Frozen Blastocyst Embryo Transfer: Comparison of Protocols and Factors Influencing Outcome
Abstract
:1. Introduction
2. Methods
2.1. Patient Population and Recruitment
2.2. Embryological Data
2.3. Endometrial Preparation
2.4. Primary and Secondary Outcomes
3. Statistical Analysis
4. Results
5. Discussion
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Human Fertilisation & Embryology Authority. Fertility Treatment 2017: Trends and Figures. 2019. Available online: https://www.hfea.gov.uk/media/2894/fertility-treatment-2017-trends-and-figures-may-2019.pdf (accessed on 10 November 2020).
- Devroey, P.; Polyzos, N.P.; Blockeel, C. An ohss-free clinic by segmentation of ivf treatment. Hum. Reprod. 2011, 26, 2593–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griesinger, G.; Schultz, L.; Bauer, T.; Broessner, A.; Frambach, T.; Kissler, S. Ovarian hyperstimulation syndrome prevention by gonadotropin-releasing hormone agonist triggering of final oocyte maturation in a gonadotropin-releasing hormone antagonist protocol in combination with a “Freeze-all” Strategy: A prospective multicentric study. Fertil. Steril. 2011, 95, 2029–2033.e2021. [Google Scholar] [PubMed]
- Basile, N.; Garcia-Velasco, J.A. The state of “Freeze-for-all” In human arts. J. Assist. Reprod. Genet. 2016, 33, 1543–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, M.; Child, T. The role of frozen–thawed embryo replacement cycles in assisted conception. Obstet. Gynaecol. 2020, 22, 57–68. [Google Scholar] [CrossRef]
- Pereira, N.; Rosenwaks, Z. A fresh(er) perspective on frozen embryo transfers. Fertil. Steril. 2016, 106, 257–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.M.; Mastenbroek, S.; Repping, S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil. Steril. 2014, 102, 19–26. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhry, P.; Asselin, E. Bridging endometrial receptivity and implantation: Network of hormones, cytokines, and growth factors. J. Endocrinol. 2011, 210, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Ghobara, T.; Gelbaya, T.A.; Ayeleke, R.O. Cycle Regimens for Frozen-Thawed Embryo Transfer. Cochrane Database Syst. Rev. 2017, 7, CD003414. [Google Scholar] [CrossRef]
- Ghobara, T.; Vandekerckhove, P. Cycle Regimens for Frozen-Thawed Embryo Transfer. Cochrane Database Syst. Rev. 2008, 1, CD003414. [Google Scholar] [CrossRef]
- Glujovsky, D.; Pesce, R.; Fiszbajn, G.; Sueldo, C.; Hart, R.J.; Ciapponi, A. Endometrial Preparation for Women Undergoing Embryo Transfer with Frozen Embryos or Embryos Derived from Donor Oocytes. Cochrane Database Syst. Rev. 2010, 1, CD006359. [Google Scholar] [CrossRef]
- Glujovsky, D.; Pesce, R.; Sueldo, C.; Quinteiro Retamar, A.M.; Hart, R.J.; Ciapponi, A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst. Rev. 2020, 10, CD006359. [Google Scholar] [CrossRef] [PubMed]
- Groenewoud, E.R.; Cantineau, A.E.; Kollen, B.J.; Macklon, N.S.; Cohlen, B.J. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum. Reprod. Update 2013, 19, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Groenewoud, E.R.; Cohlen, B.J.; Al-Oraiby, A.; Brinkhuis, E.A.; Broekmans, F.J.; de Bruin, J.P.; van den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum. Reprod. 2016, 31, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Groenewoud, E.R.; Cohlen, B.J.; Macklon, N.S. Programming the endometrium for deferred transfer of cryopreserved embryos: Hormone replacement versus modified natural cycles. Fertil. Steril. 2018, 109, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Mackens, S.; Santos-Ribeiro, S.; van de Vijver, A.; Racca, A.; Van Landuyt, L.; Tournaye, H.; Blockeel, C. Frozen embryo transfer: A review on the optimal endometrial preparation and timing. Hum. Reprod. 2017, 32, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Mounce, G.; McVeigh, E.; Turner, K.; Child, T.J. Randomized, controlled pilot trial of natural versus hormone replacement therapy cycles in frozen embryo replacement in vitro fertilization. Fertil. Steril. 2015, 104, 915–920.e911. [Google Scholar] [CrossRef] [PubMed]
