Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer
Abstract
:1. Introduction
1.1. Histopathologic Types: Local Recurrence and Distant Metastasis Rates
1.1.1. Adenoid Cystic Carcinoma
1.1.2. Mucoepidermoid Carcinoma
1.1.3. Acinic Cell Carcinoma
1.1.4. Salivary Duct Carcinoma
1.1.5. Adenocarcinoma NOS
2. Systemic Therapy for Advanced and Recurrent Disease and Distant Metastases
2.1. Targeted Therapy and Chemotherapy
2.1.1. Adenoid Cystic Carcinomas
2.1.2. C-Kit and EGFR
2.1.3. VEGFR
2.1.4. Other Targets
2.1.5. Single and Combination Cytotoxic Chemotherapy
2.2. Mucoepidermoid Carcinoma
2.3. Acinic Cell Carcinomas
2.4. Salivary Duct Carcinoma
2.4.1. ErbB2/HER-2
2.4.2. Androgen Receptor Inhibitors/GnRH/LHRH Agonists
2.4.3. Other Targets
2.5. Adenocarcinoma NOS
Vinca Alkaloids/Platinum
3. Immunotherapy
3.1. In Vitro
3.2. Clinical Trials
4. Potential New Systemic Therapeutic Strategies
5. Targeted Therapies Based on Actionable Molecular Alterations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
AcCC | acinic cell carcinoma |
ACC | adenoid cystic carcinoma |
AR | androgen-receptor |
EGFR | epidermal growth factor receptor |
FGFR | fibroblast growth factor receptor |
HER-2 | human epidermal growth factor receptor 2 |
MEC | mucoepidermoid carcinoma |
PD-1 | programmed death receptor 1 |
PD-L1 | programmed death receptor ligand 1 |
PDGRF | platelet derived growth factor receptor beta |
SDC | salivary duct carcinoma |
VEGF | vascular endothelial growth factor |
References
- Jang, J.Y.; Choi, N.; Ko, Y.-H.; Chung, M.K.; Son, Y.-I.; Baek, C.-H.; Baek, K.-H.; Jeong, H. Treatment outcomes in metastatic and localized high-grade salivary gland cancer: High chance of cure with surgery and post-operative radiation in T1–2 N0 high-grade salivary gland cancer. BMC Cancer 2018, 18, 672. [Google Scholar] [CrossRef] [Green Version]
- Ihrler, S.; Guntinas-Lichius, O.; Haas, C.; Mollenhauer, M. Updates on tumours of the salivary glands: 2017 WHO classification. Pathologe 2018, 39, 11–17. [Google Scholar] [CrossRef]
- Seethala, R.R.; Stenman, G. Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: Tumors of the Salivary Gland. Head Neck Pathol. 2017, 11, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Spiro, R.; Huvos, A.G.; Strong, E.W. Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases. Am. J. Surg. 1974, 128, 512–520. [Google Scholar] [CrossRef]
- Dodd, R.; Slevin, N. Salivary gland adenoid cystic carcinoma: A review of chemotherapy and molecular therapies. Oral Oncol. 2006, 42, 759–769. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Mitani, Y.; Diao, L.; Guijarro, I.; Wang, J.; Zweidler-McKay, P.; Bell, D.; William, N., Jr.; Glisson, B.S.; Wick, M.J.; et al. Activating NOTCH1 Mutations Define a Distinct Subgroup of Patients With Adenoid Cystic Carcinoma Who Have Poor Prognosis, Propensity to Bone and Liver Metastasis, and Potential Responsiveness to Notch1 Inhibitors. J. Clin. Oncol. 2017, 35, 352–360. [Google Scholar] [CrossRef]
- Lim, W.S.; Oh, J.S.; Roh, J.-L.; Kim, J.S.; Kim, S.-J.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Prediction of distant metastasis and survival in adenoid cystic carcinoma using quantitative 18 F-FDG PET/CT measurements. Oral Oncol. 2018, 77, 98–104. [Google Scholar] [CrossRef]
- Khan, A.J.; DiGiovanna, M.P.; Ross, D.A.; Sasaki, C.T.; Carter, D.; Son, Y.H.; Haffty, B.G. Adenoid cystic carcinoma: A retrospective clinical review. Int. J. Cancer 2001, 96, 149–158. [Google Scholar] [CrossRef]
- Chummun, S.; McLean, N.; Kelly, C.; Dawes, P.J.D.K.; Fellows, S.; Meikle, D.; Soames, J.V. Adenoid cystic carcinoma of the head and neck. Br. J. Plast. Surg. 2001, 54, 476–480. [Google Scholar] [CrossRef]
- Garden, A.; Weber, R.; Morrison, W.; Ang, K.; Peters, L. The influence of positive margins and nerve invasion in adenoid cystic carcinoma of the head and neck treated with surgery and radiation. Int. J. Radiat. Oncol. Biol. Phys. 1995, 32, 619–626. [Google Scholar] [CrossRef]
- Ho, A.S.; Kannan, K.; Roy, D.M.; Morris, L.G.T.; Ganly, I.; Katabi, N.; Ramaswami, D.; Walsh, L.; Eng, S.; Huse, J.T.; et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 2013, 45, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Liu, B.; Rao, P.; Borra, V.J.; Zafereo, M.; Weber, R.S.; Kies, M.; Lozano, G.; Futreal, P.A.; Caulin, C.; et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin. Cancer Res. 2017, 176, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drier, Y.; Cotton, M.J.; Williamson, K.E.; Gillespie, S.; Ryan, R.; Kluk, M.J.; Carey, C.D.; Rodig, S.J.; Sholl, L.M.; Afrogheh, A.H.; et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat. Genet. 2016, 48, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Classification 4th Edition on Head and Neck Tumors; WHO: Geneva, Switzerland, 2017.
