Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future
Abstract
:1. Introduction
2. What Is Artificial Intelligence and Its Current Application in Endoscopy?
- -
- Computer-aided detection (CADe), which detects gastrointestinal lesions;
- -
- Computer-aided diagnosis (CADx), which characterizes gastrointestinal lesions;
- -
- Computer-aided monitoring (CADm), which evaluates the procedure and the endoscopist, thus improving the quality of endoscopy.
3. AI in the Diagnosis of IBD
4. AI in UC, State-of-the-Art
5. AI in CD, State-of-the-Art
6. AI for the Detection of Neoplasms in Long-Standing IBD
7. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Windsor, J.W.; Kaplan, G.G. Evolving Epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar] [CrossRef]
- Wright, E.K.; Kamm, M.A. Impact of Drug Therapy and Surgery on Quality of Life in Crohn’s Disease. Inflamm. Bowel Dis. 2015, 21, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, J.D.; Cheifetz, A.S. Crohn Disease: Epidemiology, Diagnosis, and Management. Mayo Clin. Proc. 2017, 92, 1088–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn’s Colitis 2019, 13, 144K–164K. [Google Scholar] [CrossRef] [Green Version]
- Solitano, V.; D’Amico, F.; Allocca, M.; Fiorino, G.; Zilli, A.; Loy, L.; Gilardi, D.; Radice, S.; Correale, C.; Danese, S.; et al. Re-discovering Histology: What Is New in Endoscopy for Inflammatory Bowel Disease? Ther. Adv. Gastroenterol. 2021, 14, 1–19. [Google Scholar]
- Lui, T.K.L.; Leung, W.K. Is artificial intelligence the final answer to missed polyps in colonoscopy? World J. Gastroenterol. 2020, 26, 5248–5255. [Google Scholar] [CrossRef]
- Swager, A.-F.; van der Sommen, F.; Klomp, S.; Zinger, S.; Meijer, S.; Schoon, E.J.; Bergman, J.J.; de With, P.H.; Curvers, W.L. Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy. Gastrointest. Endosc. 2017, 86, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repici, A.; Badalamenti, M.; Maselli, R.; Correale, L.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; Fugazza, A.; et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterol. 2020, 159, 512–520.e7. [Google Scholar] [CrossRef]
- Klare, P.; Sander, C.; Prinzen, M.; Haller, B.; Nowack, S.; Abdelhafez, M.; Poszler, A.; Brown, H.; Wilhelm, D.; Schmid, R.M.; et al. Automated polyp detection in the colorectum: A prospective study (with videos). Gastrointest. Endosc. 2019, 89, 576–582.e1. [Google Scholar] [CrossRef]
- Khorasani, H.M.; Usefi, H.; Peña-Castillo, L. Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning. Sci. Rep. 2020, 10, 13744. [Google Scholar] [CrossRef]
- Waljee, A.K.; Wallace, B.; Cohen-Mekelburg, S.; Liu, Y.; Liu, B.; Sauder, K.; Stidham, R.W.; Zhu, J.; Higgins, P.D.R. Development and Validation of Machine Learning Models in Prediction of Remission in Patients with Moderate to Severe Crohn Disease. JAMA Netw. Open 2019, 2, e193721. [Google Scholar] [CrossRef]
- Travis, S.P.L.; Schnell, D.; Krzeski, P.; Abreu, M.T.; Altman, D.G.; Colombel, J.-F.; Feagan, B.G.; Hanauer, S.B.; Lémann, M.; Lichtenstein, G.R.; et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: The Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Gut 2011, 61, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gralnek, I.M.; Defranchis, R.; Seidman, E.; Leighton, J.A.; Legnani, P.; Lewis, B.S. Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change. Aliment. Pharmacol. Ther. 2007, 27, 146–154. [Google Scholar] [CrossRef]
- Niv, Y.; Ilani, S.; Levi, Z.; Hershkowitz, M.; Niv, E.; Fireman, Z.; Odonnel, S.; Omorain, C.; Eliakim, R.; Scapa, E.; et al. Vali-dation of the Capsule Endoscopy Crohns Disease Activity Index (CECDAI or Niv Score): A Multicenter Prospective Study. Endoscopy 2012, 44, 21–26. [Google Scholar] [PubMed]