- Peeraer, K.; Couck, I.; Debrock, S.; De Neubourg, D.; De Loecker, P.; Tomassetti, C.; Laenen, A.; Welkenhuysen, M.; Meeuwis, L.; Pelckmans, S.; et al. Frozen-thawed embryo transfer in a natural or mildly hormonally stimulated cycle in women with regular ovulatory cycles: A RCT. Hum. Reprod. 2015, 30, 2552–2562. [Google Scholar] [CrossRef] [Green Version]
- Yarali, H.; Polat, M.; Mumusoglu, S.; Yarali, I.; Bozdag, G. Preparation of endometrium for frozen embryo replacement cycles: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2016, 33, 1287–1304. [Google Scholar] [CrossRef] [Green Version]
- Casper, R.F. Frozen embryo transfer: Evidence-based markers for successful endometrial preparation. Fertil. Steril. 2020, 113, 248–251. [Google Scholar] [CrossRef]
- De Geyter, C.; Schmitter, M.; De Geyter, M.; Nieschlag, E.; Holzgreve, W.; Schneider, H.P. Prospective evaluation of the ultrasound appearance of the endometrium in a cohort of 1,186 infertile women. Fertil. Steril. 2000, 73, 106–113. [Google Scholar] [CrossRef]
- Yoeli, R.; Ashkenazi, J.; Orvieto, R.; Shelef, M.; Kaplan, B.; Bar-Hava, I. Significance of increased endometrial thickness in assisted reproduction technology treatments. J. Assist. Reprod. Genet. 2004, 21, 285–289. [Google Scholar] [CrossRef]
- Check, J.H.; Dietterich, C.; Graziano, V.; Lurie, D.; Choe, J.K. Effect of maximal endometrial thickness on outcome after frozen embryo transfer. Fertil. Steril. 2004, 81, 1399–1400. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.; Wang, K.; Dai, W.; Sun, Y. Endometrial thickness significantly affects clinical pregnancy and live birth rates in frozen-thawed embryo transfer cycles. Gynecol. Endocrinol. 2016, 32, 524–528. [Google Scholar] [CrossRef] [PubMed]
- El-Toukhy, T.; Coomarasamy, A.; Khairy, M.; Sunkara, K.; Seed, P.; Khalaf, Y.; Braude, P. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertil. Steril. 2008, 89, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.E.; Hartman, M.; Hartman, A.; Luo, Z.C.; Mahutte, N. The impact of a thin endometrial lining on fresh and frozen-thaw ivf outcomes: An analysis of over 40 000 embryo transfers. Hum. Reprod. 2018, 33, 1883–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achache, H.; Revel, A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum. Reprod. Update 2006, 12, 731–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craciunas, L.; Gallos, I.; Chu, J.; Bourne, T.; Quenby, S.; Brosens, J.J.; Coomarasamy, A. Conventional and modern markers of endometrial receptivity: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 202–223. [Google Scholar] [CrossRef]
- Gadalla, M.A.; Huang, S.; Wang, R.; Norman, R.J.; Abdullah, S.A.; El Saman, A.M.; Ismail, A.M.; van Wely, M.; Mol, B.W.J. Effect of clomiphene citrate on endometrial thickness, ovulation, pregnancy and live birth in anovulatory women: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 64–76. [Google Scholar] [CrossRef]
- Kasius, A.; Smit, J.G.; Torrance, H.L.; Eijkemans, M.J.; Mol, B.W.; Opmeer, B.C.; Broekmans, F.J. Endometrial thickness and pregnancy rates after ivf: A systematic review and meta-analysis. Hum. Reprod. Update 2014, 20, 530–541. [Google Scholar] [CrossRef]
