Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Endothelial Function
2.3. Cell Cholesterol Transport Parameters
2.3.1. Preparation of apoB-Depleted Serum
2.3.2. HDL Cholesterol Efflux Capacity Measurement
2.3.3. Serum Cholesterol Loading Capacity (CLC) Measurement
2.4. Statistics
3. Results
3.1. Baseline Demographics and Laboratory or Instrumental Parameters
3.2. Changes in Lipid Parameters following Anti-Rheumatic Treatment
3.3. Relationship between Serum Lipoprotein Functions and Other Clinical and Laboratory Variables
3.4. SR-BI CEC
3.5. ABCG1 CEC
3.6. ABCA1 CEC
3.7. CLC
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liew, J.W.; Ramiro, S.; Gensler, L.S. Cardiovascular morbidity and mortality in ankylosing spondylitis and psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Peluso, R.; Caso, F.; Tasso, M.; Ambrosino, P.; Nicola, M.; Di Minno, D.; Lupoli, R.; Criscuolo, L.; Caso, P.; Ursini, F.; et al. Cardiovascular Risk Markers and Major Adverse Cardiovascular Events in Psoriatic Arthritis Patients. Rev. Recent Clin. Trials 2018, 13, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Demougeot, C.; Guillot, X.; Sondag, M.; Verhoeven, F.; Wendling, D. Vascular involvement in axial spondyloarthropathies. Jt. Bone Spine 2018, 86, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Peters, M.J.; McInnes, I.; Sattar, N. Changes in lipid levels with inflammation and therapy in RA: A maturing paradigm. Nat. Rev. Rheumatol. 2013, 9, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Brewer, H.B., Jr.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 48–60. [Google Scholar] [CrossRef]
- Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: Meta-analysis of randomised controlled trials including 117,411 patients. BMJ 2014, 349, g4379. [Google Scholar] [CrossRef] [Green Version]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.C. Molecular Mechanisms of Cellular Cholesterol Efflux. J. Biol. Chem. 2014, 289, 24020–24029. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef]
- Salahuddin, T.; Natarajan, B.; Playford, M.P.; Joshi, A.A.; Teague, H.; Masmoudi, Y.; Selwaness, M.; Chen, M.Y.; Bluemke, D.A.; Mehta, N.N. Cholesterol efflux capacity in humans with psoriasis is inversely related to non-calcified burden of coronary atherosclerosis. Eur. Heart J. 2015, 36, 2662–2665. [Google Scholar] [CrossRef] [Green Version]
- Mody, P.; Joshi, P.H.; Khera, A.; Ayers, C.R.; Rohatgi, A. Beyond Coronary Calcification, Family History, and C-Reactive Protein: Cholesterol Efflux Capacity and Cardiovascular Risk Prediction. J. Am. Coll. Cardiol. 2016, 67, 2480–2487. [Google Scholar] [CrossRef]
- Adorni, M.; Zimetti, F.; Puntoni, M.; Bigazzi, F.; Sbrana, F.; Minichilli, F.; Bernini, F.; Ronda, N.; Favari, E.; Sampietro, T. Cellular cholesterol efflux and cholesterol loading capacity of serum: Effects of LDL-apheresis. J. Lipid Res. 2012, 53, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [Green Version]
