Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography
Abstract
:1. Introduction
2. Methods
2.1. Study Cohort
2.2. Data Collection
2.3. Statistical Analysis
2.4. Machine Learning Model Construction and External Testing
3. Results
3.1. Baseline Demographics of the Study
3.2. Baseline Laboratory Indexes of the Study
3.3. Baseline Clinical Angiography Characteristics of the Study
3.4. Baseline Clinical Characteristics of the Training and Testing Cohort
3.5. Baseline Clinical Characteristics of the Training Cohort between the CTO and Non-CTO Groups
3.6. Univariate Logistic Regression Analysis
3.7. Multivariate Logistic Regression Analysis
3.8. Machine Learning Algorithm Model
3.9. Performance of the Machine Learning Model in the Training and Testing Cohorts
3.10. The Machine Learning Model Score System for Clinical Utility
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assali, M.; Buda, K.G.; Megaly, M.; Hall, A.B.; Burke, M.N.; Brilakis, E.S. Update on chronic total occlusion percutaneous coronary intervention. Prog. Cardiovasc. Dis. 2021, 69, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Azzalini, L.; Karmpaliotis, D.; Santiago, R.; Mashayekhi, K.; Di Mario, C.; Rinfret, S.; Nicholson, W.J.; Carlino, M.; Yamane, M.; Tsuchikane, E.; et al. Contemporary Issues in Chronic Total Occlusion Percutaneous Coronary Intervention. JACC: Cardiovasc. Interv. 2022, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Brilakis, E.S.; Mashayekhi, K.; Tsuchikane, E.; Rafeh, N.A.; Alaswad, K.; Araya, M.; Avran, A.; Azzalini, L.; Babunashvili, A.M.; Bayani, B.; et al. Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention. Circulation 2019, 140, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Panteris, E.; Deda, O.; Papazoglou, A.S.; Karagiannidis, E.; Liapikos, T.; Begou, O.; Meikopoulos, T.; Mouskeftara, T.; Sofidis, G.; Sianos, G.; et al. Machine Learning Algorithm to Predict Obstructive Coronary Artery Disease: Insights from the CorLipid Trial. Metabolites 2022, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zheng, J.; Gao, B.; Jin, X.; He, Y.; Zhou, L.; Huang, J. The correlation between lipoprotein(a) elevations and the risk of recurrent cardiovascular events in CAD patients with different LDL-C levels. BMC Cardiovasc. Disord. 2022, 22, 12. [Google Scholar] [CrossRef]
- Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Hear. J. 2016, 38, 1805–1814. [Google Scholar] [CrossRef] [Green Version]
- Tiffin, P.A.; Paton, L.W. Rise of the machines? Machine learning approaches and mental health: Opportunities and challenges. Br. J. Psychiatry 2018, 213, 509–510. [Google Scholar] [CrossRef]