- Salama, A.; Magdy, N.; Salem, M.; Ramzy, N.; Mahmoud, M. Mucoepidermoid carcinoma a reappraisal of the influence of tumor grading on prognosis. Egypt. J. Pathol. 2012, 32, 82–90. [Google Scholar] [CrossRef]
- Tonon, G.; Modi, S.; Wu, L.; Kubo, A.; Coxon, A.B.; Komiya, T.; O’Neil, K.; Stover, K.; Elnaggar, A.K.; Griffin, J.D.; et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet. 2003, 33, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behboudi, A.; Enlund, F.; Winnes, M.; Andrén, Y.; Nordkvist, A.; Leivo, I.; Flaberg, E.; Szekely, L.; Mäkitie, A.; Grenman, R.; et al. Molecular classification of mucoepidermoid carcinomas—Prognostic significance of theMECT1–MAML2 fusion oncogene. Genes, Chromosom. Cancer 2006, 45, 470–481. [Google Scholar]
- Chen, M.; Roman, S.; Sosa, J.; Judson, B. Histologic grade as prognostic indicator for mucoepidermoid carcinoma: A population-level analysis of 2400 patients. Head Neck. 2014, 36, 158–163. [Google Scholar] [CrossRef]
- Skálová, A.; Sima, R.; Vanecek, T.; Muller, S.; Korabecna, M.; Nemcova, J.; Elmberger, G.; Leivo, I.; Passador-Santos, F.; Walter, J.; et al. Acinic cell carcinoma with high-grade transformation: A report of 9 cases with immunohistochemical study and analysis of TP53 and HER-2/neu genes. Am. J. Surg. Pathol. 2009, 33, 1137–1145. [Google Scholar] [CrossRef]
- Poorten, V.V.; Triantafyllou, A.; Thompson, L.; Bishop, J.; Hauben, E.; Hunt, J.B.; Skalova, A.; Stenman, G.; Takes, R.P.; Gnepp, D.R.; et al. Salivary acinic cell carcinoma: Reappraisal and update. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3511–3531. [Google Scholar] [CrossRef] [Green Version]
- Neskey, D.M.; Klein, J.D.; Hicks, S.; Garden, A.; Bell, D.M.; El-Naggar, A.K.; Kies, M.S.; Weber, R.S.; Kupferman, M.E. Prognostic Factors Associated with Decreased Survival in Patients with Acinic Cell Carcinoma. JAMA Otolaryngol. Neck Surg. 2013, 139, 1195–1202. [Google Scholar] [CrossRef]
- Gomez, D.R.; Katabi, N.; Zhung, J.; Wolden, S.L.; Zelefsky, M.; Kraus, D.H.; Shah, J.; Wong, R.J.; Ghossein, R.A.; Lee, N.Y. Clinical and pathologic prognostic features in acinic cell carcinoma of the parotid gland. Cancer 2009, 115, 2128–2137. [Google Scholar] [CrossRef]
- Haller, F.; Skálová, A.; Ihrler, S.; Bruno, M.; Bieg, M.; Moskalev, E.A.; Erber, R.; Blank, S.; Winkelmann, C.; Hebele, S.; et al. Nuclear NR4A3 Immunostaining Is a Specific and Sensitive Novel Marker for Acinic Cell Carcinoma of the Salivary Glands. Am. J. Surg. Pathol. 2019, 43, 1264–1272. [Google Scholar] [CrossRef]
- Haller, F.; Bieg, M.; Will, R.; Körner, C.; Weichenhan, D.; Bott, A.; Ishaque, N.; Lutsik, P.; Moskalev, E.A.; Mueller, S.K.; et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat. Commun. 2019, 10, 368. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Sharma, A.; Schmitt, N.C.; Johnson, J.T.; Ferris, R.L.; Duvvuri, U.; Kim, S. A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol.-Head Neck Surg. 2016, 142, 489–495. [Google Scholar] [CrossRef]
- Kleinsasser, O.; Klein, H.; Hübner, G. Salivary duct carcinoma. A group of salivary gland tumors analogous to mammary duct carcinoma. Arch. Klin. Exp. Ohren. Nasen. Kehlkopfheilkd. 1968, 192, 100–105. [Google Scholar] [CrossRef]
- Skálová, A.; Stenman, G.; Simpson, R.H.; Hellquist, H.; Slouka, D.; Svoboda, T.; Bishop, J.A.; Hunt, J.L.; Nibu, K.-I.; Rinaldo, A.; et al. The Role of Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am. J. Surg. Pathol. 2018, 42, e11–e27. [Google Scholar] [CrossRef]
- Kondo, Y.; Kikuchi, T.; Esteban, J.C.; Kumaki, N.; Ogura, G.; Inomoto, C.; Hirabayashi, K.; Kajiwara, H.; Sakai, A.; Sugimoto, R.; et al. Intratumoral heterogeneity of HER2 protein and amplification ofHER2gene in salivary duct carcinoma. Pathol. Int. 2014, 64, 453–459. [Google Scholar] [CrossRef]
- Haderlein, M.; Scherl, C.; Semrau, S.; Lettmaier, S.; Hecht, M.; Erber, R.; Iro, H.; Fietkau, R.; Agaimy, A. Impact of postoperative radiotherapy and HER2/new overexpression in salivary duct carcinoma: A monocentric clinicopathologic analysis. Strahlenther. Onkol. 2017, 193, 961–970. [Google Scholar] [CrossRef]
- Di Palma, S.; Simpson, R.H.W.; Marchiò, C.; Skálová, A.; Ungari, M.; Sandison, A.; Whitaker, S.; Parry, S.; Reis-Filho, J.S. Salivary duct carcinomas can be classified into luminal androgen receptor-positive, HER2 and basal-like phenotypes*. Histopathology 2012, 61, 629–643. [Google Scholar] [CrossRef]