- Weiss, N.S.; van Vliet, M.N.; Limpens, J.; Hompes, P.G.A.; Lambalk, C.B.; Mochtar, M.H.; van der Veen, F.; Mol, B.W.J.; van Wely, M. Endometrial thickness in women undergoing iui with ovarian stimulation. How thick is too thin? A systematic review and meta-analysis. Hum. Reprod. 2017, 32, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Agha-Hosseini, M.; Hashemi, L.; Aleyasin, A.; Ghasemi, M.; Sarvi, F.; Shabani Nashtaei, M.; Khodarahmian, M. Natural cycle versus artificial cycle in frozen-thawed embryo transfer: A randomized prospective trial. Turk. J. Obstet. Gynecol. 2018, 15, 12–17. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Li, L.; Zhang, X.; Liu, L.; Wang, L. A clinical and basic study of optimal endometrial preparation protocols for patients with infertility undergoing frozen-thawed embryo transfer. Exp. Ther. Med. 2020, 20, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Cerrillo, M.; Herrero, L.; Guillén, A.; Mayoral, M.; García-Velasco, J.A. Impact of endometrial preparation protocols for frozen embryo transfer on live birth rates. Rambam Maimonides Med. J. 2017, 8, e0020. [Google Scholar] [CrossRef] [PubMed]
- Dal Prato, L.; Borini, A.; Cattoli, M.; Bonu, M.A.; Sciajno, R.; Flamigni, C. Endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with gonadotropin-releasing hormone agonist. Fertil. Steril. 2002, 77, 956–960. [Google Scholar] [CrossRef]
- Davar, R.; Janati, S.; Mohseni, F.; Khabazkhoob, M.; Asgari, S. A comparison of the effects of transdermal estradiol and estradiol valerate on endometrial receptivity in frozen-thawed embryo transfer cycles: A randomized clinical trial. J. Reprod. Infertil. 2016, 17, 97–103. [Google Scholar] [PubMed]
- El-Toukhy, T.; Taylor, A.; Khalaf, Y.; Al-Darazi, K.; Rowell, P.; Seed, P.; Braude, P. Pituitary suppression in ultrasound-monitored frozen embryo replacement cycles. A randomised study. Hum. Reprod. 2004, 19, 874–879. [Google Scholar] [CrossRef] [Green Version]
- Gelbaya, T.A.; Nardo, L.G.; Hunter, H.R.; Fitzgerald, C.T.; Horne, G.; Pease, E.E.; Brison, D.R.; Lieberman, B.A. Cryopreserved-thawed embryo transfer in natural or down-regulated hormonally controlled cycles: A retrospective study. Fertil. Steril. 2006, 85, 603–609. [Google Scholar] [CrossRef]
- Greco, E.; Litwicka, K.; Arrivi, C.; Varricchio, M.T.; Caragia, A.; Greco, A.; Minasi, M.G.; Fiorentino, F. The endometrial preparation for frozen-thawed euploid blastocyst transfer: A prospective randomized trial comparing clinical results from natural modified cycle and exogenous hormone stimulation with gnrh agonist. J. Assist. Reprod. Genet. 2016, 33, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J.; Miller, K.A.; Frattarelli, J.L. A gnrh agonist and exogenous hormone stimulation protocol has a higher live-birth rate than a natural endogenous hormone protocol for frozen-thawed blastocyst-stage embryo transfer cycles: An analysis of 1391 cycles. Fertil. Steril. 2010, 93, 416–422. [Google Scholar] [CrossRef]
- Sahin, G.; Acet, F.; Calimlioglu, N.; Meseri, R.; Tavmergen Goker, E.N.; Tavmergen, E. Live birth after frozen-thawed embryo transfer: Which endometrial preparation protocol is better? J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101782. [Google Scholar] [CrossRef]
- Simon, A.; Hurwitz, A.; Zentner, B.S.; Bdolah, Y.; Laufer, N. Transfer of frozen-thawed embryos in artificially prepared cycles with and without prior gonadotrophin-releasing hormone agonist suppression: A prospective randomized study. Hum. Reprod. 1998, 13, 2712–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomás, C.; Alsbjerg, B.; Martikainen, H.; Humaidan, P. Pregnancy loss after frozen-embryo transfer—A comparison of three protocols. Fertil. Steril. 2012, 98, 1165–1169. [Google Scholar] [CrossRef]
- Guillén, V.; Ayllón, Y.; Domingo, J.; Jáuregui, J.; Santana, A.; Pellicer, A. Thawed embryo transfer: Natural or replaced endometrial cycle? A 5000 patients observational study. Fertil. Steril. 2011, 96, S270. [Google Scholar] [CrossRef]