- Ahmad, T.; Lund, L.H.; Rao, P.; Ghosh, R.; Warier, P.; Vaccaro, B.; Dahlström, U.; O’Connor, C.M.; Felker, G.M.; Desai, N.R. Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. J. Am. Hear. Assoc. 2018, 7, e008081. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.H.W.; Halperin, J.L.; Narayan, S.M. Deep learning for cardiovascular medicine: A practical primer. Eur. Hear. J. 2019, 40, 2058–2073. [Google Scholar] [CrossRef]
- Zeng, X.; Jian, Z.; Li, S.; Xu, Y.; Li, B.; Ding, N.; Zhang, Y.; Zhang, H.; Wu, Y.; Yang, J.; et al. The Association between Serum Total Bile Acid Level and Long-Term Prognosis in Patients with Coronary Chronic Total Occlusion Undergoing Percutaneous Coronary Intervention. Dis. Markers 2022, 2022, 1434111. [Google Scholar] [CrossRef]
- Hoefer, I.E.; Steffens, S.; Ala-Korpela, M.; Bäck, M.; Badimon, L.; Bochaton-Piallat, M.-L.; Boulanger, C.M.; Caligiuri, G.; Dimmeler, S.; Egido, J.; et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 2015, 36, 2635–2642. [Google Scholar] [CrossRef] [Green Version]
- Xenogiannis, I.; Alaswad, K.; Krestyaninov, O.; Khelimskii, D.; Khatri, J.J.; Choi, J.W.; Jaffer, F.A.; Patel, M.; Mahmud, E.; Doing, A.H.; et al. Impact of adherence to the hybrid algorithm for initial crossing strategy selection in chronic total occlusion percutaneous coronary intervention. Rev. Esp. Cardiol. 2020, 74, 1023–1031. [Google Scholar] [CrossRef]
- Shah, S.H.; Kraus, W.E.; Newgard, C.B. Metabolomic Profiling for the Identification of Novel Biomarkers and Mechanisms Related to Common Cardiovascular Diseases: Form and function. Circulation 2012, 126, 1110–1120. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ding, F.; Shen, Y.; Tu, S.; Yang, J.; Zhao, Q.; Chu, M.; Shen, W.; Zhang, R.; Zimarino, M.; et al. Automatic assessment of collateral physiology in chronic total occlusions by means of artificial intelligence. Cardiol. J. 2022. [Google Scholar] [CrossRef]
- Alkhodari, M.; Jelinek, H.F.; Karlas, A.; Soulaidopoulos, S.; Arsenos, P.; Doundoulakis, I.; Gatzoulis, K.A.; Tsioufis, K.; Hadjileontiadis, L.J.; Khandoker, A.H. Deep Learning Predicts Heart Failure with Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction from Patient Clinical Profiles. Front. Cardiovasc. Med. 2021, 8, 755968. [Google Scholar] [CrossRef]
- Zhao, Y.; Naumova, E.N.; Bobb, J.F.; Henn, B.C.; Singh, G.M. Joint Associations of Multiple Dietary Components with Cardiovascular Disease Risk: A Machine-Learning Approach. Am. J. Epidemiol. 2021, 190, 1353–1365. [Google Scholar] [CrossRef]
- Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.; et al. Machine learning prediction in cardiovascular diseases: A meta-analysis. Sci. Rep. 2020, 10, 16057. [Google Scholar] [CrossRef]
- Zhu, H.; Yin, C.; Schoepf, U.J.; Wang, D.; Zhou, C.; Lu, G.M.; Zhang, L.J. Machine Learning for the Prevalence and Severity of Coronary Artery Calcification in Nondialysis Chronic Kidney Disease Patients: A Chinese Large Cohort Study. J. Thorac. Imaging 2022, 37, 401–408. [Google Scholar] [CrossRef]