- Masubuchi, T.; Tada, Y.; Maruya, S.-I.; Osamura, Y.; Kamata, S.-E.; Miura, K.; Fushimi, C.; Takahashi, H.; Kawakita, D.; Kishimoto, S.; et al. Clinicopathological significance of androgen receptor, HER2, Ki-67 and EGFR expressions in salivary duct carcinoma. Int. J. Clin. Oncol. 2015, 20, 35–44. [Google Scholar] [CrossRef]
- Williams, L.; Thompson, L.; Weinreb, I.; Assaad, A.; Tuluc, M.; Din, N.; Purgina, B.; Lai, C.; Griffith, C.; Seethala, R.; et al. Salivary duct carcinoma: The predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression. Am. J. Surg. Pathol. 2015, 39, 705–713. [Google Scholar] [CrossRef]
- Schmitt, N.; Kang, H.; Sharma, A. Salivary Duct Carcinoma: An Aggressive Salivary Gland Malignancy with Opportunities for Targeted Therapy. Oral Oncol. 2017, 74, 40–48. [Google Scholar] [CrossRef]
- Bishop, J.A.; Weinreb, I.; Swanson, D.; Westra, W.H.; Qureshi, H.S.; Sciubba, J.; MacMillan, C.; Rooper, L.M.; Dickson, B.C. Microsecretory Adenocarcinoma: A Novel Salivary Gland Tumor Characterized by a Recurrent MEF2C-SS18 Fusion. Am. J. Surg. Pathol. 2019, 43, 1023–1032. [Google Scholar] [CrossRef]
- Geiger, J.L.; Ismaila, N.; Beadle, B.; Caudell, J.J.; Chau, N.; Deschler, D.; Glastonbury, C.; Kaufman, M.; Lamarre, E.; Lau, H.Y.; et al. Management of Salivary Gland Malignancy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1909–1941. [Google Scholar] [CrossRef]
- Girelli, L.; Locati, L.D.; Galeone, C.; Scanagatta, P.; Duranti, L.; Licitra, L.; Pastorino, U. Lung metastasectomy in adenoid cystic cancer: Is it worth it? Oral Oncol. 2017, 65, 114–118. [Google Scholar] [CrossRef]
- Guckenberger, M.; Baus, W.W.; Blanck, O.; Combs, S.E.; Debus, J.; Engenhart-Cabillic, R.; Gauer, T.; Grosu, A.L.; Schmitt, D.; Tanadini-Lang, S.; et al. Definition and quality requirements for stereotactic radiotherapy: Consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther. Onkol. 2020, 196, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Von der Grün, J.; Rödel, C.; Semrau, S.; Balermpas, P.; Martin, D.; Fietkau, R.; Haderlein, M. Patterns of care analysis for salivary gland cancer: A survey within the German Society of Radiation Oncology (DEGRO) and recommendations for daily practice. Strahlenther. Onkol. 2021, 198, 123–134. [Google Scholar] [CrossRef]
- Okuyama, K.; Michi, Y.; Kashima, Y.; Tomioka, H.; Hirai, H.; Yokokawa, M.; Yamagata, Y.; Kuroshima, T.; Sato, Y.; Tsuchiya, M.; et al. Epithelial-Myoepithelial Carcinoma of the Minor Salivary Glands: Case Series with Comprehensive Revie. Diagnostics 2021, 11, 2124. [Google Scholar] [CrossRef]
- Edwards, P.; Bhuiya, T.; Kelsch, R. C-kit expression in the salivary gland neoplasms adenoid cystic carcinoma, polymorphous low-grade adenocarcinoma, and monomorphic adenoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Bahl, A.; Panda, N.; Elangovan, A.; Jacques, E. Evaluation of multimodality management of adenoid cystic carcinoma of the head and neck. Indian J. Otolaryngol. Head Neck Surg. 2019, 71 (Suppl. 1), 628–632. [Google Scholar] [CrossRef]
- Sahara, S.; Herzog, A.; Nör, J. Systemic therapies for salivary gland adenoid cystic carcinoma. Am. J. Cancer Res. 2021, 11, 4092–4110. [Google Scholar]
- Wong, S.J.; Karrison, T.; Hayes, D.N.; Kies, M.S.; Cullen, K.J.; Tanvetyanon, T.; Argiris, A.; Takebe, N.; Lim, D.; Saba, N.F.; et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann. Oncol. 2016, 27, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Vered, M.; Braunstein, E.; Buchner, A. Immunohistochemical study of epidermal growth factor receptor in adenoid cystic carcinoma of salivary gland origin. Head Neck 2002, 24, 632–636. [Google Scholar] [CrossRef]
- Locati, L.D.; Bossi, P.; Perrone, F.; Potepan, P.; Crippa, F.; Mariani, L.; Casieri, P.; Orsenigo, M.; Losa, M.; Bergamini, C.; et al. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: A phase II study. Oral Oncol. 2009, 45, 574–578. [Google Scholar] [CrossRef]
- Agulnik, M.; Cohen, E.W.; Cohen, R.B.; Chen, E.X.; Vokes, E.E.; Hotte, S.J.; Winquist, E.; Laurie, S.; Hayes, D.N.; Dancey, J.E.; et al. Phase II Study of Lapatinib in Recurrent or Metastatic Epidermal Growth Factor Receptor and/or erbB2 Expressing Adenoid Cystic Carcinoma and Non-Adenoid Cystic Carcinoma Malignant Tumors of the Salivary Glands. J. Clin. Oncol. 2007, 25, 3978–3984. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, B.; Chen, X. Expressions of nuclear factor kappaB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: Correlations with the angiogenesis and clinical outcome. Clin Cancer Res. 2005, 11, 7334–7343. [Google Scholar] [CrossRef] [Green Version]
