Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients
Abstract
:1. Introduction
2. Patients and Methods
2.1. Clinical Study
2.2. Study Design and Patients
2.3. Plasma Assays
2.4. PK Methods
2.5. Polymorphisms and Genotyping
2.6. CLEC4M rs868875 A/G Genotypes and FVIII PK Parameters: A Literature Search
2.7. Statistical Analysis
3. Results
Combination of CLEC4M and ABO Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlot, A.J.; Mauser-Bunschoten, E.P.; Zarkova, A.G.; Haan, E.; Kruitwagen, C.L.; Sixma, J.J.; van den Berg, H.M. The Half-Life of Infused Factor VIII Is Shorter in Hemophiliac Patients with Blood Group O than in Those with Blood Group A. Thromb. Haemost. 2000, 83, 65–69. [Google Scholar] [PubMed]
- Morange, P.E.; Tregouet, D.A.; Frere, C.; Saut, N.; Pellegrina, L.; Alessi, M.C.; Visvikis, S.; Tiret, L.; Juhan-Vague, I. Biological and Genetic Factors Influencing Plasma Factor VIII Levels in a Healthy Family Population: Results from the Stanislas Cohort. Br. J. Haematol. 2005, 128, 91–99. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, K.; van der Bom, J.G.; Lenting, P.J.; de Groot, P.G.; Mauser-Bunschoten, E.P.; Roosendaal, G.; Grobbee, D.E.; van den Berg, H.M. Factor VIII Half-Life and Clinical Phenotype of Severe Hemophilia A. Haematologica 2005, 90, 494–498. [Google Scholar] [PubMed]
- Björkman, S.; Blanchette, V.S.; Fischer, K.; Oh, M.; Spotts, G.; Schroth, P.; Fritsch, S.; Patrone, L.; Ewenstein, B.M.; Advate Clinical Program Group; et al. Comparative Pharmacokinetics of Plasma- and Albumin-Free Recombinant Factor VIII in Children and Adults: The Influence of Blood Sampling Schedule on Observed Age-Related Differences and Implications for Dose Tailoring. J. Thromb. Haemost. 2010, 8, 730–736. [Google Scholar] [CrossRef]
- Martinelli, N.; Girelli, D.; Lunghi, B.; Pinotti, M.; Marchetti, G.; Malerba, G.; Pignatti, P.F.; Corrocher, R.; Olivieri, O.; Bernardi, F. Polymorphisms at LDLR Locus May Be Associated with Coronary Artery Disease through Modulation of Coagulation Factor VIII Activity and Independently from Lipid Profile. Blood 2010, 116, 5688–5697. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.W.; Björkman, S.; Fischer, K.; Blanchette, V.; Oh, M.; Schroth, P.; Fritsch, S.; Casey, K.; Spotts, G.; Ewenstein, B.M. Factor VIII Requirement to Maintain a Target Plasma Level in the Prophylactic Treatment of Severe Hemophilia A: Influences of Variance in Pharmacokinetics and Treatment Regimens. J. Thromb. Haemost. 2010, 8, 269–275. [Google Scholar] [CrossRef]
- Turecek, P.L.; Johnsen, J.M.; Pipe, S.W.; O’Donnell, J.S. iPATH study group Biological Mechanisms Underlying Inter-Individual Variation in Factor VIII Clearance in Haemophilia. Haemophilia 2020, 26, 575–583. [Google Scholar] [CrossRef]