- Van de Vijver, A.; Polyzos, N.P.; Van Landuyt, L.; De Vos, M.; Camus, M.; Stoop, D.; Tournaye, H.; Blockeel, C. Cryopreserved embryo transfer in an artificial cycle: Is gnrh agonist down-regulation necessary? Reprod. Biomed. Online 2014, 29, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altmäe, S.; Tamm-Rosenstein, K.; Esteban, F.J.; Simm, J.; Kolberg, L.; Peterson, H.; Metsis, M.; Haldre, K.; Horcajadas, J.A.; Salumets, A.; et al. Endometrial transcriptome analysis indicates superiority of natural over artificial cycles in recurrent implantation failure patients undergoing frozen embryo transfer. Reprod. Biomed. Online 2016, 32, 597–613. [Google Scholar] [CrossRef] [Green Version]
- Melnick, A.P.; Setton, R.; Stone, L.D.; Pereira, N.; Xu, K.; Rosenwaks, Z.; Spandorfer, S.D. Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women. J. Assist. Reprod. Genet. 2017, 34, 1325–1331. [Google Scholar] [CrossRef]
- Fatemi, H.M.; Kyrou, D.; Bourgain, C.; Van den Abbeel, E.; Griesinger, G.; Devroey, P. Cryopreserved-thawed human embryo transfer: Spontaneous natural cycle is superior to human chorionic gonadotropin-induced natural cycle. Fertil. Steril. 2010, 94, 2054–2058. [Google Scholar] [CrossRef]
- Weissman, A.; Horowitz, E.; Ravhon, A.; Steinfeld, Z.; Mutzafi, R.; Golan, A.; Levran, D. Spontaneous ovulation versus hcg triggering for timing natural-cycle frozen-thawed embryo transfer: A randomized study. Reprod. Biomed. Online 2011, 23, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Goldsmith, L.T.; Skurnick, J.H.; Wojtczuk, A.; Weiss, G. Characteristics of the urinary luteinizing hormone surge in young ovulatory women. Fertil. Steril. 2007, 88, 684–690. [Google Scholar] [CrossRef]
- Sathanandan, M.; Macnamee, M.C.; Rainsbury, P.; Wick, K.; Brinsden, P.; Edwards, R.G. Replacement of frozen-thawed embryos in artificial and natural cycles: A prospective semi-randomized study. Hum. Reprod. 1991, 6, 685–687. [Google Scholar] [CrossRef]
- Eyal, S.; Weizman, A.; Toren, P.; Dor, Y.; Mester, R.; Rehavi, M. Chronic gnrh agonist administration down-regulates platelet serotonin transporter in women undergoing assisted reproductive treatment. Psychopharmacology 1996, 125, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.; Cowell, C.; Casper, R.F. The use of vaginal ultrasound for monitoring endometrial preparation in a donor oocyte program. Fertil. Steril. 1993, 59, 1055–1058. [Google Scholar] [CrossRef]
- Lebovitz, O.; Orvieto, R. Treating patients with “Thin” Endometrium—An ongoing challenge. Gynecol. Endocrinol. 2014, 30, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Valentin, L. Intraobserver and interobserver reproducibility of ultrasound measurements of endometrial thickness in postmenopausal women. Ultrasound Obstet. Gynecol. 2002, 20, 486–491. [Google Scholar] [CrossRef]
- Spandorfer, S.D.; Barmat, L.I.; Liu, H.C.; Mele, C.; Veeck, L.; Rosenwaks, Z. Granulocyte macrophage-colony stimulating factor production by autologous endometrial co-culture is associated with outcome for in vitro fertilization patients with a history of multiple implantation failures. Am. J. Reprod. Immunol. 1998, 40, 377–381. [Google Scholar] [CrossRef]
- Casper, R.F. It’s time to pay attention to the endometrium. Fertil. Steril. 2011, 96, 519–521. [Google Scholar] [CrossRef]
- Oron, G.; Hiersch, L.; Rona, S.; Prag-Rosenberg, R.; Sapir, O.; Tuttnauer-Hamburger, M.; Shufaro, Y.; Fisch, B.; Ben-Haroush, A. Endometrial thickness of less than 7.5 mm is associated with obstetric complications in fresh ivf cycles: A retrospective cohort study. Reprod. Biomed. Online 2018, 37, 341–348. [Google Scholar] [CrossRef]