- Rosa, B.; Pinho, R.; De Ferro, S.M.; Almeida, N.; Cotter, J.; Saraiva, M.M. Endoscopic Scores for Evaluation of Crohn’s Disease Activity at Small Bowel Capsule Endoscopy: General Principles and Current Applications. GE Port. J. Gastroenterol. 2016, 23, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- El Hajjar, A.; Rey, J.-F. Artificial intelligence in gastrointestinal endoscopy: General overview. Chin. Med. J. 2020, 133, 326–334. [Google Scholar] [CrossRef]
- Nakase, H.; Hirano, T.; Wagatsuma, K.; Ichimiya, T.; Yamakawa, T.; Yokoyama, Y.; Hayashi, Y.; Hirayama, D.; Kazama, T.; Yoshii, S.; et al. Artificial intelligence-assisted endoscopy changes the definition of mucosal healing in ulcerative colitis. Dig. Endosc. 2020, 33, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Tziortziotis, I.; Laskaratos, F.-M.; Coda, S. Role of Artificial Intelligence in Video Capsule Endoscopy. Diagnostics 2021, 11, 1192. [Google Scholar] [CrossRef]
- Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep Learning in Medical Image Analysis. Adv. Exp. Med. Biol. 2020, 1213, 3–21. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Choi, J.; Shin, K.; Jung, J.; Bae, H.-J.; Kim, D.H.; Byeon, J.-S.; Kim, N. Convolutional Neural Network Technology in Endoscopic Imaging: Artificial Intelligence for Endoscopy. Clin. Endosc. 2020, 53, 117–126. [Google Scholar] [CrossRef]
- Eickhoff, A.; Van Dam, J.; Jakobs, R.; Kudis, V.; Hartmann, D.; Damian, U.; Weickert, U.; Schilling, D.; Riemann, J.F. Computer-Assisted Colonoscopy (The NeoGuide Endoscopy System): Results of the First Human Clinical Trial (“PACE Study”). Am. J. Gastroenterol. 2007, 102, 261–266. [Google Scholar] [CrossRef]
- Sumiyama, K.; Futakuchi, T.; Kamba, S.; Matsui, H.; Tamai, N. Artificial intelligence in endoscopy: Present and future perspectives. Dig. Endosc. 2021, 33, 218–230. [Google Scholar] [CrossRef]
- Ichimasa, K.; Kudo, S.-E.; Mori, Y.; Misawa, M.; Matsudaira, S.; Kouyama, Y.; Baba, T.; Hidaka, E.; Wakamura, K.; Hayashi, T.; et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 2018, 50, 230–240. [Google Scholar] [CrossRef]
- Hassan, C.; Wallace, M.B.; Sharma, P.; Maselli, R.; Craviotto, V.; Spadaccini, M.; Repici, A. New artificial intelligence system: First validation study versus experienced endoscopists for colorectal polyp detection. Gut 2019, 69, 799–800. [Google Scholar] [CrossRef]
- Hassan, C.; Badalamenti, M.; Maselli, R.; Correale, L.; Iannone, A.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; et al. Computer-aided detection-assisted colonoscopy: Classification and relevance of false positives. Gastrointest. Endosc. 2020, 92, 900–904.e4. [Google Scholar] [CrossRef] [PubMed]
- Hassan, C.; Spadaccini, M.; Iannone, A.; Maselli, R.; Jovani, M.; Chandrasekar, V.T.; Antonelli, G.; Yu, H.; Areia, M.; Dinis-Ribeiro, M.; et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 93, 77–85.e6. [Google Scholar] [CrossRef] [PubMed]
- Mossotto, E.; Ashton, J.J.; Coelho, T.; Beattie, R.M.; MacArthur, B.D.; Ennis, S. Classification of Paediatric Inflammatory Bowel Disease using Machine Learning. Sci. Rep. 2017, 7, 2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quénéhervé, L.; David, G.; Bourreille, A.; Hardouin, J.B.; Rahmi, G.; Neunlist, M.; Brégeon, J.; Coron, E. Quantitative assessment of mucosal architecture using computer-based analysis of confocal laser endomicroscopy in inflammatory bowel diseases. Gastrointest. Endosc. 2019, 89, 626–636. [Google Scholar] [CrossRef]
- Kiesslich, R.; Burg, J.; Vieth, M.; Gnaendiger, J.; Enders, M.; Delaney, P.; Polglase, A.; McLaren, W.; Janell, D.; Thomas, S.; et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 2004, 127, 706–713. [Google Scholar] [CrossRef] [PubMed]