- Zhu, X.; Yin, T.; Zhang, T.; Zhu, Q.; Lu, X.; Wang, L.; Liao, S.; Yao, W.; Zhou, Y.; Zhang, H.; et al. Identification of Immune-Related Genes in Patients with Acute Myocardial Infarction Using Machine Learning Methods. J. Inflamm. Res. 2022, 15, 3305–3321. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Sun, T.; Li, A.; Wang, S.; Zhang, J.; Li, S.; Zhang, Z.; Zhu, D.; Wang, X.; et al. Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography. Eur. Hear. J. Cardiovasc. Imaging 2021, 23, 800–810. [Google Scholar] [CrossRef]
- Niimi, N.; Shiraishi, Y.; Sawano, M.; Ikemura, N.; Inohara, T.; Ueda, I.; Fukuda, K.; Kohsaka, S. Machine learning models for prediction of adverse events after percutaneous coronary intervention. Sci. Rep. 2022, 12, 6262. [Google Scholar] [CrossRef] [PubMed]
- Ellims, A.H.; Wong, G.; Weir, J.M.; Lew, P.; Meikle, P.J.; Taylor, A.J. Plasma lipidomic analysis predicts non-calcified coronary artery plaque in asymptomatic patients at intermediate risk of coronary artery disease. Eur. Hear. J. Cardiovasc. Imaging 2014, 15, 908–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Chen, J.; Li, S.; Chen, A.; Dai, C.; Liu, M.; Lu, D.; Chen, Z.; Wang, X.; Qian, J.; et al. Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI. Eur. J. Clin. Investig. 2022, 52, e13826. [Google Scholar] [CrossRef] [PubMed]
- Råmunddal, T.; Hoebers, L.P.; Henriques, J.P.; Dworeck, C.; Angerås, O.; Odenstedt, J.; Ioanes, D.; Olivecrona, G.; Harnek, J.; Jensen, U.; et al. Prognostic Impact of Chronic Total Occlusions: A Report from SCAAR (Swedish Coronary Angiography and Angioplasty Registry). JACC Cardiovasc. Interv. 2016, 9, 1535–1544. [Google Scholar] [CrossRef]
- Cao, Z.-N.; Wang, K.; Zuo, G.-X.; Zhang, M.-H.; Jia, X.-G.; Li, Y.; Wang, C.-C.; Zhang, X.-C.; Li, X.-B.; Du, X.-P. A nomogram to predict major adverse cardiovascular events of patients with acute chest pain, Non-ST-segment deviation, and normal troponin concentrations. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10096–10106. [Google Scholar]
- Neumann, J.T.; Sörensen, N.A.; Ojeda, F.; Schwemer, T.; Lehmacher, J.; Gönner, S.; Jarsetz, N.; Keller, T.; Schaefer, S.; Renné, T.; et al. Immediate Rule-Out of Acute Myocardial Infarction Using Electrocardiogram and Baseline High-Sensitivity Troponin I. Clin. Chem. 2017, 63, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Kuss, N.; Bauknecht, E.; Felbinger, C.; Gehm, J.; Gehm, L.; Pöschl, J.; Ruef, P. Determination of whole blood and plasma viscosity in term neonates by flow curve analysis with the LS300 viscometer1. Clin. Hemorheol. Microcirc. 2016, 63, 3–14. [Google Scholar] [CrossRef]
- He, Y.-M.; Yang, Q.; Yang, X.-J.; Zhao, X.; Xu, H.-F.; Qian, Y.-X. Serum albumin concentrations, effect modifiers and first incident acute myocardial infarction: A cross-sectional study of 1552 cases and 6680 controls. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 454, 49–56. [Google Scholar] [CrossRef]