- Zimetti, F.; De Vuono, S.; Gomaraschi, M.; Adorni, M.P.; Favari, E.; Ronda, N.; Ricci, M.A.; Veglia, F.; Calabresi, L.; Lupattelli, G. Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction. J. Lipid Res. 2017, 58, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Charles-Schoeman, C.; Lee, Y.Y.; Grijalva, V.; Amjadi, S.; FitzGerald, J.; Ranganath, V.K.; Taylor, M.; McMahon, M.; Paulus, H.E.; Reddy, S.T. Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Ronda, N.; Favari, E.; Borghi, M.O.; Ingegnoli, F.; Gerosa, M.; Chighizola, C.; Zimetti, F.; Adorni, M.P.; Bernini, F.; Meroni, P.L. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 2013, 73, 609–615. [Google Scholar] [CrossRef]
- Sánchez-Pérez, H.; Quevedo-Abeledo, J.C.; De Armas-Rillo, L.; Rua-Figueroa, L.; Tejera-Segura, B.; Armas-González, E.; Machado, J.D.; García-Dopico, J.A.; Jimenez-Sosa, A.; Rodríguez-Lozano, C.; et al. Impaired HDL cholesterol efflux capacity in systemic lupus erythematosus patients is related to subclinical carotid atherosclerosis. Rheumatology 2020, 59, 2847–2856. [Google Scholar] [CrossRef]
- Gkolfinopoulou, C.; Stratikos, E.; Theofilatos, D.; Kardassis, D.; Voulgari, P.V.; Drosos, A.A.; Chroni, A. Impaired Antiatherogenic Functions of High-density Lipoprotein in Patients with Ankylosing Spondylitis. J. Rheumatol. 2015, 42, 1652–1660. [Google Scholar] [CrossRef]
- Holzer, M.; Wolf, P.; Curcic, S.; Birner-Gruenberger, R.; Weger, W.; Inzinger, M.; El-Gamal, D.; Wadsack, C.; Heinemann, A.; Marsche, G. Psoriasis alters HDL composition and cholesterol efflux capacity. J. Lipid Res. 2012, 53, 1618–1624. [Google Scholar] [CrossRef]
- Mehta, N.N.; Shin, D.B.; Joshi, A.A.; Dey, A.K.; Armstrong, A.W.; Duffin, K.C.; Fuxench, Z.C.; Harrington, C.L.; Hubbard, R.A.; Kalb, R.E.; et al. Effect of 2 Psoriasis Treatments on Vascular Inflammation and Novel Inflammatory Cardiovascular Biomarkers: A randomized placebo-controlled trial. Circ. Cardiovasc. Imaging 2018, 11, e007394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, F.; Charakida, M.; Topham, E.; McLoughlin, E.; Patel, N.; Sutill, E.; Kay, C.W.M.; D’Aiuto, F.; Landmesser, U.; Taylor, P.C.; et al. Anti-inflammatory treatment improves high-density lipoprotein function in rheumatoid arthritis. Heart 2016, 103, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Ferraz-Amaro, I.; Hernández-Hernández, M.V.; Tejera-Segura, B.; Delgado-Frías, E.; Macía-Díaz, M.; Machado, J.D.; Diaz-González, F. Effect of IL-6 Receptor Blockade on Proprotein Convertase Subtilisin/Kexin Type-9 and Cholesterol Efflux Capacity in Rheumatoid Arthritis Patients. Horm. Metab. Res. 2019, 51, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.P.; Playford, M.P.; Frits, M.; Coblyn, J.S.; Iannaccone, C.; Weinblatt, M.E.; Shadick, N.S.; Mehta, N.N. The Association Between Reduction in Inflammation and Changes in Lipoprotein Levels and HDL Cholesterol Efflux Capacity in Rheumatoid Arthritis. J. Am. Heart Assoc. 2015, 4, e001588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronda, N.; Greco, D.; Adorni, M.P.; Zimetti, F.; Favari, E.; Hjeltnes, G.; Mikkelsen, K.; Borghi, M.O.; Favalli, E.G.; Gatti, R.; et al. Newly Identified Antiatherosclerotic Activity of Methotrexate and Adalimumab: Complementary Effects on Lipoprotein Function and Macrophage Cholesterol Metabolism. Arthritis Rheumatol. 2015, 67, 1155–1164. [Google Scholar] [CrossRef]