- De Chambrun, G.P.; Blanc, P.; Peyrin-Biroulet, L. Current evidence supporting mucosal healing and deep remission as important treatment goals for inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- De Chambrun, G.P.; Peyrin-Biroulet, L.; Lémann, M.; Colombel, J.-F. Clinical implications of mucosal healing for the management of IBD. Nat. Rev. Gastroenterol. Hepatol. 2009, 7, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Saito, H.; Kumagai, Y.; Shichijo, S.; Aoyama, K.; Tada, T. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 2019, 89, 416–421.e1. [Google Scholar] [CrossRef] [PubMed]
- Stidham, R.W.; Liu, W.; Bishu, S.; Rice, M.D.; Higgins, P.D.R.; Zhu, J.; Nallamothu, B.K.; Waljee, A.K. Performance of a Deep Learning Model vs Human Reviewers in Grading Endoscopic Disease Severity of Patients with Ulcerative Colitis. JAMA Netw. Open 2019, 2, e193963. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, K.; Requa, J.; Karnes, W.; Gudivada, R.C.; Shen, J.; Rael, E.; Arora, V.; Dao, T.; Ninh, A.; McGill, J. Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks. Gastroenterology 2021, 160, 710–719.e2. [Google Scholar] [CrossRef]
- Yao, H.; Najarian, K.; Gryak, J.; Bishu, S.; Rice, M.D.; Waljee, A.K.; Wilkins, H.J.; Stidham, R.W. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest. Endosc. 2021, 93, 728–736.e1. [Google Scholar] [CrossRef] [PubMed]
- Bhambhvani, H.P.; Zamora, A. Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 645–649. [Google Scholar] [CrossRef]
- Becker, B.G.; Arcadu, F.; Thalhammer, A.; Serna, C.G.; Feehan, O.; Drawnel, F.; Oh, Y.S.; Prunotto, M. Training and deploying a deep learning model for endoscopic severity grading in ulcerative colitis using multicenter clinical trial data. Ther. Adv. Gastrointest. Endosc. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Maeda, Y.; Kudo, S.-E.; Ogata, N.; Misawa, M.; Iacucci, M.; Homma, M.; Nemoto, T.; Takishima, K.; Mochida, K.; Miyachi, H.; et al. Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: A prospective study. Gastrointest Endosc. 2021, 22, S0016-5107(21)01731-4, Epub ahead of print. [Google Scholar] [CrossRef]
- Takenaka, K.; Ohtsuka, K.; Fujii, T.; Negi, M.; Suzuki, K.; Shimizu, H.; Oshima, S.; Akiyama, S.; Motobayashi, M.; Nagahori, M.; et al. Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images from Patients with Ulcerative Colitis. Gastroenterology 2020, 158, 2150–2157. [Google Scholar] [CrossRef]
- Park, S.; Abdi, T.; Gentry, M.; Laine, L. Histological Disease Activity as a Predictor of Clinical Relapse Among Patients With Ulcerative Colitis: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2016, 111, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kudo, S.-E.; Mori, Y.; Misawa, M.; Ogata, N.; Sasanuma, S.; Wakamura, K.; Oda, M.; Mori, K.; Ohtsuka, K. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest. Endosc. 2019, 89, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamaru, H.; Wu, S.Y.S.; Saito, Y. Endocytoscopy: Technology and clinical application in the lower GI tract. Transl. Gastroenterol. Hepatol. 2020, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Honzawa, Y.; Matsuura, M.; Higuchi, H.; Sakurai, T.; Seno, H.; Nakase, H. A novel endoscopic imaging system for quantitative evaluation of colonic mucosal inflammation in patients with quiescent ulcerative colitis. Endosc. Int. Open 2020, 8, E41–E49. [Google Scholar] [CrossRef] [Green Version]
- Bossuyt, P.; Nakase, H.; Vermeire, S.; De Hertogh, G.; Eelbode, T.; Ferrante, M.; Hasegawa, T.; Willekens, H.; Ikemoto, Y.; Makino, T.; et al. Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut 2020, 69, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- McCain, J.D.; Pasha, S.F.; Leighton, J.A. Role of Capsule Endoscopy in Inflammatory Bowel Disease. Gastrointest. Endosc. Clin. N. Am. 2021, 31, 345–361. [Google Scholar] [CrossRef]