- Keam, B.; Kim, S.-B.; Shin, S.H.; Cho, B.C.; Lee, K.-W.; Kim, M.K.; Yun, H.-J.; Lee, S.-H.; Yoon, D.H.; Bang, Y.-J. Phase 2 study of dovitinib in patients with metastatic or unresectable adenoid cystic carcinoma. Cancer 2015, 121, 2612–2617. [Google Scholar] [CrossRef] [Green Version]
- Dillon, P.M.; Petroni, G.R.; Horton, B.J.; Moskaluk, C.A.; Fracasso, P.M.; Douvas, M.G.; Varhegyi, N.; Zaja-Milatovic, S.; Thomas, C.Y. A Phase II Study of Dovitinib in Patients with Recurrent or Metastatic Adenoid Cystic Carcinoma. Clin. Cancer Res. 2017, 23, 4138–4145. [Google Scholar] [CrossRef] [Green Version]
- Chau, N.G.; Hotte, S.J.; Chen, E.X.; Chin, S.F.; Turner, S.; Wang, L.; Siu, L.L. A phase II study of sunitinib in recurrent and/or metastatic adenoid cystic carcinoma (ACC) of the salivary glands: Current progress and challenges in evaluating molecularly targeted agents in ACC. Ann. Oncol. 2012, 23, 1562–1570. [Google Scholar] [CrossRef]
- Ho, A.L.; Sherman, E.J.; Baxi, S.S.; Haque, S.; Ni, A.; Antonescu, C.R.; Katabi, N.; Morris, L.G.; Chan, T.A.-T.; Pfister, D.G. Phase II study of regorafenib in progressive, recurrent/metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2016, 34, 6096. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.J.; Lee, J.Y.; Lee, S.-H.; Sun, J.-M.; Park, K.; An, H.J.; Cho, J.Y.; Kang, E.J.; Lee, H.-Y.; et al. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: A multicenter phase 2 study (Korean Cancer Study Group HN14-01). Cancer 2017, 123, 1958–1964. [Google Scholar] [CrossRef] [Green Version]
- Tchekmedyian, V.; Sherman, E.J.; Dunn, L.; Tran, C.; Baxi, S.; Katabi, N.; Antonescu, C.R.; Ostrovnaya, I.; Haque, S.S.; Pfister, D.G.; et al. Phase II Study of Lenvatinib in Patients with Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Oncol. 2019, 37, 1529–1537. [Google Scholar] [CrossRef]
- Locati, L.D.; Galbiati, D.; Calareso, G.; Alfieri, S.; Singer, S.; Cavalieri, S.; Bergamini, C.; Bossi, P.; Orlandi, E.; Resteghini, C.; et al. Patients with adenoid cystic carcinomas of the salivary glands treated with lenvatinib: Activity and quality of life. Cancer 2020, 126, 1888–1894. [Google Scholar] [CrossRef]
- Locati, L.D.; Cavalieri, S.; Bergamini, C.; Resteghini, C.; Alfieri, S.; Calareso, G.; Bossi, P.; Perrone, F.; Tamborini, E.; Quattrone, P.; et al. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck 2019, 41, 3670–3676. [Google Scholar] [CrossRef]
- Ho, A.L.; Dunn, L.; Sherman, E.J.; Fury, M.G.; Baxi, S.S.; Chandramohan, R.; Dogan, S.; Morris, L.G.T.; Cullen, G.; Haque, S.; et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann. Oncol. 2016, 27, 1902–1908. [Google Scholar] [CrossRef]
- Keller, G.; Steinmann, D.; Quaas, A.; Grünwald, V.; Janssen, S.; Hussein, K. New concepts of personalized therapy in salivary gland carcinomas. Oral Oncol. 2017, 68, 103–113. [Google Scholar] [CrossRef]
- Dalin, M.G.; Watson, P.A.; Ho, A.L.; Morris, L.G.T. Androgen Receptor Signaling in Salivary Gland Cancer. Cancers 2017, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, C.; Tada, Y.; Takahashi, H.; Nagao, T.; Ojiri, H.; Masubuchi, T.; Matsuki, T.; Miura, K.; Kawakita, D.; Hirai, H.; et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann. Oncol. 2018, 29, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Locati, L.D.; Cavalieri, S.; Bergamini, C.; Resteghini, C.; Colombo, E.; Calareso, G.; Mariani, L.; Quattrone, P.; Alfieri, S.; Bossi, P.; et al. Abiraterone Acetate in Patients With Castration-Resistant, Androgen Receptor–Expressing Salivary Gland Cancer: A Phase II Trial. J. Clin. Oncol. 2021, 39, 4061–4068. [Google Scholar] [CrossRef]
- Licitra, L.; Cavina, R.; Grandi, C.; Di Palma, S.; Guzzo, M.; Demicheli, R.; Molinari, R. Cisplatin, doxorubicin and cyclophosphamide in advanced salivary gland carcinoma. Ann. Oncol. 1996, 7, 640–642. [Google Scholar] [CrossRef]
- Locati, L.; Perrone, F.; Cortelazzi, B.; Bergamini, C.; Bossi, P.; Civelli, E.M.; Morosi, C.; Vullo, S.L.; Imbimbo, M.; Quattrone, P.; et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur. J. Cancer 2016, 69, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Marchini, S.; Spinazzè, S.; Rossi, A.; Rocca, A.; Grandi, C.; Molinari, R. Cisplatin in advanced salivary gland carcinoma. A phase II study of 25 patients. Cancer 1991, 68, 1874–1877. [Google Scholar] [CrossRef]
- Debaere, D.; Poorten, V.V.; Nuyts, S.; Hauben, E.; Schoenaers, J.; Schöffski, P.; Clement, P.M.J. Cyclophosphamide, doxorubicin, and cisplatin in advanced salivary gland cancer. B-ENT 2011, 7, 1–6. [Google Scholar] [PubMed]