- Zimetti, F.; Weibel, G.K.; Duong, M.; Rothblat, G.H. Measurement of cholesterol bidirectional flux between cells and lipoproteins. J. Lipid Res. 2006, 47, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Zanotti, I.; Favari, E.; Bernini, F. Cellular cholesterol efflux pathways: Impact on intracellular lipid trafficking and methodological considerations. Curr. Pharm. Biotechnol. 2012, 13, 292–302. [Google Scholar] [CrossRef]
- Duong, M. Relative Contributions of ABCA1 and SR-BI to Cholesterol Efflux to Serum From Fibroblasts and Macrophages. Arter. Thromb. Vasc. Biol. 2006, 26, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Favari, E.; Zimetti, F.; Bortnick, A.E.; Adorni, M.P.; Zanotti, I.; Canavesi, M.; Bernini, F. Impaired ATP-binding cassette transporter A1-mediated sterol efflux from oxidized LDL-loaded macrophages. FEBS Lett. 2005, 579, 6537–6542. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.J.; Goldstein, S.; Lagrange, D.; Laplaud, P.M. A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J. Lipid Res. 1981, 22, 339–358. [Google Scholar] [CrossRef]
- Burton, K. Determination of DNA concentration with diphenylamine. Methods Enzymol. 1968, 12, 163–166. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Lydersen, S.; Laake, P. Statistical Analysis of Contingency Tables; Chapman & Hall/CRC: Boca Raton, FL, USA, 2017; p. 634. [Google Scholar]
- Papagoras, C.; Voulgari, P.V.; Drosos, A.A. Atherosclerosis and cardiovascular disease in the spondyloarthritides, particularly ankylosing spondylitis and psoriatic arthritis. Clin. Exp. Rheumatol. 2013, 31, 612–620. [Google Scholar]
- Soria-Florido, M.T.; Schröder, H.; Grau, M.; Fitó, M.; Lassale, C. High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis. Atherosclerosis 2020, 302, 36–42. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Gonzalez-Gay, M.A.; Kaplan, I.; Boy, M.; Geier, J.; Luo, Z.; Zuckerman, A.; Riese, R. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: Implications for the rheumatologist. Semin. Arthritis Rheum. 2016, 46, 71–80. [Google Scholar] [CrossRef]
- Hassan, S.; Milman, U.; Feld, J.; Eder, L.; Lavi, I.; Cohen, S.; Zisman, D. Effects of anti-TNF-α treatment on lipid profile in rheumatic diseases: An analytical cohort study. Arthritis Res. Ther. 2016, 18, 261. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S. Triglyceride Rich Lipoprotein -LPL-VLDL Receptor and Lp(a)-VLDL Receptor Pathways for Macrophage Foam Cell Formation. J. Atheroscler. Thromb. 2017, 24, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Tsimikas, S.; Fazio, S.; Ferdinand, K.C.; Ginsberg, H.N.; Koschinsky, M.L.; Marcovina, S.M.; Moriarty, P.M.; Rader, D.J.; Remaley, A.T.; Reyes-Soffer, G.; et al. NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Crompton, P.; Cherry, L.; Kane, D.; Lowe, G.; McInnes, I.B. Effects of tumor necrosis factor blockade on cardiovascular risk factors in psoriatic arthritis: A double-blind, placebo-controlled study. Arthritis Rheum. 2007, 56, 831–839. [Google Scholar] [CrossRef]
