Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Robot Components
2.4. Interventions
2.5. Randomization and Quality Control
2.6. Outcomes
2.7. Sample Size
Statistical Analysis
3. Results
3.1. Description of the Sample
3.2. Outcomes
3.3. Security Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapoen, C.; Liu, Y.; Bloemers, F.W.; Deunk, J. Pedicle screw fixation of thoracolumbar fractures: Conventional short segment versus short segment with intermediate screws at the fracture level-a systematic review and meta-analysis. Eur. Spine J. 2020, 29, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Ruffilli, A.; Viroli, G.; Barile, F.; Manzetti, M.; Faldini, C. Minimally invasive surgery using posterior-only Pedicle screw fixation in treatment of Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2022, 99, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Tovar, M.A.; Dowlati, E.; Zhao, D.Y.; Khan, Z.; Pasko, K.B.D.; Sandhu, F.A.; Voyadzis, J.M. Robot-assisted and augmented reality-assisted spinal instrumentation: A systematic review and meta-analysis of screw accuracy and outcomes over the last decade. J. Neurosurg. Spine 2022, 37, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Himstead, A.S.; Shahrestani, S.; Brown, N.J.; Produturi, G.; Shlobin, N.A.; Al Jammal, O.; Choi, E.H.; Ransom, S.C.; Daniel Diaz-Aguilar, L.; Sahyouni, R.; et al. Bony fixation in the era of spinal robotics: A systematic review and meta-analysis. J. Clin. Neurosci. 2022, 97, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Spiegelberg, J.; Iken, T.; Diener, M.K.; Fichtner-Feigl, S. Robotic-Assisted Surgery for Primary Hepatobiliary Tumors-Possibilities and Limitations. Cancers 2022, 14, 265. [Google Scholar] [CrossRef]
- Shah, A.A.; Bandari, J.; Pelzman, D.; Davies, B.J.; Jacobs, B.L. Diffusion and adoption of the surgical robot in urology. Transl. Urol. 2021, 10, 2151–2157. [Google Scholar] [CrossRef]
- Tse, K.Y.; Ngan, H.Y.S.; Lim, P.C. Robot-assisted gynaecological cancer surgery-complications and prevention. Best Pr. Res. Clin. Obs. Gynaecol. 2017, 45, 94–106. [Google Scholar]
- Wang, T.Y.; Park, C.; Dalton, T.; Rajkumar, S.; McCray, E.; Owolo, E.; Than, K.D.; Abd-El-Barr, M.M. Robotic navigation in spine surgery: Where are we now and where are we going? J. Clin. Neurosci. 2021, 94, 298–304. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Liu, Y.; Ding, H.; Lu, H.; Pan, A.; Zhang, X.; Hai, Y.; Guan, L. Accuracy and safety of robot-assisted cortical bone trajectory screw placement: A comparison of robot-assisted technique with fluoroscopy-assisted approach. BMC Musculoskelet. Disord. 2022, 23, 328. [Google Scholar] [CrossRef]
- Naik, A.; Smith, A.D.; Shaffer, A.; Krist, D.T.; Moawad, C.M.; MacInnis, B.R.; Teal, K.; Hassaneen, W.; Arnold, P.M. Evaluating robotic pedicle screw placement against conventional modalities: A systematic review and network meta-analysis. Neurosurg. Focus. 2022, 52, E10. [Google Scholar] [CrossRef]