- Girgis, H.Z.; Mitchell, B.R.; Dassopoulos, T.; Mullin, G.; Hager, G. An intelligent system to detect Crohn’s disease inflammation in Wireless Capsule Endoscopy videos. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE 2010), Rotterdam, The Netherlands, 14–17 April 2010; pp. 1373–1376. [Google Scholar]
- Kumar, R.; Zhao, Q.; Seshamani, S.; Mullin, G.; Hager, G.; Dassopoulos, T. Assessment of Crohn’s Disease Lesions in Wireless Capsule Endoscopy Images. IEEE Trans. Biomed. Eng. 2011, 59, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Charisis, V.S.; Hadjileontiadis, L.J. Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy images. World J. Gastroenterol. 2016, 22, 8641–8657. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–613.e2. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Grinman, A.; Soffer, S.; Yehuda, R.M.; Barzilay, O.; Amitai, M.M.; Konen, E.; Ben-Horin, S.; Eliakim, R.; Barash, Y.; et al. Automated Detection of Crohn’s Disease Intestinal Strictures on Capsule Endoscopy Images Using Deep Neural Networks. J. Crohn’s Coliti 2021, 15, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2019, 89, 357–363.e2. [Google Scholar] [CrossRef] [PubMed]
- Barash, Y.; Azaria, L.; Soffer, S.; Yehuda, R.M.; Shlomi, O.; Ben-Horin, S.; Eliakim, R.; Klang, E.; Kopylov, U. Ulcer severity grading in video capsule images of patients with Crohn’s disease: An ordinal neural network solution. Gastrointest. Endosc. 2021, 93, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Majtner, T.; Brodersen, J.B.; Herp, J.; Kjeldsen, J.; Halling, M.L.; Jensen, M.D. A deep learning framework for autonomous detection and classification of Crohn’s disease lesions in the small bowel and colon with capsule endoscopy. Endosc. Int. Open 2021, 9, E1361–E1370. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.S.; de Mascarenhas Saraiva, M.J.D.Q.E.C.; Afonso, J.P.L.; Ribeiro, T.F.C.; Cardoso, H.M.C.; Andrade, A.P.R.; Parente, M.P.L.; Jorge, R.N.; Lopes, S.I.O.; de Macedo, G.M.G. Identification of Ulcers and Erosions by the Novel Pillcam™ Crohn’s Capsule Using a Convolutional Neural Network: A Multicentre Pilot Study. J. Crohn’s Colitis 2021, 1–4. [Google Scholar] [CrossRef]
- Sidhu, R.; Sanders, D.S.; Morris, A.J.; McAlindon, M.E. Guidelines on small bowel enteroscopy and capsule endoscopy in adults. Gut 2007, 57, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Flamant, M.; Trang, C.; Maillard, O.; Sacher-Huvelin, S.; Le Rhun, M.; Galmiche, J.-P.; Bourreille, A. The Prevalence and Outcome of Jejunal Lesions Visualized by Small Bowel Capsule Endoscopy in Crohn’s Disease. Inflamm. Bowel Dis. 2013, 19, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.B.; Rosa, B.; Cotter, J. Mucosal healing in Crohn’s disease—Are we reaching as far as possible with capsule endoscopy? J. Crohn’s Colitis 2014, 8, 1566–1567. [Google Scholar] [CrossRef] [Green Version]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohn’s Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kudo, S.E.; Ogata, N.; Misawa, M.; Mori, Y.; Mori, K.; Ohtsuka, K. Can Artificial Intelligence Help to Detect Dys-plasia in Patients with Ulcerative Colitis? Endoscopy 2021, 53, E273–E274. [Google Scholar] [PubMed]
- Kudo, S.-E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakamura, H.; Ichimasa, K.; et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881.e2. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, S.; Kusaba, Y.; Ohuchi, A.; Nagata, T.; Mitsuyama, K.; Tsuruta, O.; Torimura, T. Is artificial intelligence a superior diagnostician in ulcerative colitis? Laryngo-Rhino-Otologie 2021, 53, E75–E76. [Google Scholar] [CrossRef] [PubMed]
Supervised | The algorithm is trained by labeling data tagged with the correct answer |