- Hoover-Plow, J.; Huang, M. Lipoprotein(a) metabolism: Potential sites for therapeutic targets. Metabolism 2012, 62, 479–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Novel Insights From Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arter. Thromb. Vasc. Biol. 2020, 41, 128–140. [Google Scholar] [CrossRef]
- Prosser, H.C.; Ng, M.K.; Bursill, C.A. The role of cholesterol efflux in mechanisms of endothelial protection by HDL. Curr. Opin. Lipidol. 2012, 23, 182–189. [Google Scholar] [CrossRef]
- Rohrer, L.; Ohnsorg, P.M.; Lehner, M.; Landolt, F.; Rinninger, F.; von Eckardstein, A. High-Density Lipoprotein Transport Through Aortic Endothelial Cells Involves Scavenger Receptor BI and ATP-Binding Cassette Transporter G1. Circ. Res. 2009, 104, 1142–1150. [Google Scholar] [CrossRef] [Green Version]
- Vigna, G.; Satta, E.; Bernini, F.; Boarini, S.; Bosi, C.; Giusto, L.; Pinotti, E.; Tarugi, P.; Vanini, A.; Volpato, S.; et al. Flow-mediated dilation, carotid wall thickness and HDL function in subjects with hyperalphalipoproteinemia. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 777–783. [Google Scholar] [CrossRef]
- Nazir, S.; Jankowski, V.; Bender, G.; Zewinger, S.; Rye, K.-A.; van der Vorst, E.P. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv. Drug Deliv. Rev. 2020, 159, 94–119. [Google Scholar] [CrossRef]
- Weibel, G.L.; Drazul-Schrader, D.; Shivers, D.K.; Wade, A.N.; Rothblat, G.H.; Reilly, M.P.; de la Llera-Moya, M. Importance of Evaluating Cell Cholesterol Influx With Efflux in Determining the Impact of Human Serum on Cholesterol Metabolism and Atherosclerosis. Arter. Thromb. Vasc. Biol. 2014, 34, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Yassine, H.N.; Belopolskaya, A.; Schall, C.; Stump, C.S.; Lau, S.S.; Reaven, P.D. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes. Metabolism 2014, 63, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Tavori, H.; Fenton, A.M.; Plubell, D.L.; Rosario, S.; Yerkes, E.; Gasik, R.; Miles, J.; Bergstrom, P.; Minnier, J.; Fazio, S.; et al. Elevated Lipoprotein(a) Levels Lower ABCA1 Cholesterol Efflux Capacity. J. Clin. Endocrinol. Metab. 2019, 104, 4793–4803. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Ohkawa, R.; Lai, S.-J.; Shimano, S.; Hagihara, M.; Tohda, S.; Kameda, T.; Tozuka, M. Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci. Rep. 2019, 39, BSR20190213. [Google Scholar] [CrossRef] [Green Version]