- Serrano, C.V.; De Mattos, F.R.; Pitta, F.G.; Nomura, C.H.; De Lemos, J.; Ramires, J.A.F.; Kalil-Filho, R. Association between Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios and Coronary Artery Calcification Score among Asymptomatic Patients: Data from a Cross-Sectional Study. Mediat. Inflamm. 2019, 2019, 6513847. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and Cardiovascular Disease: From Pathogenesis to Therapeutic Target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef]
- Megaly, M.; Buda, K.; Mashayekhi, K.; Werner, G.S.; Grantham, J.A.; Rinfret, S.; McEntegart, M.; Brilakis, E.S.; Alaswad, K. Comparative Analysis of Patient Characteristics in Chronic Total Occlusion Revascularization Studies: Trials vs Real-World Registries. JACC Cardiovasc. Interv. 2022, 15, 1441–1449. [Google Scholar] [CrossRef]
- Finn, A.V.; Kolodgie, F.D.; Nakano, M.; Virmani, R. The Differences Between Neovascularization of Chronic Total Occlusion and Intraplaque Angiogenesis. JACC Cardiovasc. Imaging 2010, 3, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Demir, K.; Avci, A.; Altunkeser, B.B.; Yilmaz, M.B.; Keles, F.; Ersecgin, A. The relation between neutrophil-to-lymphocyte ratio and coronary chronic total occlusions. BMC Cardiovasc. Disord. 2014, 14, 130. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Tang, J.; Zheng, S.; Jiang, H.; Deng, L.; Wang, P. Prognostic significance of coronary artery calcium scoring and single-photon emission computed tomographic myocardial perfusion imaging on major adverse cardiac events in patients at low risk for suspected coronary artery disease. Acta Cardiol. 2018, 74, 508–514. [Google Scholar] [CrossRef]
- Thomas, L.E.; O’Brien, E.C.; Piccini, J.P.; D’Agostino, R.B.; Pencina, M.J. Application of net reclassification index to non-nested and point-based risk prediction models: A review. Eur. Hear. J. 2018, 40, 1880–1887. [Google Scholar] [CrossRef]
Variable | Overall | CTO | p Value | |
---|---|---|---|---|
(n = 1473) | Yes (n = 317) | No (n = 1156) | ||
Clinical demographic | ||||
Gender (male) | 1049 (71.215%) | 266 (83.912%) | 783 (67.734%) | 0.000 |
Age (y) | 60.289 ± 9.368 | 59.817 ± 10.146 | 60.418 ± 9.143 | 0.513 |
Current tobacco use | 697 (47.318%) | 181 (57.098%) | 516 (44.637%) | 0.00011 |
Alcohol consumption | 479 (32.519%) | 109 (34.385%) | 370 (32.007%) | 0.46356 |
BMI (kg/m2) | 25.871 ± 3.232 | 26.097 ± 3.294 | 25.809 ± 3.213 | 0.171 |
SBP (mmHg) | 131.559 ± 16.783 | 129.281 ± 16.903 | 132.184 ± 16.702 | 0.001 |
DBP (mmHg) | 77.969 ± 10.863 | 77.341 ± 11.18 | 78.142 ± 10.774 | 0.121 |
Hypertension | 940 (63.815%) | 201 (63.407%) | 739 (63.927%) | 0.864 |
Diabetes mellitus | 475 (32.247%) | 114 (35.962%) | 361 (31.228%) | 0.110 |