- Hong, M.H.; Kim, C.G.; Koh, Y.W.; Choi, E.C.; Kim, J.; Yoon, S.O.; Kim, H.R.; Cho, B.C. Efficacy and safety of vinorelbine plus cisplatin chemotherapy for patients with recurrent and/or metastatic salivary gland cancer of the head and neck. Head Neck 2018, 40, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.; Al, E. A phase 2 study of platinum and gemcitabine in patients with advanced salivary gland cancer: A trial of the NCIC Clinical Trials Group. Cancer 2010, 116, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, M.; Pedani, F.; Succo, G.; Gabriele, A.M.; Ragona, R.; Marchionatti, S.; Bumma, C. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001, 91, 541–547. [Google Scholar] [CrossRef]
- Uijen, M.; Lassche, G.; Grunsven, A.V.E.-V.; Tada, Y.; Verhaegh, G.; Schalken, J.; Driessen, C.; van Herpen, C. Systemic therapy in the management of recurrent or metastatic salivary duct carcinoma: A systematic review. Cancer Treat. Rev. 2020, 89, 102069. [Google Scholar] [CrossRef]
- Witte, H.M.; Gebauer, N.; Lappöhn, D.; Umathum, V.G.; Riecke, A.; Arndt, A.; Steinestel, K. Prognostic Impact of PD-L1 Expression in Malignant Salivary Gland Tumors as Assessed by Established Scoring Criteria: Tumor Proportion Score (TPS), Combined Positivity Score (CPS), and Immune Cell (IC) Infiltrate. Cancers 2020, 12, 873. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.P.; Wu, Q.V.; Voutsinas, J.; Fromm, J.R.; Jiang, X.; Pillarisetty, V.G.; Lee, S.M.; Santana-Davila, R.; Goulart, B.; Baik, C.S.; et al. A Phase II Trial of Pembrolizumab and Vorinostat in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer. Clin Cancer Res. 2020, 26, 837–846. [Google Scholar] [CrossRef]
- Mahmood, U.; Bang, A.; Chen, Y.H.; Mak, R.; Lorch, J.; Hanna, G.; Nishino, M.; Manuszak, C.; Thrash, E.; Severgnini, M.; et al. A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 134–144. [Google Scholar] [CrossRef]
- Pfeffer, M.; Talmi, Y.; Catane, R.; Symon, Z.; Yosepovitch, A.; Levitt, M. A phase II study of Imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol. 2007, 43, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Hotte, S.; Winquist, E.; Lamont, E.; MacKenzie, M.; Vokes, E.; Chen, E.; Brown, S.; Pond, G.; Murgo, A.; Siu, L.; et al. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: A Princess Margaret Hospital phase II consortium study. J. Clin. Oncol. 2005, 23, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, N.; Mais, K.; Shenjere, P.; Julyan, P.; Hastings, D.; Ward, T.; Ryder, W.; Bruce, I.; Homer, J.; Slevin, N. Phase II study of cisplatin and imatinib in advanced salivary adenoid cystic carcinoma. Br. J. Oral Maxillofac. Surg. 2011, 49, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Jakob, J.A.; Kies, M.S.; Glisson, B.S.; Kupferman, M.E.; Liu, D.D.; Lee, J.J.; El-Naggar, A.K.; Gonzalez-Angulo, A.M.; Blumenschein, G.R., Jr. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck 2015, 37, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, D.J.; Silva, P.; Denton, K.; Bonington, S.; Mak, S.K.; Swindell, R.; Homer, J.; Sykes, A.J.; Lee, L.W.; Yap, B.K.; et al. Phase II trial of sorafenib in advanced salivary adenoid cystic carcinoma of the head and neck. Head Neck 2015, 37, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Li, Y.; Pinto, H.A.; Jennings, T.; Kies, M.S.; Silverman, P.; Forastiere, A.A. Phase II trial of taxol in salivary gland malignancies (E1394): A trial of the Eastern Cooperative Oncology Group. Head Neck 2006, 28, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.-Y.; Yoon, J.-H. Histone deacetylase 7 silencing induces apoptosis and autophagy in salivary mucoepidermoid carcinoma cells. J. Oral Pathol. Med. 2017, 46, 276–283. [Google Scholar] [CrossRef]
- Ettl, T.; Schwarz-Furlan, S.; Haubner, F.; Müller, S.; Zenk, J.; Gosau, M.; Reichert, T.E.; Zeitler, K. The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 2012, 48, 822–830. [Google Scholar] [CrossRef]
- Thorpe, L.M.; Schrock, A.B.; Erlich, R.L.; Miller, V.A.; Knost, J.; Le-Lindqwister, N.; Jujjavarapu, S.; Ali, S.M.; Liu, J.J. Significant and durable clinical benefit from trastuzumab in 2 patients with HER2-amplified salivary gland cancer and a review of the literature. Head Neck 2016, 39, E40–E44. [Google Scholar] [CrossRef]
- De Block, K.; Vander Poorten, V.; Dormaar, T.; Nuyts, S.; Hauben, E.; Floris, G.; Deroose, C.; Schöffski, P.; Clement, P. Metastatic HER-2-positive salivary gland carcinoma treated with trastuzumab and a taxane: A series of six patients. Acta Clin. Belg. 2016, 71, 383–388. [Google Scholar] [CrossRef]