- Uto-Kondo, H.; Ayaori, M.; Ogura, M.; Nakaya, K.; Ito, M.; Suzuki, A.; Takiguchi, S.-I.; Yakushiji, E.; Terao, Y.; Ozasa, H.; et al. Coffee Consumption Enhances High-Density Lipoprotein-Mediated Cholesterol Efflux in Macrophages. Circ. Res. 2010, 106, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Tran-Dinh, A.; Diallo, D.; Delbosc, S.; Varela-Perez, L.M.; Dang, Q.B.; Lapergue, B.; Burillo, E.; Michel, J.B.; Levoye, A.; Martin-Ventura, J.L.; et al. HDL and endothelial protection. Br. J. Pharmacol. 2013, 169, 493–511. [Google Scholar] [CrossRef] [Green Version]
- Yuhanna, I.S.; Zhu, Y.; Cox, B.E.; Hahner, L.D.; Osborne-Lawrence, S.; Lu, P.; Marcel, Y.L.; Anderson, R.G.; Mendelsohn, M.E.; Hobbs, H.H.; et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 2001, 7, 853–857. [Google Scholar] [CrossRef]
- Deyab, G.; Hokstad, I.; Whist, J.E.; Smastuen, M.C.; Agewall, S.; Lyberg, T.; Ronda, N.; Mikkelsen, K.; Hjeltnes, G.; Hollan, I. Methotrexate and anti-tumor necrosis factor treatment improves endothelial function in patients with inflammatory arthritis. Arthritis Res. Ther. 2017, 19, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangoni, A.A.; Woodman, R.J.; Piga, M.; Cauli, A.; Fedele, A.L.; Gremese, E.; Erre, G.L.; EDRA Study Group. Patterns of Anti-Inflammatory and Immunomodulating Drug Usage and Microvascular Endothelial Function in Rheumatoid Arthritis. Front. Cardiovasc. Med. 2021, 8, 681327. [Google Scholar] [CrossRef] [PubMed]
- Ritsch, A.; Duerr, A.; Kahler, P.; Hunjadi, M.; Stojakovic, T.; Silbernagel, G.; Scharnagl, H.; Kleber, M.; März, W. Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Biomedicines 2020, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- Casey, K.A.; Smith, M.A.; Sinibaldi, D.; Seto, N.L.; Playford, M.P.; Wang, X.; Carlucci, P.M.; Wang, L.; Illei, G.; Yu, B.; et al. Modulation of Cardiometabolic Disease Markers by Type I Interferon Inhibition in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2020, 73, 459–471. [Google Scholar] [CrossRef]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Vaisar, T.; Tang, C.; Babenko, I.; Hutchins, P.; Wimberger, J.; Suffredini, A.F.; Heinecke, J.W. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J. Lipid Res. 2015, 56, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Can der Westhuyzen, D.R.; Cai, L.; de Beer, M.C.; de Beer, F.C. Serum Amyloid A Promotes Cholesterol Efflux Mediated by Scavenger Receptor B-I. J. Biol. Chem. 2005, 280, 35890–35895. [Google Scholar] [CrossRef] [Green Version]
- Marsche, G.; Zelzer, S.; Meinitzer, A.; Kern, S.; Meissl, S.; Pregartner, G.; Weghuber, D.; Almer, G.; Mangge, H. Adiponectin Predicts High-Density Lipoprotein Cholesterol Efflux Capacity in Adults Irrespective of Body Mass Index and Fat Distribution. J. Clin. Endocrinol. Metab. 2017, 102, 4117–4123. [Google Scholar] [CrossRef]
- Kjerulf, D.G.; Wang, S.; Omer, M.; Pathak, A.; Subramanian, S.; Han, C.Y.; Tang, C.; Hartigh, L.J.D.; Shao, B.; Chait, A. Glycation of HDL blunts its anti-inflammatory and cholesterol efflux capacities in vitro, but has no effect in poorly controlled type 1 diabetes subjects. J. Diabetes Complicat. 2020, 34, 107693. [Google Scholar] [CrossRef]
- Kanuri, S.H.; Mehta, J.L. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr. Med. Chem. 2019, 26, 1693–1700. [Google Scholar] [CrossRef]