Dyslipidemia | 1163 (78.955%) | 244 (76.972%) | 919 (79.498%) | 0.328 |
Prior stroke | 133 (9.029%) | 29 (9.148%) | 104 (8.997%) | 0.933 |
Echocardiography | ||||
EF (%) | 62.649 ± 7.129 | 59.953 ± 9.225 | 63.388 ± 6.241 | 0.000 |
LVEDD (mm) | 30.914 ± 5.315 | 32.842 ± 6.748 | 30.385 ± 4.717 | 0.000 |
Medication | ||||
Aspirin | 1473 (100%) | 317 (100%) | 1156 (100%) | - |
Clopidogrel | 685 (46.504%) | 176 (55.521%) | 509 (44.031%) | 0.000 |
Ticagrelor | 284 (19.280%) | 117 (36.907%) | 167 (14.446%) | 0.000 |
β-blocker | 728 (49.423%) | 194 (61.199%) | 534 (46.194%) | 0.000 |
ACEI/ARB | 478 (32.451%) | 85 (26.814%) | 393 (33.997%) | 0.016 |
Statin | 1406 (95.451%) | 296 (93.375%) | 1110 (96.021%) | 0.045 |
CCB | 414 (28.106%) | 67 (21.136%) | 347 (30.017%) | 0.002 |
Nitrates | 697 (47.318%) | 186 (58.675%) | 511 (44.204%) | 0.000 |
PPIs | 1034 (70.197%) | 224 (70.662%) | 810 (70.069%) | 0.838 |
Diuretics | 249 (16.904%) | 86 (27.129%) | 163 (14.100%) | 0.000 |
Variable | Overall | CTO | p Value | |
---|---|---|---|---|
(n = 1473) | Yes (n = 317) | No (n = 1156) | ||
Laboratory indexes | ||||
WBC (1012/L) | 7.118 ± 2.012 | 7.634 ± 2.244 | 6.977 ± 1.921 | 0.000 |
RBC (1012/L) | 4.549 ± 0.517 | 4.518 ± 0.568 | 4.558 ± 0.502 | 0.577 |
Hb (g/L) | 139.586 ± 15.951 | 138.603 ± 17.036 | 139.856 ± 15.637 | 0.556 |
HCT (%) | 40.429 ± 4.317 | 40.075 ± 4.719 | 40.526 ± 4.197 | 0.421 |
PLT (109/L) | 220.14 ± 57.26 | 214.142 ± 59.138 | 221.785 ± 56.65 | 0.020 |
NE (109/L) | 4.659 ± 1.745 | 5.194 ± 2.069 | 4.512 ± 1.616 | 0.000 |
NE% (%) | 64.505 ± 8.859 | 66.89 ± 9.129 | 63.851 ± 8.673 | 0.000 |
LYM (109/L) | 1.905 ± 0.635 | 1.856 ± 0.641 | 1.918 ± 0.633 | 0.174 |
MONO (109/L) | 0.382 ± 0.139 | 0.4 ± 0.148 | 0.377 ± 0.136 | 0.025 |
Glu (mmol/L) | 6.561 ± 2.53 | 6.737 ± 2.59 | 6.513 ± 2.512 | 0.088 |
HbA1C (%) | 6.436 ± 1.215 | 6.505 ± 1.219 | 6.417 ± 1.214 | 0.122 |
TG (mmol/L) | 1.716 ± 1.008 | 1.821 ± 1.104 | 1.687 ± 0.979 | 0.022 |
TC (mmol/L) | 4.15 ± 1.009 | 4.242 ± 1.119 | 4.125 ± 0.975 | 0.162 |
HDL (mmol/L) | 1.117 ± 0.268 | 1.064 ± 0.25 | 1.132 ± 0.271 | 0.000 |
LDL (mmol/L) | 2.427 ± 0.868 | 2.532 ± 0.981 | 2.398 ± 0.832 | 0.062 |
FFA (mmol/L) | 0.481 ± 0.254 | 0.477 ± 0.248 | 0.482 ± 0.256 | 0.813 |
non-HDL (mmol/L) | 3.029 ± 0.972 | 3.165 ± 1.087 | 2.992 ± 0.935 | 0.021 |
sdLDL (mmol/L) | 0.704 ± 0.366 | 0.721 ± 0.382 | 0.699 ± 0.362 | 0.509 |
Hcy (mmol/L) | 15.968 ± 8.752 | 17.07 ± 8.744 | 15.666 ± 8.734 | 0.000 |
UA (mmol/L) | 340.925 ± 86.001 | 354.897 ± 90.095 | 337.093 ± 84.481 | 0.005 |
Cr (μmol/L) | 74.384 ± 18.394 | 79.224 ± 21.531 | 73.056 ± 17.21 | 0.000 |
eGFR (CKD-EPI) | 91.502 ± 14.938 | 89.917 ± 16.326 | 91.936 ± 14.511 | 0.058 |
BNP (pg/mL) | 85.574 ± 166.335 | 133.319 ± 208.564 | 72.481 ± 150.208 | 0.000 |
NT-proBNP (pg/mL) | 306.329 ± 678.67 | 555.554 ± 950.393 | 237.986 ± 564.059 | 0.000 |