- Lunghi, B.; Bernardi, F.; Martinelli, N.; Frusconi, S.; Branchini, A.; Linari, S.; Marchetti, G.; Castaman, G.; Morfini, M. Functional Polymorphisms in the LDLR and Pharmacokinetics of Factor VIII Concentrates. J. Thromb. Haemost. 2019, 17, 1288–1296. [Google Scholar] [CrossRef]
- Swystun, L.L.; Ogiwara, K.; Rawley, O.; Brown, C.; Georgescu, I.; Hopman, W.; Labarque, V.; Male, C.; Thom, K.; Blanchette, V.S.; et al. Genetic Determinants of VWF Clearance and FVIII Binding Modify FVIII Pharmacokinetics in Pediatric Hemophilia A Patients. Blood 2019, 134, 880–891. [Google Scholar] [CrossRef]
- Lunghi, B.; Morfini, M.; Martinelli, N.; Balestra, D.; Linari, S.; Frusconi, S.; Branchini, A.; Cervellera, C.F.; Marchetti, G.; Castaman, G.; et al. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb. Haemost. 2021, in press. [Google Scholar] [CrossRef]
- Lai, J.D.; Swystun, L.L.; Cartier, D.; Nesbitt, K.; Zhang, C.; Hough, C.; Dennis, J.W.; Lillicrap, D. N-Linked Glycosylation Modulates the Immunogenicity of Recombinant Human Factor VIII in Hemophilia A Mice. Haematologica 2018, 103, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Ma, C.; Xu, X.-Q.; Xiao, M.; Zhang, J.; Li, D.; Liu, D.; Konkle, B.A.; Miao, C.H.; Li, L.; et al. Comparative Glycosylation Mapping of Plasma-Derived and Recombinant Human Factor VIII. PLoS ONE 2020, 15, e0233576. [Google Scholar] [CrossRef] [PubMed]
- Canis, K.; McKinnon, T.A.J.; Nowak, A.; Haslam, S.M.; Panico, M.; Morris, H.R.; Laffan, M.A.; Dell, A. Mapping the N-Glycome of Human von Willebrand Factor. Biochem. J. 2012, 447, 217–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gashash, E.A.; Aloor, A.; Li, D.; Zhu, H.; Xu, X.-Q.; Xiao, C.; Zhang, J.; Parameswaran, A.; Song, J.; Ma, C.; et al. An Insight into Glyco-Microheterogeneity of Plasma von Willebrand Factor by Mass Spectrometry. J. Proteome Res. 2017, 16, 3348–3362. [Google Scholar] [CrossRef]
- Swystun, L.L.; Notley, C.; Georgescu, I.; Lai, J.D.; Nesbitt, K.; James, P.D.; Lillicrap, D. The Endothelial Lectin Clearance Receptor CLEC4M Binds and Internalizes Factor VIII in a VWF-Dependent and Independent Manner. J. Thromb. Haemost. 2019, 17, 681–694. [Google Scholar] [CrossRef] [Green Version]
- Lempp, F.A.; Soriaga, L.B.; Montiel-Ruiz, M.; Benigni, F.; Noack, J.; Park, Y.-J.; Bianchi, S.; Walls, A.C.; Bowen, J.E.; Zhou, J.; et al. Lectins Enhance SARS-CoV-2 Infection and Influence Neutralizing Antibodies. Nature 2021, 598, 342–347. [Google Scholar] [CrossRef]
- Garcia-Martínez, I.; Borràs, N.; Martorell, M.; Parra, R.; Altisent, C.; Ramírez, L.; Álvarez-Román, M.T.; Nuñez, R.; Megias-Vericat, J.E.; Corrales, I.; et al. Common Genetic Variants in ABO and CLEC4M Modulate the Pharmacokinetics of Recombinant FVIII in Severe Hemophilia A Patients. Thromb. Haemost. 2020, 120, 1395–1406. [Google Scholar] [CrossRef]
