.5 g IV based on the patient’s weight: 1 g < 80 kg (1 h infusion) 1.5 g > 80 kg (1.5 h infusion) Patients at high risk of MRSA infection:
| vancomycin 1–1.5 g IV based on the patient’s weight: 1 g < 80 kg (1 h infusion) 1.5 g > 80 kg (1.5 h infusion) OR clindamycin 900 mg IV for patients intolerant vancomycin PLUS gentamicin 5 mg/kg IV (single dose) BMI > 30 kg/m2: use adjusted body weightdo not continue postoperatively Patients at high risk penicillin/cephalosporin/beta-lactam allergy—history of:
|
Empiric Antibiotic Therapy | ||
---|---|---|
Vancomycin * 15–20 mg/kg based on actual body weight q8–12 h i.v. or daptomycin 8–10 mg/kg/d i.v. + piperacillin/tazobactam 4.5 g q6h i.v. or meropenem 1 g q8h i.v. | ||
Targeted Antibiotic Therapy | ||
Aetiology | First-Line Treatment | Alternative Treatment |
Staphylococcus aureus MSSA |
|
|
Staphylococcus aureus MRSA |
|
|
Streptococcus spp. |
|
|
Enterococcus faecalis *** | HLAR (−) strains
Gentamicin ** 3 mg/kg q24h i.v. HLAR (+) strains
ceftriaxone 2 g q12h i.v. | HLAR (−) strains in case of immediate reaction: Vancomycin * 15–20 mg/kg based on actual body weight q8–12h i.v. + Gentamicin ** 3 mg/kg q24h i.v. HLAR (+) strains in case of immediate reaction—consultation with antibiotic therapy expert indicated |
Enterococcus faecium | HLAR (−) strains: vancomycin * 15–20 mg/kg based on actual body weight q8–12h i.v. + gentamicin ** 3 mg/kg q24h i.v. HLAR (+) strains: consultation with antibiotic therapy expert indicated | |
Enterobacterales bacilli |
| ESBL (+) strains:
|
Pseudomonas aeruginosa |
|
|
Acinetobacter baumannii | according to antibiogram, antibiotic susceptibility—difficult to predict, but usually susceptibility to:
|
|
Gram(−) bacilli resistant to carbapenems | antibiotic susceptibility difficult to predict—consultation with an infectious disease specialist indicated | |
Candida spp. | initial therapy:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukowska, A.; Zukowski, M. Surgical Site Infection in Cardiac Surgery. J. Clin. Med. 2022, 11, 6991. https://doi.org/10.3390/jcm11236991
Zukowska A, Zukowski M. Surgical Site Infection in Cardiac Surgery. Journal of Clinical Medicine. 2022; 11(23):6991. https://doi.org/10.3390/jcm11236991
Chicago/Turabian StyleZukowska, Agnieszka, and Maciej Zukowski. 2022. "Surgical Site Infection in Cardiac Surgery" Journal of Clinical Medicine 11, no. 23: 6991. https://doi.org/10.3390/jcm11236991
APA StyleZukowska, A., & Zukowski, M. (2022). Surgical Site Infection in Cardiac Surgery. Journal of Clinical Medicine, 11(23), 6991. https://doi.org/10.3390/jcm11236991