- D’Souza, M.; Gendreau, J.; Feng, A.; Kim, L.H.; Ho, A.L.; Veeravagu, A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg. 2019, 6, 9–23. [Google Scholar] [PubMed]
- Tian, W. Robot-Assisted Posterior C1-2 Transarticular Screw Fixation for Atlantoaxial Instability: A Case Report. Spine Phila Pa 1976 2016, 41 (Suppl. 19), B2–B5. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.S.; Duan, S.J.; Xin, F.Z.; Zhang, Z.; Wang, X.G.; Liu, S.D. Robot-assisted Minimally-invasive Internal Fixation of Pelvic Ring Injuries: A Single-center Experience. Orthop. Surg. 2019, 11, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Calvert, M.; Blazeby, J.; Altman, D.G.; Revicki, D.A.; Moher, D.; Brundage, M.D.; Group, C.P. Reporting of patient-reported outcomes in randomized trials: The CONSORT PRO extension. JAMA 2013, 309, 814–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Tian, W.; Liu, Y.; Liu, B.; He, D.; Sun, Y.; Han, X.; Fan, M.; Zhao, J.; Xu, Y.; et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: A prospective randomized controlled trial. J. Neurosurg. Spine 2019, 30, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Gertzbein, S.D.; Robbins, S.E. Accuracy of pedicular screw placement in vivo. Spine Phila Pa 1976 1990, 15, 11–14. [Google Scholar] [CrossRef]
- Zhang, R.J.; Zhou, L.P.; Zhang, H.Q.; Ge, P.; Jia, C.Y.; Shen, C.L. Rates and risk factors of intrapedicular accuracy and cranial facet joint violation among robot-assisted, fluoroscopy-guided percutaneous, and freehand techniques in pedicle screw fixation of thoracolumbar fractures: A comparative cohort study. BMC Surg. 2022, 22, 52. [Google Scholar] [CrossRef]
- Su, Y.F.; Tsai, T.H.; Lieu, A.S.; Lin, C.L.; Chang, C.H.; Tsai, C.Y.; Su, H.Y. Bone-Mounted Robotic System in Minimally Invasive Spinal Surgery for Osteoporosis Patients: Clinical and Radiological Outcomes. Clin. Interv. Aging 2022, 17, 589–599. [Google Scholar] [CrossRef]
- Fayed, I.; Tai, A.; Triano, M.J.; Weitz, D.; Sayah, A.; Voyadzis, J.M.; Sandhu, F.A. Lateral versus prone robot-assisted percutaneous pedicle screw placement: A CT-based comparative assessment of accuracy. J. Neurosurg. Spine 2022, 37, 112–120. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, M.X.; Han, X.G.; Liu, Y.J.; He, D.; Liu, B.; Tian, W. Risk Factors of Unsatisfactory Robot-Assisted Pedicle Screw Placement: A Case-Control Study. Neurospine 2021, 18, 839–844. [Google Scholar] [CrossRef]
- Pojskic, M.; Bopp, M.; Nimsky, C.; Carl, B.; Sabeta, B. Initial Intraoperative Experience with Robotic-Assisted Pedicle Screw Placement with Cirq((R)) Robotic Alignment: An Evaluation of the First 70 Screws. J. Clin. Med. 2021, 10, 5725. [Google Scholar] [CrossRef] [PubMed]