- Uittenbogaard, A.; Shaul, P.W.; Yuhanna, I.S.; Blair, A.; Smart, E.J. High Density Lipoprotein Prevents Oxidized Low Density Lipoprotein-induced Inhibition of Endothelial Nitric-oxide Synthase Localization and Activation in Caveolae. J. Biol. Chem. 2000, 275, 11278–11283. [Google Scholar] [CrossRef] [Green Version]
- Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016, 26, 249–261. [Google Scholar] [CrossRef]
- Hashizume, M.; Mihara, M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine 2012, 58, 424–430. [Google Scholar] [CrossRef]
- Andrews, A.M.; Muzorewa, T.T.; Zaccheo, K.A.; Buerk, D.G.; Jaron, D.; Barbee, K.A. Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear Stress-Induced NO Production. Cell. Mol. Bioeng. 2016, 10, 30–40. [Google Scholar] [CrossRef]
- Feron, O.; Dessy, C.; Moniotte, S.; Desager, J.-P.; Balligand, J.-L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Investig. 1999, 103, 897–905. [Google Scholar] [CrossRef] [Green Version]
- Shaul, P.W.; Wardman, D.L.; Day, B.L.; Fitzpatrick, R.C. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J. Physiol. 2003, 547((Pt. 1)), 21–33. [Google Scholar] [CrossRef]
- Karpouzas, A.G.; Bui, V.L.; Ronda, N.; Hollan, I.; Ormseth, S.R. Biologics and atherosclerotic cardiovascular risk in rheumatoid arthritis: A review of evidence and mechanistic insights. Expert Rev. Clin. Immunol. 2021, 17, 355–374. [Google Scholar] [CrossRef]
PsA (n = 37) | AS (n = 25) | p Value | |
---|---|---|---|
Demographics | |||
Age, years; mean (SD) | 51 (13) | 51 (11) | 0.90 |
Men (sex); n (%) | 19 (51) | 20 (80) | 0.03 |
Treatment regime: | |||
Anti-TNF; n (%) | 9 (24) | 25 (100) | <0.001 |
MTX; n (%) | 18 (49) | 0 (0) | <0.001 |
Anti-TNF + MTX; n (%) | 10 (27) | 0 (0) | <0.001 |
Inflammatory markers | |||
sC5b-9 (CAU/mL); median (IQR) | 0.7 (0.3) | 0.9 (0.6) | 0.07 |
WBC (109/L); median (IQR) | 6.3 (3) | 7.7 (2) | 0.09 |
ESR (mm/h); median (IQR) | 7.5 (13) | 12 (10) | 0.26 |
CRP (mg/L); median (IQR) | 5.0 (8) | 10 (12) | 0.14 |
CV risk factors | |||
RHI; median (IQR) | 2.0 (0.7) | 1.8 (0.7) | 0.57 |
ED; n (%) | 13 (36) | 9 (36) | >0.99 |
BMI; median (IQR) | 26 (7) | 27 (6) | 0.55 |
Current smoker; n (%) | 8 (22) | 12 (48) | 0.047 |
Hypertension; n (%) | 12 (32) | 8 (32) | >0.99 |
HbA1C; median (IQR) | 5.6 (0.5) | 5.5 (0.4) | 0.68 |
Established CVD; n (%) | 2 (5) | 5 (20) | 0.11 |
Disease activity | |||
BASMI; mean (SD) | NA | 3.8 (2.7) | - |
BASDAI; mean (SD) | 4.8 (2.2) | 5.5 (2.3) | 0.25 |
BASFI; mean (SD) | 35 (22) | 41 (19) | 0.28 |
MHAQ; median (IQR) | 0.4 (0.6) | 0.4 (0.4) | 0.16 |
Co-medication | |||
Statin; n (%) | 2 (5) | 8 (32) | 0.01 |
Acetylsalicylic acid; n (%) | 2 (5) | 3 (12) | 0.38 |
NSAIDS; n (%) | 20 (54) | 17 (68) | 0.30 |
ACE-inhibitor/AT2; n (%) | 4 (11) | 4 (16) | 0.70 |
Glucocorticoids; n (%) | 5 (13) | 3 (12) | >0.99 |
CCB; n (%) | 2 (7) | 3 (12) | 0.65 |
Serum lipid profile | |||
Total cholesterol (mmol/L); mean (SD) | 5.4 (0.7) | 4.9 (1.2) | 0.02 |