Semisupervised | The algorithm is trained without marking the training data |
Unsupervised | The algorithm is structured on a large amount of unlabeled data based on a small amount of labeled data |
Author (Year) | Study Design | Population | Aim | Results |
---|---|---|---|---|
Mossotto et al. (2017) | Prospective cohort study | 287 paediatric IBD | To develop a ML model to classify disease subtypes | Classification accuracy with supervised ML models of 71.0%, 76.9%, and 82.7% utilizing endoscopic data only, histological only, and combined endoscopic/histological data, respectively |
Quénéhervé et al. (2019) | Retrospective cohort study | 23 CD patients, 27 UC patients, and 9 control patients | To test computer-based analysis of CLE images and discriminate healthy subjects vs. IBD, and UC vs. CD | Sensitivity of 100% and specificity of 100% in IBD diagnosis; sensitivity of 92% and specificity of 91% in IBD differential diagnosis |
Ozawa et al. (2019) | Retrospective cohort study | 26,304 colonoscopy images from a cumulative total of 841 UC patients | To test a CNN-based CAD system in identification of endoscopic inflammation severity | AUROCs of 0.86 and 0.98 to identify MES 0 and 0–1, respectively |
Stidham et al. (2019) | Retrospective cohort study | 16,514 images from 3082 UC patients | To test DL models in grading endoscopic severity of UC | AUROCs of 0.96, PPV of 0.87, sensitivity of 83.0%, specificity of 96.0%, and NPV of 0.94 in distinguishing endoscopic remission from MES 2–3 |
Gottlieb et al. (2021) | Phase II randomized controlled study | 249 UC patients | To test a recurrent neural network model in predicting MES and UCEIS from individual full-length endoscopy videos | Excellent agreement metric with a QWK of 0.84 for MES and 0.85 for UCEIS |
Yao et al. (2021) | Phase II randomized controlled study | 315 videos from 157 UC patients | To test a fully automated video analysis system for grading endoscopic disease | Excellent performance with a sensitivity of 0.90 and specificity of 0.87; correct prediction of MES in 78% of videos (k = 0.84) |
Bhambhani et al. (2021) | Retrospective cohort study | 777 endoscopic images from 777 UC patients | To test a DL models in the automated grading of each individual MES | AUC of 0.89, 0.8, and 0.96 for classification of MES 1, 2, and 3, respectively; overall accuracy of 77.2% |
Becker et al. (2021) | Prospective cohort study | 1672 videos from 1105 UC patients | To test a DL–based system on raw endoscopic videos | AUC of 0.84 for MES ≥ 1, 0.85 for MES ≥ 2 and 0.85 for MES ≥ 3 |
Maeda et al. (2021) | Prospective cohort study | 145 UC patients | To test AI in stratifying the relapse risk of patients in clinical remission | Relapse rate significantly higher in the AI-active group than in the AI-healing group (28.4% vs. 4.9%, p < 0.001) |
Takenaka et al. (2020) | Prospective cohort study | 40,758 images of colonoscopies and 6885 biopsy results from 2012 UC patients | To test a DNN system based on endoscopic images of UC for predicting endoscopic and histological remission | Accuracy of 90.1% and κ coefficient of 0.798 for endoscopic remission; accuracy of 92.9%and κ coefficient of 0.85 for histological remission |
Maeda et al. (2019) | Retrospective cohort study | 187 UC patients | To test a CAD system in predicting persistent histologic inflammation using EC | Sensitivity, specificity, and accuracy of 74%, 97%, and 91%, respectively; κ =1 |
Honzawa et al. 2019 | Retrospective cohort study | 52 UC patients in clinical remission | To test a new endoscopic imaging system using the iscan TE-c (MAGIC score) to quantify mucosal inflammation in patients with quiescent UC | MAGIC score significantly higher in the MES 1 than in the MES 0 group (p = 0.0034); MAGIC score significantly correlated with the Geboes score (p = 0.015) |