hs-CRP (mg/L) | 2.021 ± 2.555 | 2.233 ± 2.671 | 1.963 ± 2.521 | 0.088 |
CK-MB (U/L) | 3.668 ± 12.861 | 4.085 ± 14.836 | 3.553 ± 12.269 | 0.026 |
TnI (μg/L) | 0.221 ± 0.797 | 0.205 ± 0.74 | 0.225 ± 0.813 | 0.001 |
Variable | Overall | CTO | p Value | |
---|---|---|---|---|
(n = 1473) | Yes (n = 317) | No (n = 1156) | ||
Angiography | ||||
0-vessel | 47 (3.191%) | 0 (0%) | 47 (4.066%) | 0.000 |
1-vessel | 592 (40.190%) | 41 (12.934%) | 551 (47.664%) | 0.000 |
2-vessels | 417 (28.310%) | 97 (30.599%) | 320 (27.682%) | 0.307 |
3-vessels | 417 (28.310%) | 179 (56.467%) | 238 (20.588%) | 0.000 |
CTO-vessel | ||||
LM | - | 1 (0.315%) | - | - |
LAD | - | 119 (37.539%) | - | - |
LCX | - | 85 (26.814%) | - | - |
RCA | - | 138 (43.533%) | - | - |
D1 | - | 4 (1.262%) | - | - |
Variable | Overall (n = 1473) | Training Cohort (n = 1105) | Testing Cohort (n = 368) | p Value |
---|---|---|---|---|
Clinical demographic | ||||
Gender (male) | 1049 (71.2%) | 795 (71.9%) | 254 (69%) | 0.283 |
Age (y) | 60.289 ± 9.368 | 60.386 ± 9.305 | 59.995 ± 9.560 | 0.866 |
Current tobacco use | 697 (47.3%) | 512 (46.3%) | 185 (50.3%) | 0.190 |
Alcohol consumption | 479 (32.5%) | 370 (33.5%) | 109 (29.6%) | 0.170 |
BMI (kg/m2) | 25.871 ± 3.232 | 25.829 ± 3.205 | 25.996 ± 3.311 | 0.466 |
SBP (mmHg) | 131.559 ± 16.783 | 131.769 ± 16.817 | 130.929 ± 16.685 | 0.302 |
DBP (mmHg) | 77.969 ± 10.863 | 78.008 ± 10.811 | 77.853 ± 11.033 | 0.970 |
Hypertension | 940 (63.8%) | 709 (64.2%) | 231 (62.8%) | 0.631 |
Diabetes mellitus | 475 (32.2%) | 358 (32.4%) | 117 (31.8%) | 0.830 |
Dyslipidemia | 1163 (79%) | 877 (79.4%) | 286 (77.7%) | 0.501 |
Prior stroke | 133 (9%) | 93 (8.4%) | 40 (10.9%) | 0.155 |
Echocardiography | ||||
EF (%) | 62.649 ± 7.129 | 62.776 ± 7.000 | 62.269 ± 7.502 | 0.419 |
LVEDD (mm) | 30.914 ± 5.315 | 30.881 ± 5.28 | 31.014 ± 5.425 | 0.842 |
Laboratory indexes | ||||
WBC (1012/L) | 7.118 ± 2.012 | 7.119 ± 2.044 | 7.114 ± 1.917 | 0.620 |
RBC (1012/L) | 4.549 ± 0.517 | 4.547 ± 0.515 | 4.558 ± 0.522 | 0.657 |
Hb (g/L) | 139.586 ± 15.951 | 139.652 ± 15.738 | 139.389 ± 16.592 | 0.919 |
HCT (%) | 40.429 ± 4.317 | 40.438 ± 4.272 | 40.404 ± 4.456 | 0.987 |
PLT (109/L) | 220.140 ± 57.260 | 219.949 ± 56.458 | 220.712 ± 59.681 | 0.961 |
NE (109/L) | 4.659 ± 1.745 | 4.664 ± 1.769 | 4.644 ± 1.675 | 0.829 |
NE% (%) | 64.505 ± 8.859 | 64.587 ± 8.918 | 64.259 ± 8.686 | 0.614 |
LYM (109/L) | 1.905 ± 0.635 | 1.905 ± 0.649 | 1.904 ± 0.591 | 0.710 |
LYM% | 0.276 ± 0.08 | 0.276 ± 0.081 | 0.277 ± 0.079 | 0.920 |
MONO (109/L) | 0.382 ± 0.139 | 0.379 ± 0.138 | 0.390 ± 0.140 | 0.247 |
Glu (mmol/L) | 6.561 ± 2.53 | 6.563 ± 2.625 | 6.555 ± 2.223 | 0.333 |
HbA1C (%) | 6.436 ± 1.215 | 6.412 ± 1.191 | 6.508 ± 1.286 | 0.296 |
TG (mmol/L) | 1.716 ± 1.008 | 1.706 ± 1.026 | 1.746 ± 0.955 | 0.080 |
TC (mmol/L) | 4.150 ± 1.009 | 4.164 ± 1.001 | 4.109 ± 1.031 | 0.136 |