- Neumann, N.; Meylheuc, L.; Barbe, L.; Garnon, J.; Koch, G.; Gangi, A.; Bayle, B. Robot-Assisted Bone Cement Injection. IEEE Trans. Biomed. Eng. 2022, 69, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jung, W.I.; Chang, B.S.; Lee, C.K.; Kang, K.T.; Yeom, J.S. A prospective, randomized, controlled trial of robot-assisted vs. freehand pedicle screw fixation in spine surgery. Int. J. Med. Robot. 2017, 13, e1779. [Google Scholar] [CrossRef]
- Lonjon, N.; Chan-Seng, E.; Costalat, V.; Bonnafoux, B.; Vassal, M.; Boetto, J. Robot-assisted spine surgery: Feasibility study through a prospective case-matched analysis. Eur. Spine J. 2016, 25, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Schatlo, B.; Molliqaj, G.; Cuvinciuc, V.; Kotowski, M.; Schaller, K.; Tessitore, E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: A matched cohort comparison. J. Neurosurg. Spine 2014, 20, 636–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.J.; Zuckerman, S.L.; Buchanan, I.A.; Boddapati, V.; Mathew, J.; Marciano, G.; Robertson, D.; Lakomkin, N.; Park, P.J.; Leung, E.; et al. Is There a Difference in Screw Accuracy, Robot Time Per Screw, Robot Abandonment, and Radiation Exposure Between the Mazor X and the Renaissance? A Propensity-Matched Analysis of 1179 Robot-Assisted Screws. Glob. Spine J. 2021, 21925682211029867. [Google Scholar] [CrossRef] [PubMed]
- De Biase, G.; Gassie, K.; Garcia, D.; Abode-Iyamah, K.; Deen, G.; Nottmeier, E.; Chen, S. Perioperative Comparison of Robotic-Assisted Versus Fluoroscopically Guided Minimally Invasive Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2021, 149, e570–e575. [Google Scholar] [CrossRef] [PubMed]
- Good, C.R.; Orosz, L.; Schroerlucke, S.R.; Cannestra, A.; Lim, J.Y.; Hsu, V.W.; Zahrawi, F.; Villalobos, H.J.; Ramirez, P.M.; Sweeney, T.; et al. Complications and Revision Rates in Minimally Invasive Robotic-Guided Versus Fluoroscopic-Guided Spinal Fusions: The MIS ReFRESH Prospective Comparative Study. Spine Phila Pa 1976 2021, 46, 1661–1668. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Perka, C.; Trampuz, A. Clinical application of robotic orthopedic surgery: A bibliometric study. BMC Musculoskelet. Disord. 2021, 22, 968. [Google Scholar] [CrossRef]
Variable | Tuoshou (n = 54) | TiRobot (n = 54) | p-Value |
---|---|---|---|
Mean age, years (IQR) | 55.50 (50.00 to 66.00) | 57.00 (50.00 to 64.00) | 0.796 * |
Mean height, cm (IQR) | 163.00 (160.00 to170.00) | 165.00 (159.00 to 170.00) | 0.966 * |
Mean weight, kg (IQR) | 65.00 (60.00 to 74.00) | 62.75 (58.00 to 68.00) | 0.123 * |
Mean BMI, kg/m2 (SD) | 24.74 (3.48) | 23.53 (2.67) | 0.045 † |
Sex, n (%) | 0.845 ‡ | ||
Male | 32 (59) | 31 (57) | |
Female | 22 (41) | 23 (43) |
Variable | Tuoshou, n (%) | TiRobot, n (%) | p-Value |
---|---|---|---|
White blood cell count | 0.448 * | ||
Normal | 46 (85) | 43 (80) | |
Abnormal | 8 (19) | 11 (20) | |
Red blood cell count | 0.820 * | ||
Normal | 42 (78) | 41 (76) | |
Abnormal | 12 (22) | 13 (24) | |