- Ogiwara, K.; Swystun, L.L.; Paine, A.S.; Kepa, S.; Choi, S.J.; Rejtö, J.; Hopman, W.; Pabinger, I.; Lillicrap, D. Factor VIII Pharmacokinetics Associates with Genetic Modifiers of VWF and FVIII Clearance in an Adult Hemophilia A Population. J. Thromb. Haemost. 2021, 19, 654–663. [Google Scholar] [CrossRef]
- Kepa, S.; Horvath, B.; Reitter-Pfoertner, S.; Schemper, M.; Quehenberger, P.; Grundbichler, M.; Heistinger, M.; Neumeister, P.; Mannhalter, C.; Pabinger, I. Parameters Influencing FVIII Pharmacokinetics in Patients with Severe and Moderate Haemophilia A. Haemophilia 2015, 21, 343–350. [Google Scholar] [CrossRef]
- Franchini, M.; Mengoli, C.; Marano, G.; Pupella, S.; Mannucci, P.M.; Liumbruno, G.M. The Importance of ABO Blood Group in Pharmacokinetic Studies in Haemophilia A. Haemophilia 2018, 24, e122–e123. [Google Scholar] [CrossRef]
- Cinotti, S.; Paladino, E.; Morfini, M. Accuracy of FVIII: C Assay by One-Stage Method Can Be Improved Using Hemophilic Plasma as Diluent. J. Thromb. Haemost. 2006, 4, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Castaman, G.; Tosetto, A.; Cappelletti, A.; Goodeve, A.; Federici, A.B.; Batlle, J.; Meyer, D.; Goudemand, J.; Eikenboom, J.C.J.; Schneppenheim, R.; et al. Validation of a Rapid Test (VWF-LIA) for the Quantitative Determination of von Willebrand Factor Antigen in Type 1 von Willebrand Disease Diagnosis within the European Multicenter Study MCMDM-1VWD. Thromb. Res. 2010, 126, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Margaglione, M.; Castaman, G.; Morfini, M.; Rocino, A.; Santagostino, E.; Tagariello, G.; Tagliaferri, A.R.; Zanon, E.; Bicocchi, M.P.; Castaldo, G.; et al. The Italian AICE-Genetics Hemophilia A Database: Results and Correlation with Clinical Phenotype. Haematologica 2008, 93, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Nozari, G.; Sommer, S.S. Single-Tube Polymerase Chain Reaction for Rapid Diagnosis of the Inversion Hotspot of Mutation in Hemophilia A. Blood 1998, 92, 1458–1459. [Google Scholar] [CrossRef] [PubMed]
PK Parameters | CLEC4M rs868875 Genotypes | |||
---|---|---|---|---|
AA (n = 12) | AG (n = 12) | GG (n = 2) | p | |
Final | ||||
K 1-0 (1/h) | 0.06 (±0.00) | 0.08 (±0.01) | 0.28 (±0.16) | <0.001 |
K 1-2 (1/h) | 0.38 (±0.12) | 0.36 (±0.13) | 3.24 (±1.63) | 0.049 |
K 2-1 (1/h) | 0.85 (±0.21) | 0.52 (±0.08) | 1.76 (±0.20) | 0.374 |
V1 (dL/kg) | 0.43 (±0.04) | 0.43 (±0.07) | 0.21 (±0.08) | 0.088 |
Secondary | ||||
Alpha (1/h) | 1.29 (±0.34) | 0.92 (±0.20) | 5.19 (±1.57) | 0.127 |
Alpha HL (h) | 2.39 (±0.76) | 1.99 (±0.47) | 0.17 (±0.07) | 0.139 |
Beta (1/h) | 0.04 (±0.00) | 0.05 (±0.01) | 0.08 (±0.02) | 0.030 |
Beta HL (h) | 19.0 (±2.22) | 17.4 (±2.21) | 9.12 (±2.37) | 0.054 |
Cl (mL/h/kg) | 2.58 (±0.31) | 3.83 (±0.99) | 4.30 (±1.70) | 0.350 |