HDL (mmol/L) | 1.117 ± 0.268 | 1.125 ± 0.275 | 1.095 ± 0.247 | 0.093 |
LDL (mmol/L) | 2.427 ± 0.868 | 2.433 ± 0.848 | 2.407 ± 0.924 | 0.188 |
FFA (mmol/L) | 0.481 ± 0.254 | 0.482 ± 0.258 | 0.478 ± 0.244 | 0.945 |
non-HDL (mmol/L) | 3.029 ± 0.972 | 3.036 ± 0.964 | 3.008 ± 0.998 | 0.337 |
sdLDL (mmol/L) | 0.704 ± 0.366 | 0.706 ± 0.37 | 0.700 ± 0.355 | 0.926 |
Hcy (mmol/L) | 15.968 ± 8.752 | 16.155 ± 8.902 | 15.407 ± 8.273 | 0.287 |
UA (mmol/L) | 340.925 ± 86.001 | 340.709 ± 86.453 | 341.573 ± 84.74 | 0.946 |
Cr (μmol/L) | 74.384 ± 18.394 | 74.303 ± 18.476 | 74.627 ± 18.169 | 0.754 |
eGFR (CKD-EPI) | 91.502 ± 14.938 | 91.588 ± 14.859 | 91.244 ± 15.189 | 0.757 |
BNP (pg/mL) | 85.574 ± 166.335 | 82.656 ± 162.868 | 94.334 ± 176.277 | 0.189 |
NT-proBNP (pg/mL) | 306.329 ± 678.67 | 290.398 ± 657.883 | 354.166 ± 736.455 | 0.038 |
hs-CRP (mg/L) | 2.021 ± 2.555 | 2.022 ± 2.544 | 2.016 ± 2.594 | 0.877 |
CK-MB (U/L) | 3.668 ± 12.861 | 3.455 ± 12.251 | 4.305 ± 14.540 | 0.111 |
TnI (μg/L) | 0.221 ± 0.797 | 0.21 ± 0.802 | 0.253 ± 0.785 | 0.838 |
Variable | Overall | CTO | p Value | |
---|---|---|---|---|
(n = 1105) | Yes (n = 235) | No (n = 870) | ||
Clinical demographic | ||||
Gender (male) | 795 (71.9%) | 201 (85.5%) | 594 (68.3%) | 0.000 |
Age (y) | 60.386 ± 9.305 | 60.213 ± 10.198 | 60.433 ± 9.054 | 0.838 |
Current tobacco use | 697 (63.1%) | 131 (55.7%) | 381 (43.8%) | 0.001 |
Alcohol consumption | 370 (33.5%) | 81 (34.5%) | 289 (33.2%) | 0.719 |
BMI (kg/m2) | 25.829 ± 3.205 | 26.026 ± 3.218 | 25.776 ± 3.202 | 0.288 |
SBP (mmHg) | 131.769 ± 16.817 | 129.013 ± 17.100 | 132.514 ± 16.672 | 0.001 |
DBP (mmHg) | 78.008 ± 10.811 | 76.796 ± 11.163 | 78.336 ± 10.697 | 0.018 |
Hypertension | 709 (64.2%) | 150 (63.8%) | 559 (64.3%) | 0.904 |
Diabetes mellitus | 358 (32.4%) | 87 (37.0%) | 271 (31.1%) | 0.088 |
Dyslipidemia | 877 (79.4%) | 184 (78.3%) | 693 (79.7%) | 0.648 |
Prior stroke | 93 (8.4%) | 20 (8.5%) | 73 (8.4%) | 0.953 |
Echocardiography | ||||
EF (%) | 62.776 ± 7.000 | 60.209 ± 9.199 | 63.469 ± 6.099 | 0.000 |
LVEDD (mm) | 30.881 ± 5.280 | 32.847 ± 6.604 | 30.349 ± 4.728 | 0.000 |
Laboratory indexes | ||||
WBC (1012/L) | 7.119 ± 2.044 | 7.673 ± 2.365 | 6.97 ± 1.922 | 0.000 |
RBC (1012/L) | 4.547 ± 0.515 | 4.489 ± 0.565 | 4.562 ± 0.500 | 0.288 |
Hb (g/L) | 139.652 ± 15.738 | 137.8 ± 16.672 | 140.152 ± 15.448 | 0.175 |
PLT (109/L) | 219.949 ± 56.458 | 212.809 ± 57.495 | 221.878 ± 56.051 | 0.016 |
NE (109/L) | 4.664 ± 1.769 | 5.258 ± 2.156 | 4.504 ± 1.613 | 0.000 |
NE% (%) | 64.587 ± 8.918 | 67.363 ± 9.017 | 63.837 ± 8.747 | 0.000 |
LYM (109/L) | 1.905 ± 0.649 | 1.836 ± 0.666 | 1.924 ± 0.643 | 0.066 |
LYM% | 0.276 ± 0.081 | 0.248 ± 0.078 | 0.283 ± 0.080 | 0.000 |
MONO (109/L) | 0.379 ± 0.138 | 0.398 ± 0.150 | 0.374 ± 0.135 | 0.074 |
Glu (mmol/L) | 6.563 ± 2.625 | 6.737 ± 2.688 | 6.516 ± 2.608 | 0.114 |