Platelet count | 0.567 * | ||
Normal | 48 (89) | 46 (85) | |
Abnormal | 6 (11) | 8 (15) | |
Alanine aminotransferase | 1.000 * | ||
Normal | 49 (91) | 49 (91) | |
Abnormal | 5 (9) | 5 (9) | |
Aspartate aminotransferase | 0.267 * | ||
Normal | 45 (83) | 48 (89) | |
Abnormal | 9 (17) | 5 (9) | |
Not tested | 0 (0) | 1 (2) | |
Creatinine | 0.740 † | ||
Normal | 50 (93) | 48 (89) | |
Abnormal | 4 (7) | 6 (11) | |
Prothrombin time | 0.243 ‡ | ||
Normal | 54 (100) | 51 (94) | |
Abnormal | 0 (0) | 3 (6) | |
Activated partial thromboplastin time | 0.037 † | ||
Normal | 53 (98) | 46 (85) | |
Abnormal | 1 (2) | 8 (15) |
Variable | Tuoshou | TiRobot | p-Value |
---|---|---|---|
Number of vertebral bodies, n (%) | 0.560 * | ||
1 | 2 (4) | 3 (5) | |
2 | 30 (56) | 26 (48) | |
3 | 13 (24) | 22 (41) | |
4 | 7 (13) | 2 (4) | |
5 | 2 (3) | 1 (2) | |
Average value (IQR) | 2.00 (2.00 to 3.00) | 2.00 (2.00 to 3.00) | 0.917 † |
Number of screws, n (%) | 0.590 * | ||
1 | 0 (0) | 0 (0) | |
2 | 2 (4) | 3 (6) | |
3 | 0 (0) | 0 (0) | |
4 | 30 (55) | 26 (48) | |
5 | 0 (0) | 1 (2) | |
6 | 14 (26) | 22 (42) | |
7 | 1 (2) | 0 (0) | |
8 | 5 (9) | 1 (2) | |
9 | 0 (0) | 0 (0) | |
10 | 2 (4) | 1 (2) | |
Average value (IQR) | 4.00 (4.00 to 6.00) | 4.00 (4.00 to 6.00) | 0.892 † |
FAS | PPS | |||||
---|---|---|---|---|---|---|
Outcomes | Tuoshou | TiRobot | p-Value | Tuoshou | TiRobot | p-Value |
Primary outcome | ||||||
Number of K-wire (Missing) | 275 (0) | 265 (0) | N/A | 275 (0) | 263 (0) | N/A |
Average value, mm (IQR) | 1.66 (1.14 to 2.31) | 1.89 (1.18 to 2.62) | 0.014 * | 1.66 (1.14 to 2.31) | 1.88 (1.18 to 2.62) | 0.021 * |
Secondary outcomes | ||||||
Pedicle screw insertion accuracy rate, n (%) | 271 (98) | 250 (94) | 0.016 † | 271 (98) | 250 (94) | 0.016 † |
Entry point deviation, mm (IQR) | 1.55 (0.93 to 2.09) | 1.88 (1.20 to 3.12) | <0.001 * | 1.55 (0.93 to 2.09) | 1.88 (1.20 to 3.12) | <0.001 * |
Endpoint deviation, mm (IQR) | 1.77 (1.22 to 2.60) | 1.70 (1.07 to 2.40) | 0.225 * | 1.77 (1.22 to 2.60) | 1.70 (1.07 to 2.40) | 0.170 * |
Axial deviation, ° (IQR) | 0.72 (0.26 to 1.35) | 0.69 (0.16 to 1.67) | 0.892 * | 0.72 (0.26 to 1.35) | 0.69 (0.16 to 1.67) | 0.988 * |
Sagittal deviation, ° (IQR) | 0.99 (0.51 to 1.84) | 1.18 (0.54 to 2.02) | 0.258 * | 0.99 (0.51 to 1.84) | 1.18 (0.54 to 2.02) | 0.324 * |
Spatial deviation, ° (IQR) | 1.55 (0.91 to 2.43) | 1.57 (0.93 to 2.70) | 0.238 * | 1.55 (0.91 to 2.43) | 1.57 (0.93 to 2.70) | 0.299 * |
SS | |||
---|---|---|---|
Security Indicators | Tuoshou | TiRobot | p-Value |
Operation time, min (IQR) | 64.50 (55.00 to 80.00) | 56.00 (45.00 to 76.00) | 0.085 * |
Instrument success, n (%) | 54 (100) | 54 (100) | N/A |
Technology success, n (%) | 54 (100) | 51 (94) | 0.243 † |
Operation success, n (%) | 54 (100) | 51 (94) | 0.243 † |
Postoperative adverse events, n (%) | 20 (37) | 21 (39) | 0.843 † |