LDL-C (mmol/L); mean (SD) | 3.5 (0.6) | 3.1 (1.0) | 0.08 |
HDL-C (mmol/L); median (IQR) | 1.4 (0.5) | 1.2 (0.4) | 0.19 |
Triglycerides(mmol/L); median (IQR) | 1.2 (0.8) | 1.3 (0.7) | 0.43 |
Lp(a) (mg/L); median (IQR) | 98 (366) | 96 (286) | 0.95 |
Non-HDL-C (mmol/L); mean (SD) | 3.9 (0.9) | 3.6 (1.1) | 0.23 |
ApoA1; median (IQR) | 1.4 (0.3) | 1.4 (0.4) | 0.44 |
Lipoprotein function | |||
SR-BI CEC (%); median (IQR) | 3.3 (2.1) | 3.4 (1.7) | 0.88 |
ABCG1 CEC (%); median (IQR) | 4.7 (1.2) | 4.4 (2.7) | 0.45 |
ABCA1 CEC (%); median (IQR) | 3.0 (3.2) | 2.7 (2.5) | 0.27 |
CLC (g chol/g DNA); median (IQR) | 30.2 (10) | 27.5 (6.1) | 0.04 |
SpA Patients (n = 62) | |||||
---|---|---|---|---|---|
Baseline | 6 Weeks | 6 Months | |||
Median (IQR) | Median (IQR) | p vs. Baseline | Median (IQR) | p vs. Baseline | |
SR-BI CEC (n = 51) | 3.3 (1.8) | 3.6 (1.6) | 0.29 | 3.5 (1.8) | 0.09 |
ABCG1 CEC (n = 48) | 4.7 (1.3) | 4.8 (1.4) | 0.67 | 5. 0 (2.0) | 0.91 |
ABCA1 CEC (n = 50) | 2.9 (2.3) | 3.2 (2.5) | 0.25 | 3.1 (2.4) | 0.71 |
CLC | 28.9 (8.1) | 28.4 (10.4) | 0.36 | 30.4 (14.3) | 0.81 |
TC | 5.2 (1.3) | 5.4 (1.4) | 0.01 | 5.6 (1.7) | 0.02 |
LDL | 3.2 (1.3) | 3.4 (1.3) | 0.15 | 3.2 (1.5) | 0.09 |
Lp(a) | 98 (292) | 76 (266) | <0.001 | 83 (243) | 0.02 |
Non-HDL | 3.8 (3.9) | 3.9 (1.5) | 0.04 | 3.6 (1.4) | 0.20 |
HDL | 1.3 (1.4) | 1.4 (0.6) | 0.04 | 1.4 (0.6) | <0.001 |
ApoA1 | 1.4 (1.6) | 1.6 (0.3) | <0.001 | 1.5 (0.3) | <0.001 |
Triglycerides | 1.2 (1.2) | 1.2 (0.9) | 0.30 | 1.2 (0.7) | 0.78 |
PsA (n = 37) | |||||
---|---|---|---|---|---|
Baseline | 6 Weeks | 6 Months | |||
Median (IQR) | Median (IQR) | p vs. Baseline | Median (IQR) | p vs. Baseline | |
SR-BI (n = 30) | 3.3 (2.1) | 3.4 (2.0) | 0.62 | 3.5 (1.7) | 0.41 |
ABCG1 (n = 28) | 4.7 (1.2) | 5.8 (1.2) | 0.13 | 4.7 (1.1) | 0.81 |
ABCA1 (n = 30) | 3.0 (3.2) | 3.0 (2.7) | 0.66 | 3.2 (2.4) | 0.98 |
CLC (n = 27) | 30.2 (10.3) | 29.0 (10.8) | 0.92 | 34.7 (14.6) | 0.65 |
TC | 5.3 (0.7) | 5.7 (1.1) | 0.22 | 5.6 (1.7) | 0.41 |
LDL-C | 3.4 (0.6) | 3.6 (1.3) | 0.81 | 3.7 (1.6) | 0.52 |
Lp(a) | 98 (366) | 78 (519) | <0.001 | 78 (562) | 0.12 |
Non-HDL-C | 3.9 (0.9) | 4.2 (1.4) | 0.24 | 3.9 (1.7) | 0.52 |
HDL-C | 1.3 (0.5) | 1.4 (0.6) | 0.99 | 1.4 (0.6) | 0.03 |
ApoA1 | 1.4 (0.3) | 1.5 (0.3) | 0.049 | 1.5 (0.4) | 0.01 |
Triglycerides | 1.0 (0.8) | 1.2 (1.1) | 0.22 | 1.2 (0.8) | 0.49 |
AS (n = 25) | |||||
Baseline | 6 Weeks | 6 Months | |||
Median (IQR) | Median (IQR) | p vs. Baseline | Median (IQR) | p vs. Baseline | |
SR-BI (n = 21) | 3.4 (1.7) | 4.9 (2.2) | 0.03 | 3.5 (2.1) | 0.10 |
ABCG1 (n = 20) | 4.4 (2.7) | 4.8 (2.7) | 0.29 | 5.4 (2.1) | 0.84 |
ABCA1 (n = 20) | 2.7 (2.5) | 3.5 (2.0) | 0.16 | 3.1 (2.3) | 0.55 |
CLC | 27.5 (6.1) | 26.4 (9.4) | 0.16 | 28.5 (7.6) | 0.97 |
TC | 5.0 (1.8) | 5.3 (1.8) | <0.001 | 5.2 (2.1) | 0.01 |
LDL-C | 2.8 (1.2) | 3.1 (1.3) | 0.02 | 3.1 (1.6) | 0.05 |
Lp(a) | 96 (271) | 77 (228) | 0.02 | 88 (208) | 0.09 |
Non-HDL-C | 3.2 (1.6) | 3.5 (1.5) | 0.06 | 3.5 (1.5) | 0.21 |
HDL-C | 1.3 (0.3) | 1.4 (0.6) | 0.001 | 1.4 (0.6) | 0.01 |