HbA1C (%) | 6.412 ± 1.191 | 6.515 ± 1.204 | 6.384 ± 1.186 | 0.040 |
TG (mmol/L) | 150.971 ± 90.791 | 164.294 ± 102.854 | 147.373 ± 86.962 | 0.007 |
TC (mmol/L) | 4.164 ± 1.001 | 4.218 ± 1.087 | 4.149 ± 0.977 | 0.463 |
HDL (mmol/L) | 1.125 ± 0.275 | 1.063 ± 0.252 | 1.141 ± 0.278 | 0.000 |
LDL (mmol/L) | 2.433 ± 0.848 | 2.497 ± 0.924 | 2.416 ± 0.826 | 0.281 |
FFA (mmol/L) | 0.482 ± 0.258 | 0.47 ± 0.252 | 0.486 ± 0.259 | 0.398 |
nonHDL (mmol/L) | 3.036 ± 0.964 | 3.138 ± 1.057 | 3.008 ± 0.936 | 0.114 |
sdLDL (mmol/L) | 0.706 ± 0.370 | 0.718 ± 0.379 | 0.702 ± 0.368 | 0.642 |
Hcy (mmol/L) | 16.155 ± 8.902 | 17.386 ± 8.884 | 15.822 ± 8.882 | 0.001 |
UA (mmol/L) | 340.709 ± 86.453 | 350.642 ± 90.796 | 338.026 ± 85.097 | 0.115 |
Cr (μmol/L) | 74.303 ± 18.476 | 79.277 ± 21.542 | 72.959 ± 17.327 | 0.000 |
eGFR (CKD-EPI) | 91.588 ± 14.859 | 89.875 ± 16.55 | 92.05 ± 14.343 | 0.089 |
BNP (pg/mL) | 82.656 ± 162.868 | 128.63 ± 199.296 | 70.238 ± 149.258 | 0.000 |
NT-proBNP (pg/mL) | 290.398 ± 657.883 | 518.068 ± 889.899 | 228.9 ± 564.628 | 0.000 |
hs-CRP (mg/L) | 2.022 ± 2.544 | 2.281 ± 2.708 | 1.952 ± 2.494 | 0.096 |
CK-MB (U/L) | 3.455 ± 12.251 | 3.429 ± 12.317 | 3.462 ± 12.240 | 0.076 |
TnI (μg/L) | 0.21 ± 0.802 | 0.187 ± 0.763 | 0.216 ± 0.812 | 0.011 |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
Variables | OR | 95%CI | p | OR | 95%CI | p |
Gender (male) | 2.929 | 1.985–4.323 | 0.000 | 2.860 | 1.949–4.197 | 0.000 |
NE% (%) | 1.173 | 1.086–1.267 | 0.000 | 0.849 | 0.787–0.915 | 0.000 |
HCT (%) | 0.957 | 0.925–0.991 | 0.013 | 1.041 | 1.006–1.077 | 0.021 |
TC (mmol/L) | 3.693 | 1.14–11.964 | 0.029 | 0.262 | 0.081–0.849 | 0.026 |
HDL (mmol/L) | 0.129 | 0.036–0.458 | 0.002 | 7.658 | 2.158–27.180 | 0.002 |
EF (%) | 0.965 | 0.947–0.984 | 0.000 | 1.036 | 1.016–1.056 | 0.000 |
TnI (μg/L) | 0.645 | 0.484–0.859 | 0.003 | 1.580 | 1.185–2.107 | 0.002 |
CK-MB (U/L) | 1.002 | 1.001–1.003 | 0.000 | 0.998 | 0.997–1.002 | 0.064 |
NT-proBNP (pg/mL) | 1.000 | 1.000–1.001 | 0.000 | 1.000 | 0.999–1.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Zheng, Z.; Liu, Y.; Wu, Y.; Wang, P.; Liu, J. Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography. J. Clin. Med. 2022, 11, 6993. https://doi.org/10.3390/jcm11236993
Shi Y, Zheng Z, Liu Y, Wu Y, Wang P, Liu J. Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography. Journal of Clinical Medicine. 2022; 11(23):6993. https://doi.org/10.3390/jcm11236993
Chicago/Turabian StyleShi, Yuchen, Ze Zheng, Yanci Liu, Yongxin Wu, Ping Wang, and Jinghua Liu. 2022. "Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography" Journal of Clinical Medicine 11, no. 23: 6993. https://doi.org/10.3390/jcm11236993
APA StyleShi, Y., Zheng, Z., Liu, Y., Wu, Y., Wang, P., & Liu, J. (2022). Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography. Journal of Clinical Medicine, 11(23), 6993. https://doi.org/10.3390/jcm11236993