Clavien-Dindo I/II, n | 19/1 | 20/1 | 0.490 † |
SS | |||
---|---|---|---|
Postoperative Adverse Events | Tuoshou, n (%) | TiRobot, n (%) | p-Value |
Total | 20 (37) | 21 (39) | 0.843 * |
Gastrointestinal system | 5 (9) | 6 (11) | 0.750 * |
Stomach ache | 3 (6) | 1 (2) | 0.610 † |
Vomit | 1 (2) | 3 (6) | 0.610 † |
Nausea | 1 (2) | 3 (6) | 0.610 † |
Bloating | 0 (0) | 1 (2) | 1.000 ‡ |
Injury | 5 (9) | 5 (9) | 1.000 * |
Bleeding | 4 (7) | 5 (9) | 1.000 † |
Incision complications | 1 (2) | 0 (0) | 1.000 ‡ |
Systemic diseases and drug reactions | 2 (4) | 6 (11) | 0.270 † |
Fever | 1 (2) | 6 (11) | 0.118 † |
Chest discomfort | 1 (2) | 1 (2) | 1.000 † |
Neurological complications | 5 (9) | 0 (0) | 0.057 ‡ |
Cerebrospinal fluid leakage | 5 (9) | 0 (0) | 0.057 ‡ |
Vascular and lymphatic complications | 3 (5) | 2 (4) | 1.000 † |
Deep vein thrombosis | 3 (5) | 2 (4) | 1.000 † |
Cardiac complications | 2 (4) | 1 (2) | 1.000 † |
Palpitation | 1 (2) | 1 (2) | 1.000 † |
Atrial fibrillation | 1 (2) | 0 (0) | 1.000 ‡ |
Metabolic and nutritional complications | 1 (2) | 1 (2) | 1.000 † |
Hypoproteinemia | 1 (2) | 1 (2) | 1.000 † |
Infection | 0 (0) | 1 (2) | 1.000 ‡ |
Urinary tract infection | 0 (0) | 1 (2) | 1.000 ‡ |
Respiratory complications | 1 (2) | 0 (0) | 1.000 ‡ |
Expectoration | 1 (2) | 0 (0) | 1.000 ‡ |
Cough | 1 (2) | 0 (0) | 1.000 ‡ |
Skin complications | 0 (0) | 1 (2) | 1.000 ‡ |
Mild pressure sore (I) | 0 (0) | 1 (2) | 1.000 ‡ |
Urinary complications | 0 (0) | 1 (2) | 1.000 ‡ |
Urethral pain | 0 (0) | 1 (2) | 1.000 ‡ |
Hematological complications | 0 (0) | 1 (2) | 1.000 ‡ |
Anemia | 0 (0) | 1 (2) | 1.000 ‡ |
Ocular complications | 1 (2) | 0 (0) | 1.000 ‡ |
Blurred vision | 1 (2) | 0 (0) | 1.000 ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Yu, L.; Li, Q.; Wang, B.; Yang, L.; Cheng, M.; Wang, F.; Zhang, L.; Chen, L.; Li, K.; et al. Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation. J. Clin. Med. 2022, 11, 7091. https://doi.org/10.3390/jcm11237091
Chang J, Yu L, Li Q, Wang B, Yang L, Cheng M, Wang F, Zhang L, Chen L, Li K, et al. Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation. Journal of Clinical Medicine. 2022; 11(23):7091. https://doi.org/10.3390/jcm11237091
Chicago/Turabian StyleChang, Jie, Lipeng Yu, Qingqing Li, Boyao Wang, Lei Yang, Min Cheng, Feng Wang, Long Zhang, Lei Chen, Kun Li, and et al. 2022. "Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation" Journal of Clinical Medicine 11, no. 23: 7091. https://doi.org/10.3390/jcm11237091
APA StyleChang, J., Yu, L., Li, Q., Wang, B., Yang, L., Cheng, M., Wang, F., Zhang, L., Chen, L., Li, K., Liang, L., Zhou, W., Cai, W., Ren, Y., Hu, Z., Huang, Z., Sui, T., Fan, J., Wang, J., ... Yin, G. (2022). Development and Clinical Trial of a New Orthopedic Surgical Robot for Positioning and Navigation. Journal of Clinical Medicine, 11(23), 7091. https://doi.org/10.3390/jcm11237091