- Takahashi, H.; Masubuchi, T.; Fushimi, C.; Matsuki, T.; Okada, T.; Kanno, C. Trastuzumab and docetaxel for HER-2 positive unresectable salivary gland carcinoma: Updated results of a phase II trial. In Proceedings of the 9th International Conference on Head and Neck Cancer, American Head and Neck Society, Seattle, WA, USA, 16–20 July 2016. [Google Scholar]
- Swain, S.M.; Baselga, J.; Kim, S.-B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.-M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2015, 372, 724–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackwell, K.L.; Burstein, H.J.; Storniolo, A.M.; Rugo, H.S.; Sledge, G.; Aktan, G.; Ellis, C.; Florance, A.; Vukelja, S.; Bischoff, J.; et al. Overall Survival Benefit with Lapatinib in Combination with Trastuzumab for Patients with Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer: Final Results From the EGF104900 Study. J. Clin. Oncol. 2012, 30, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R.; Meric-Bernstam, F.; Hurwitz, H.; Hainsworth, J.D.; Spigel, D.R.; Bose, R.; Swanton, C.; Burris, H.A.; Sweeney, C.; Yoo, B.; et al. Targeted therapy for advanced salivary cancer with HER2 or hedgehog alterations: Interim data from MyPathway. J. Clin. Oncol. 2017, 35, 6086. [Google Scholar] [CrossRef]
- Corrêa, T.S.; Matos, G.D.R.; Segura, M.; dos Anjos, C.H. Second-Line Treatment of HER2-Positive Salivary Gland Tumor: Ado-Trastuzumab Emtansine (T-DM1) after Progression on Trastuzumab. Case Rep. Oncol. 2018, 11, 252–257. [Google Scholar] [CrossRef]
- Tsurutani, J.; Iwata, H.; Krop, I.; Jänne, P.A.; Doi, T.; Takahashi, S.; Park, H.; Redfern, C.; Tamura, K.; Wise-Draper, T.M.; et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020, 10, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Hanna, G.J.; Bae, J.E.; Lorch, J.H.; Haddad, R.I.; Jo, V.Y.; Schoenfeld, J.D.; Margalit, D.N.; Tishler, R.B.; Goguen, L.A.; Annino, D.J.; et al. The Benefits of Adjuvant Trastuzumab for HER-2-Positive Salivary Gland Cancers. Oncology 2020, 25, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.L.; Foster, N.R.; Zoroufy, A.J.; Worden, F.P.; Price, K.A.R.; Adkins, D.; Bowles, D.W.; Kang, H.; Burtness, B.; Sherman, E.J.; et al. Alliance A091404: A phase II study of enzalutamide (NSC# 766085) for patients with androgen receptor-positive salivary cancers. J. Clin. Oncol. 2019, 37, 6020. [Google Scholar]
- Ostellino, O.; Garzaro, M.; Pedani, F.; Airoldi, M.; Bellini, E.; Raimondo, L.; Pecorari, G. Cisplatin + Vinorelbine Treatment of Recurrent or Metastatic Salivary Gland Malignancies (Rmsgm): A Final Report on 60 Cases. Ann. Oncol. 2014, 25, iv353. [Google Scholar] [CrossRef]
- Mukaigawa, T.; Hayashi, R.; Hashimoto, K.; Ugumori, T.; Hato, N.; Fujii, S. Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J. Surg. Oncol. 2016, 114, 36–43. [Google Scholar] [CrossRef]
- Alame, M.; Cornillot, E.; Cacheux, V.; Tosato, G.; Four, M.; De Oliveira, L.; Gofflot, S.; Delvenne, P.; Turtoi, E.; Cabello-Aguilar, S.; et al. The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics 2020, 10, 4383–4394. [Google Scholar] [CrossRef]
- Mosconi, C.; De Arruda, J.; De Farias, A.; Oliveira, G.; De Paula, H.; Fonseca, F.; Mesquita, R.; Silva, T.; Mendonça, E.; Batista, A. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019, 88, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hiss, S.; Eckstein, M.; Segschneider, P.; Mantsopoulos, K.; Iro, H.; Hartmann, A.; Agaimy, A.; Haller, F.; Mueller, S. Correlate with Lymph Node Metastasis, High-Grade Transformation and Shorter Metastasis-Free Survival in Patients with Acinic Cell Carcinoma (AciCC) of the Salivary Glands. Cancers 2021, 13, 965. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Delord, J.; Doi, T.; Piha-Paul, S.; Liu, S.; Gilbert, J.; Algazi, A.; Damian, S.; Hong, R.; Le Tourneau, C.; et al. Pembrolizumab for the Treatment of Advanced Salivary Gland Carcinoma: Findings of the Phase 1b KEYNOTE-028 Study. Am. J. Clin. Oncol. 2018, 41, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Van Boxtel, W.; Lütje, S.; Van Engen-van Grunsven, I.; Verhaegh, G.; Schalken, J.; Jonker, M.; Nagarajah, J.; Gotthardt, M.; Van Herpen, C. 68 Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: A phase 2 imaging study. Theranostics. 2020, 10, 2273–2283. [Google Scholar] [CrossRef]
- Villeneuve, L.; Souza, I.; Sampaio Tolentino, F.; Ferrarotto, R.; Schvartsman, G. Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Front Oncol. 2020, 10, 580141. [Google Scholar] [CrossRef]