CLD2 (mL/h/kg) | 15.1 (±0.05) | 14.4 (±0.05) | 48.0 (±0.16) | 0.201 |
Cmax (IU/dL) | 79.5 (±6.9) | 98.7 (±13.4) | 103 (±11.0) | 0.209 |
K 1-0 HL (h) | 11.9 (±0.83) | 10.1 (±1.07) | 4.30 (±2.74) | 0.011 |
* MRT (h) | 24.4 (±2.1) | 22.8 (±2.8) | 12.8 (±3.6) | 0.148 |
* AUC (IU.h/dL) | 1373 (±145) | 1434 (±226) | 525 (±268) | 0.327 |
AUCM (IU.h2/dL) | 35,886 (±6005) | 38,565 (±9362) | 7694 (±5316) | 0.060 |
PK Parameters | ß-Coefficient | p | Predictors/Genotypes | p (int) |
---|---|---|---|---|
K 1-0 (1/h) | 0.457 | 0.013 | G-carriers vs. AA | 0.014 |
−0.440 | 0.016 | O vs. non-O | ||
K 1-2 (1/h) | 0.243 | 0.211 | G-carriers vs. AA | 0.889 |
−0.409 | 0.040 | O vs. non-O | ||
Beta (h) | 0.378 | 0.031 | G-carriers vs. AA | 0.071 |
−0.546 | 0.003 | O vs. non-O | ||
Beta HL (h) | −0.329 | 0.060 | G-carriers vs. AA | 0.049 |
0.564 | 0.002 | O vs. non-O | ||
K 1-0 HL (h) | −0.410 | 0.028 | G-carriers vs. AA | 0.047 |
0.433 | 0.021 | O vs. non-O |
FVIII Products | CLEC4M Genotypes | K/K 1-0 (1/h) | Half-Life/ K 1-0 HL (h) | Clearance (mL/h) | ||||
---|---|---|---|---|---|---|---|---|
Swystun et al. Blood 2019 | r-FVIII (100%) | AA | 0.06 | ↑ | 11 | ↓ | 120 | ↑ |
AG | 0.07 | 9 | 180 | ↑ | ||||
p = ns | p = ns | p = 8.0 × 10−3 | ||||||
Garcia-Martinez et al. TH 2020 | r-FVIII (100%) | AA | −1.1 | ↓ | +21 § | ↑ | ||
AG | −2.2 | ↓ | +42 § | ↑ | ||||
GG | p = 2.90 × 10−5 | p = 1.01 × 10−3 | ||||||
Ogiwara et al. JTH 2021 | AA | 10 | ↑ | * 280 | ↑ | |||
r-FVIII (80%) | AG | 12 | * 400 | ↑ | ||||
pd-FVIII (20%) | GG | 11 | 300 | |||||
p = ns | * p = 1.5 × 10−2 | |||||||
Present study ° | pd-FVIII ° (100%) | AA | * 0.07 | ↑ | * 11.15 | ↓ | * 154 | ↑ |
AG | * 0.09 | ↑ | * 8.75 | ↓ | * 202 | |||
GG | 0.28 | 4.3 | 268 | |||||
p = 1.0 × 10−3 | p = 2.0 × 10−3 | p = ns | ||||||
* p = 0.079 | * p = 0.080 | * p = ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunghi, B.; Morfini, M.; Martinelli, N.; Linari, S.; Castaman, G.; Bernardi, F. Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients. J. Clin. Med. 2022, 11, 733. https://doi.org/10.3390/jcm11030733
Lunghi B, Morfini M, Martinelli N, Linari S, Castaman G, Bernardi F. Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients. Journal of Clinical Medicine. 2022; 11(3):733. https://doi.org/10.3390/jcm11030733
Chicago/Turabian StyleLunghi, Barbara, Massimo Morfini, Nicola Martinelli, Silvia Linari, Giancarlo Castaman, and Francesco Bernardi. 2022. "Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients" Journal of Clinical Medicine 11, no. 3: 733. https://doi.org/10.3390/jcm11030733
APA StyleLunghi, B., Morfini, M., Martinelli, N., Linari, S., Castaman, G., & Bernardi, F. (2022). Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients. Journal of Clinical Medicine, 11(3), 733. https://doi.org/10.3390/jcm11030733