ApoA1 | 1.4 (0.3) | 1.6 (0.3) | <0.001 | 1.5 (0.3) | 0.03 |
Triglycerides | 1.3 (0.7) | 1.3 (0.7) | 0.97 | 1.2 (0.6) | 0.23 |
SR-BI | Baseline | 6 Weeks | 6 Months | |||||||
---|---|---|---|---|---|---|---|---|---|---|
B (95% CI) | p | B | 95% CI | p | B | 95% CI | p | |||
HDL-C | 1.68 (0.91 to 2.45) | <0.005 | 1.92 | 1.27 to 2.57 | <0.005 | 1.67 | 0.94 to 2.40 | <0.005 | ||
Coffee | 0.72 (0.19 to 1.25) | 0.01 | 0.53 | 0.00 to 1.05 | 0.049 | |||||
ACBA1 | Baseline | 6 Weeks | 6 Months | |||||||
B (95% CI) | p | B | 95% CI | p | B | 95% CI | p | |||
LDL-C | 1.07 (0.55 to 1.58) | <0.005 | 0.82 | 0.28 to 1.36 | <0.005 | |||||
TRG | 1.16 (0.33 to 1.99) | 0.01 | ||||||||
ABCG1 | Baseline | 6 Weeks | 6 Months | |||||||
B (95% CI) | p | B | 95% CI | p | B | 95% CI | p | |||
HDL-C | 0.81 | 0.02 to 1.61 | 0.046 | |||||||
Coffee | 1.01 | 0.27 to 1.75 | 0.01 | 0.65 | 0.02 to 1.28 | 0.04 | ||||
HbA1c | 0.90 (−1.82 to 0.01) | 0.05 | ||||||||
CLC | Baseline | 6 Weeks | 6 Months | |||||||
B (95% CI) | p | B | 95% CI | p | B | 95% CI | p | |||
LDL-C | 3.37 (0.62 to 6.12) | 0.02 | 3.98 | 0.76 to 7.19 | 0.02 |
SR-BI | Change from Baseline to 6 Weeks | Change from Baseline to 6 Months | |||
---|---|---|---|---|---|
B (95% CI) | p | B | 95% CI | p | |
HDL-C Δ | 1.66 (80.86 to 2.46) | <0.005 | 2.46 | 1.46 to 3.46 | <0.005 |
ESR Δ | −0.04 | 0.08 to 0.01 | 0.01 | ||
ACBA1 | Change from Baseline to 6 Weeks | Change from Baseline to 6 Months | |||
B (95% CI) | p | B | 95% CI | p | |
TRG Δ | 0.82 | 0.16 to 1.48 | 0.02 | ||
ABCG1 | Change from Baseline to 6 Weeks | Change from Baseline to 6 Months | |||
B (95% CI) | p | B | 95% CI | p | |
sC5b-9 Δ | −1.22 (−2.37 to −0.08) | 0.04 | |||
CLC | Change from Baseline to 6 Weeks | Change from Baseline to 6 Months | |||
B (95% CI) | p | B | 95% CI | p | |
LDL-C Δ | −3.53 | −7.13 to 0.06 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hokstad, I.; Greco, D.; Deyab, G.; Fagerland, M.W.; Agewall, S.; Hjeltnes, G.; Zimetti, F.; Bernini, F.; Ronda, N.; Hollan, I. Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies. J. Clin. Med. 2022, 11, 7330. https://doi.org/10.3390/jcm11247330
Hokstad I, Greco D, Deyab G, Fagerland MW, Agewall S, Hjeltnes G, Zimetti F, Bernini F, Ronda N, Hollan I. Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies. Journal of Clinical Medicine. 2022; 11(24):7330. https://doi.org/10.3390/jcm11247330
Chicago/Turabian StyleHokstad, Ingrid, Daniela Greco, Gia Deyab, Morten Wang Fagerland, Stefan Agewall, Gunnbjørg Hjeltnes, Francesca Zimetti, Franco Bernini, Nicoletta Ronda, and Ivana Hollan. 2022. "Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies" Journal of Clinical Medicine 11, no. 24: 7330. https://doi.org/10.3390/jcm11247330
APA StyleHokstad, I., Greco, D., Deyab, G., Fagerland, M. W., Agewall, S., Hjeltnes, G., Zimetti, F., Bernini, F., Ronda, N., & Hollan, I. (2022). Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies. Journal of Clinical Medicine, 11(24), 7330. https://doi.org/10.3390/jcm11247330