- Agaimy, A.; Baněčková, M.; Ihrler, S.; Mueller, S.K.; Franchi, A.; Hartmann, A.; Stoehr, R.; Skálová, A. ALK Rearrangements Characterize 2 Distinct Types of Salivary Gland Carcinomas: Clinicopathologic and Molecular Analysis of 4 Cases and Literature Review. Am. J. Surg. Pathol. 2021, 45, 1166–1178. [Google Scholar] [CrossRef]
- Kurzrock, R.; Bowles, D.; Kang, H.; Meric-Bernstam, F.; Hainsworth, J.; Spigel, D.; Bose, R.; Burris, H.; Sweeney, C.; Beattie, M.; et al. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: Results from MyPathway, a phase IIa multiple basket study. Ann. Oncol. 2020, 31, 412–421. [Google Scholar] [CrossRef] [Green Version]
Study | Therapy | Dose * | Target | Histological Subtypes | Sample Size ** | ORR (%) | Complete Response (%) | Partial Response (%) | SD (%) | DP (%) | PFS (Months) | OS (Months) | Toxicity (Most Common) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phase II | Targeted Therapy | ||||||||||||
Pfeffer et al. [39] | imatinib | 300–800 mg/d | c-kit, bcr-abl, PDGRF | c-kit positive ACC | 10 | 0 | 0 | 0 | 2 | diarrhea, fatigue, periorbital edema | |||
Hotte et al. [40] | imatinib | 600–800 mg/d | c-kit, bcr-abl, PDGRF | c-kit positive ACC | 16 | 0 | 0 | 0 | 6 | 6 | 7.5 | rash, headache, dyspnea | |
Ghosal et al. [41] | imatinib, cisplatin | imatinib 400–800 mg/d, cisplatin 80 mg/m2 | c-kit, bcr-abl, PDGRF | c-kit positive ACC | 28 | 10.3 | 0 | 10.3 | 67.9 | 15 | 35 | anemia, thrombocytopenia, fatigue, facial edema | |
Wong et al. [42] | dasatinib | 100 mg/d | the c-kit, bcr-abl, SRC family, PDGFß, EPHA2 | c-it posiitive ACC, non-ACC | 54 | 1/0 | 0 | 0 | 48.8/53.8 | 70.7/30.8 | 4.8 | fatigue, nausea, headache | |
Locati et al. [43] | cetuximab | 200–400 mg/m2 | EGFR | ACC, MEC, myoepihelial, AcCC, cystadenocarcinoma | 30 | 0 | 0 | 0 | 80 | skin rash, pruritus, hair loss | |||
Jakob et al. [44] | gefitinib | 250 mg/d | EGFR | ACC, non-ACC | 37 | 0 | 0 | 0 | 91.7 | 4.3/2.1 | 25.9/16 | diarrhea, rash, fatigue | |
Agulnik et al. [45] | lapatinib | 1500 mg/d | HER-2, EGFR | EGFR/HER-2 positive ACC, non-ACC | 62 | 0 | 0 | 0 | 79/47 | 21/53 | diarrhea, fatigue, rash | ||
Keam et al. [46] | dovtinib | 500 mg/d | VEGFR, FGFR, PDGFR, c-kit | ACC | 32 | 3.1 | 0 | 3.1 | 93.8 | 6 | asthenia, myalgia, diarrhea | ||
Dillon et al. [47] | dovtinib | 500 mg/d | VEGFR, FGFR, PDGFR, c-kit | ACC | 35 | 0 | 0 | 6 | 65 | 8.2 | 20.6 | fatigue, anorexia, nausea | |
Chau et al. [48] | sunitinib | 37.5 mg/d | VEGFR, c-kit, PDGFR | ACC | 14 | 0 | 0 | 0 | 78.6 | 18.7 | fatigue, oral mucositis, hypophosphatemia | ||
Ho et al. [49] | regorafenib | 120–160 mg/d | VEGFR, FGFR, PDGFR | ACC | 38 | 0 | 0 | 0 | 42 | ||||
Kim at al. [50] | nintedanib | 400 mg (200 mg twice daily) | VEGFR, FGFR, PDGFR | ACC, adenocarcinoma, MEC, SDC, AcCC | 20 | 0 | 0 | 0 | Liver enzyme elevation, nausea | ||||
Tchekmedyan et al. [51] | lenvatinib | 24 mg/d | VEGFR, FGFR, PDGFR | ACC | 33 | 15.6 | 0 | 15.6 | 75 | 17.5 | hypertension, oral pain | ||
Locati et al. [52] | lenvatinib | 24 mg/d | VEGFR, FGFR, PDGFR | ACC | 28 | 11.5 | 0 | 11.5 | 9.1 | 27 | asthenia, hypertension, decreased weight | ||
Locati et al. [53] | axitinib | 10 mg/d | VEGFR, PDGFR, c-Kit | ACC, non-ACC | 26 | 8 | 0 | 8 | 50 | 42 | 5.5 | 26.2 | stomatitis, fatigue, hypertension |
Ho et al. [54] | axitinib | 10 mg–20 mg/d | VEGFR, PDGFR, c-Kit | ACC, non-ACC | 33 | 9.1 | 0 | 9.1 | 75.8 | 12.1 | 5.7 | hypertension, oral pain, fatigue | |
Thomson et al. [55] | sorafenib | 800 mg/d | VEGFR, PDGFR, c-Kit | ACC | 23 | 11 | 0 | 11 | 68 | 21 | 11.3 | 19.6 | fatigue, weight loss, hand foot syndrome |
Locati et al. [56] | sorafenib | 800 mg/d | VEGFR, PDGFR, c-Kit | ACC, non-ACC (adenocarcinoma, SDC, MEC) | 37 | 16 | 0 | 16.2 | 76 | 8.9/4.2 | 26.4/12.3 | ||
Takahashi et al. [57] | trastuzumab, docetaxel | trastuzumab 6–8 mg/kg, docetaxel 70 mg/m2, q d22 | ErbB2/HER-2 | EGFR-positive SDC | 57 | 70.2 | 8.9 | 39.7 | anemia, decreased EBC, neutropenia | ||||
Fushimi et al. [58] | leuprorelin, bicalutamide | leuprorelin 3.75 mg, bicalutamide 80 mg | dual androgen-receptor | AR-positive adenocarcinoma, SDC | 36 | 41.7 | 8.8 | 30.5 | elevated liver transaminases, increased serum creatinine | ||||
Locati et al. [59] | abiraterone | 1 g (plus prednisolone 10 mg, luteinizing hormone-releasing hormone) | androgen-receptor (CYP17A1) | AR-positive SDC | 24 | 21 | 5 | 3.65 | 22.5 | fatigue, flushing, tachycardia | |||