Bossuyt et al. (2020) | Prospective cohort study | 29 UC patients and 6 controls | To test a RD algorithm based on channel of the red-green-blue pixel values and pattern recognition from endoscopic images | Good correlation between RD and RHI (r = 0.74, p < 0.0001), MES (r = 0.76, p < 0.0001), and UCEIS (r = 0.74, p < 0.0001) |
Author (Year) | Study Design | Population | Aim | Results |
---|---|---|---|---|
Girgis et al. (2010) | Retrospective cohort study | 47 videos from 29 CD, 17 control, 1 celiac patient | To test a system able to detect inflammation among the thousands of images acquired by the WCE | Total accuracy, specificity, and sensitivity of 87%, 93%, and 80%, respectively |
Kumar et al. (2012) | Retrospective cohort study | 47 videos, 30 of which contained CD lesions | To test a supervised classification for CD lesions and for quantitative assessment of lesion severity | Good precision (>90% for lesion detection) and recall (>90%) for lesions of varying severity |
Charisis et al. (2016) | Retrospective cohort study | 800-image database from 13 CD patients | To test HAF-DLac approach for automated lesion detection | Accuracy, sensitivity, specificity, and precision of 93.8%, 95.2%, 92.4%, and 92.6%, respectively |
Klang et al. (2020) | Retrospective cohort study | 17,640 CE images from 49 CD patients | To test a CNN in classifying images into either normal mucosa or mucosal ulcers | AUC of 0.99 and accuracy ranging from 95.4% to 96.7% |
Klang et al. (2021) | Retrospective cohort study | 27,892 CE images | To test a DLN for detecting CE images of strictures | For classification of strictures vs. nonstrictures, average accuracy of 93.5% (±6.7%) |
Barash et al. (2021) | Retrospective cohort study | 17,640 CE images from 49 CD patients | To test a CNN in automatically grading images of ulcers and compare the resulting algorithm with a consensus reading | Algorithm accuracy of 0.91 for grade 1 vs. grade 3 ulcers, of 0.78 for grade 2 vs. grade 3, and of 0.62 for grade 1 vs. grade 2 |
Majtner et al. (2021) | Retrospective cohort study | 7744 images from 38 CD patients (small bowel 4972, colon 2772) | To test the ability of a DL framework to detect lesions with panenteric capsule endoscopy | Diagnostic accuracy of 98.5% for small bowel and 98.1% for colon |
Ferreira JPS et al. (2021) | Retrospective cohort study | 8085 images | To develop and validate a CNN for ulcer and erosion detection using panenteric capsule endoscopy images | Model sensitivity, specificity, precision, and accuracy of 90.0%, 96.0%, 97.1%, and 92.4%, respectively |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solitano, V.; Zilli, A.; Franchellucci, G.; Allocca, M.; Fiorino, G.; Furfaro, F.; D’Amico, F.; Danese, S.; Al Awadhi, S. Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. J. Clin. Med. 2022, 11, 569. https://doi.org/10.3390/jcm11030569
Solitano V, Zilli A, Franchellucci G, Allocca M, Fiorino G, Furfaro F, D’Amico F, Danese S, Al Awadhi S. Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. Journal of Clinical Medicine. 2022; 11(3):569. https://doi.org/10.3390/jcm11030569
Chicago/Turabian StyleSolitano, Virginia, Alessandra Zilli, Gianluca Franchellucci, Mariangela Allocca, Gionata Fiorino, Federica Furfaro, Ferdinando D’Amico, Silvio Danese, and Sameer Al Awadhi. 2022. "Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future" Journal of Clinical Medicine 11, no. 3: 569. https://doi.org/10.3390/jcm11030569
APA StyleSolitano, V., Zilli, A., Franchellucci, G., Allocca, M., Fiorino, G., Furfaro, F., D’Amico, F., Danese, S., & Al Awadhi, S. (2022). Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. Journal of Clinical Medicine, 11(3), 569. https://doi.org/10.3390/jcm11030569