Ho et al. [60] | enzalutamide | 160 mg/d | androgen-receptor | AR-positive SDC | 46 | 15.2 | 0 | 15.2 | 42.2 | 5.5 | |||
Chemotherapy | |||||||||||||
Licitra et al. [61] | cisplatin | 100 mg/m2, q d22 | 18 | 14 | |||||||||
Licitra et al. [62] | cyclophophamide, doxorubicin, cisplatin (CAP) | cyclophosphamide 500 mg/m2, doxorubicin 80 mg/m2, cisplatin 80 mg/m2, q d28 | ACC, myoepithelioma, SDC, adenocarcinoma, MEC, NEC, undiff. | 22 | 27 | 0 | 27 | 21 | neutropenia, stomatitis | ||||
Debaere et al. [63] | cyclophophamide, doxorubicin, cisplatin (CAP) | ACC, adenocarcinoma | 15 | 60 | 6.6 | 15.1 | neutropenia, neutropenic fever, alopecia | ||||||
Laurie et al. [64] | cisplatin, gemcitabine | cisplatin 70 mg/m2 or carboplatin AUC 5 d2, gemcitabine 1000 mg/m2 d1.8, q d22 | ACC, adenocarcinoma, MEC, other | 33 | 24 | nausea, fatigue, hearing loss | |||||||
Gilbert et al. [65] | paclitaxel | 200 mg/m2 q d22 | ACC, adenocarcinoma, MEC | 45 | 26 | 0 | 26 | leucopenia, granulocytopenia, infection | |||||
Airoldi et al. [66] | cisplatin plus vinorelbin vs. vinorelbin | vinorelbin 25 mg/m2 d1 and d8, cisplatin 80 mg/m2 d1 vs. vinorelbin 30 mg/m2 weekly | ACC, MEC, adenocarcinoma | 36 | 44/20 | 19/0 | 25/20 | 37.5/45 | 19/35 | nausea | |||
Hong et al. [67] | vinorelbin, cisplatin | vinorelbin 25 mg/m2 d1 and d8, cisplatin 80 mg/m2 d1, q d22 | ACC, adenocarcinoma, AcCC, MEC, undiff., carcinoma ex pleomorphic adenoma | 40 | 1 | 1 | 0 | 33 | 62 | 6.3 | 16.9 | anemia, leucopenia, neutropenia | |
Airoldi et al. [68] | vinorelbin, cisplatin | vinorelbin 25 mg/m2 d1 and d8, cisplatin 80 mg/m2 d1, q d22 | adenocarcinoma, undifferentiated | 60 | 51.7 | 7 | 24 | 10 | |||||
Immunotherapy | |||||||||||||
Rodriguez et al. [69] (phase II) | pembrolizumab, vorinostat | pembrolizumab 200 mg fixed dose every 3 weeks, vorinostat 400 mg 5 days on, 2 days off | PD-1, histone deacetylase | ACC, AcCC, MEC, adenocarcinoma, SDC | 25 | 4 | 0 | 4 | 6.9 | 14 | renal insufficiency, fatigue, nausea | ||
Mahmood et al. [70] (phase II) | pembrolizumab vs pembrolizumab, RT | 200 mg fixed dose every 3 weeks | PD-1 | ACC | 20 | 0 | 0 | 0 | 60 | 0/4.5 | 27.2/6.6 | liver enzyme elevation | |
Cohen et al. [71], Keynote-028 (phase Ib) | pembrolizumab | 10 mg/kg every 3 weeks | PD-1 | PD-L1-positive adenocarcinoma, undifferentiated, MEC, squamous cell ACC | 26 | 12 | 0 | 11.5 | diarrhea, pruritus, fatigue |
Therapy |
---|
Targeted Therapy |
imatinib |
imatinib, cisplatin |
dasatinib |
cetuximab |
gefitinib |
lapatinib |
dovtinib |
sunitinib |
regorafenib |
nintedanib |
lenvatinib |
axitinib |
sorafenib |
chemotherapy |
cisplatin |
cyclophophamide, doxorubicin, cisplatin (CAP) |
cisplatin, gemcitabine |
paclitaxel |
cisplatin plus vinorelbin vs. vinorelbin |
vinorelbin, cisplatin |
Immunotherapy |
pembrolizumab, vorinostat |
pembrolizumab vs. pembrolizumab, RT |
pembrolizumab |
Therapy |
---|
Targeted Therapy |
nintedanib |
sorafenib |
trastuzumab, docetaxel |
leuprorelin, bicalutamide |
abiraterone |
enzalutamide |
chemotherapy |
cisplatin |
cyclophophamide, doxorubicin, cisplatin (CAP) |
Immunotherapy |
pembrolizumab, vorinostat |
Therapy |
---|
Targeted Therapy |
cetuximab |
nintedanib |
sorafenib |
leuprorelin, bicalutamide |
chemotherapy |
cisplatin |
cyclophophamide, doxorubicin, cisplatin (CAP) |
cisplatin, gemcitabine |
paclitaxel |
vinorelbin, cisplatin |
Immunotherapy |
pembrolizumab, vorinostat |
pembrolizumab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, S.K.; Haderlein, M.; Lettmaier, S.; Agaimy, A.; Haller, F.; Hecht, M.; Fietkau, R.; Iro, H.; Mantsopoulos, K. Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer. J. Clin. Med. 2022, 11, 720. https://doi.org/10.3390/jcm11030720
Mueller SK, Haderlein M, Lettmaier S, Agaimy A, Haller F, Hecht M, Fietkau R, Iro H, Mantsopoulos K. Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer. Journal of Clinical Medicine. 2022; 11(3):720. https://doi.org/10.3390/jcm11030720
Chicago/Turabian StyleMueller, Sarina K., Marlen Haderlein, Sebastian Lettmaier, Abbas Agaimy, Florian Haller, Markus Hecht, Rainer Fietkau, Heinrich Iro, and Konstantinos Mantsopoulos. 2022. "Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer" Journal of Clinical Medicine 11, no. 3: 720. https://doi.org/10.3390/jcm11030720
APA StyleMueller, S. K., Haderlein, M., Lettmaier, S., Agaimy, A., Haller, F., Hecht, M., Fietkau, R., Iro, H., & Mantsopoulos, K. (2022). Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer. Journal of Clinical Medicine, 11(3), 720. https://doi.org/10.3390/jcm11030720