- Weissman, A.; Gotlieb, L.; Casper, R.F. The detrimental effect of increased endometrial thickness on implantation and pregnancy rates and outcome in an in vitro fertilization program. Fertil. Steril. 1999, 71, 147–149. [Google Scholar] [CrossRef]
- Kurman, R.J.; McConnell, T.G. Precursors of endometrial and ovarian carcinoma. Virchows Arch. 2010, 456, 1–12. [Google Scholar] [CrossRef]
- Pritts, E.A.; Parker, W.H.; Olive, D.L. Fibroids and infertility: An updated systematic review of the evidence. Fertil. Steril. 2009, 91, 1215–1223. [Google Scholar] [CrossRef]
- Rombauts, L.; McMaster, R.; Motteram, C.; Fernando, S. Risk of ectopic pregnancy is linked to endometrial thickness in a retrospective cohort study of 8120 assisted reproduction technology cycles. Hum. Reprod. 2015, 30, 2846–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenewoud, E.R.; Cohlen, B.J.; Al-Oraiby, A.; Brinkhuis, E.A.; Broekmans, F.J.; de Bruin, J.P.; van den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; et al. Influence of endometrial thickness on pregnancy rates in modified natural cycle frozen-thawed embryo transfer. Acta Obstet. Gynecol. Scand. 2018, 97, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griesinger, G.; Trevisan, S.; Cometti, B. Endometrial thickness on the day of embryo transfer is a poor predictor of ivf treatment outcome. Hum. Reprod. Open 2018, 2018, hox031. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Saravelos, S.H.; Wang, Q.; Xu, Y.; Li, T.C.; Zhou, C. Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh ivf-icsi cycles. Reprod. Biomed. Online 2016, 33, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NC-FET (1) | AC-FET (2) | ACDR-FET (3) | p-Value | |
---|---|---|---|---|
Maximum Endometrial Thickness (mm) a | 9.5 ± 1.95 | 9.4 ± 1.7 | 9.9 ± 1.9 | <0.001 d |
Live Birth b | 175/430 (40.7%) | 978/2658 (36.8%) | 716/1949 (36.7%) | 0.27 c |
Clinical Pregnancy b | 206/430 (47.9%) | 1121/2658 (42.2%) | 865/1949 (44.4%) | 0.052 c |
Implantation a | 0.46 ± 0.5 | 0.44 ± 0.49 | 0.46 ± 0.49 | 0.56 d |
Biochemical Pregnancy b | 246/430 (57.2%) | 1476/2658 (55.5%) | 1136/1949 (58.3%) | 0.17 c |
Miscarriage b | 36/243 (14.8%) | 252/1476 (17%) | 223/1136 (19.6%) | 0.1 c |
Multiple Pregnancy b | 15/206 (7.3%) | 55/1121 (4.9%) | 53/865 (6.1%) | 0.28 c |
Ectopic Pregnancy b | 1/246 (0.4%) | 6/1476 (0.4%) | 4/1136 (0.35%) | 0.97 c |
Cut-Off Values (mm) for Live Birth | No. of Cycles | Sensitivity (%) | Specificity (%) | LR+ (95% CI) | LR− (95% CI) | Post-Test Probabilities If Test Positive (%) |
---|---|---|---|---|---|---|
3.5–4.9 | 5 | 0 | 99.8 | 0.00 | 1.0 | 0.00 |
5.0–5.9 | 12 | 0.1 | 99.7 | 0.34 | 0.99 | 16.7 |
6.0–6.9 | 65 | 1.2 | 98.6 | 0.87 | 0.99 | 33.8 |
7.0–7.9 | 354 | 6.9 | 92.9 | 0.98 | 0.92 | 36.7 |
8.0–8.9 | 1213 | 24.4 | 76.1 | 1.02 | 0.68 | 37.7 |
9.0–9.9 | 969 | 18.7 | 80.4 | 0.96 | 0.77 | 36.1 |
10.0–10.9 | 681 | 14.2 | 86.9 | 1.09 | 0.84 | 39 |
11.0–11.9 | 394 | 7.3 | 91.8 | 0.90 | 0.92 | 34.8 |
12.0–12.9 | 236 | 5.2 | 95.6 | 1.18 | 0.95 | 41 |
13.0–13.9 | 123 | 2.8 | 97.8 | 1.28 | 0.97 | 43 |
14.0–14.9 | 54 | 1.0 | 98.9 | 0.92 | 0.99 | 35.2 |
15.0–15.9 | 33 | 0.5 | 99.3 | 0.73 | 0.99 | 30.3 |
16.0–16.9 | 12 | 0.2 | 99.7 | 0.56 | 1.00 | 25 |
17.0–25.0 | 13 | 0.2 | 99.8 | 0.51 | 1.00 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleftheriadou, A.; Francis, A.; Wilcox, M.; Jayaprakasan, K. Frozen Blastocyst Embryo Transfer: Comparison of Protocols and Factors Influencing Outcome. J. Clin. Med. 2022, 11, 737. https://doi.org/10.3390/jcm11030737
Eleftheriadou A, Francis A, Wilcox M, Jayaprakasan K. Frozen Blastocyst Embryo Transfer: Comparison of Protocols and Factors Influencing Outcome. Journal of Clinical Medicine. 2022; 11(3):737. https://doi.org/10.3390/jcm11030737
Chicago/Turabian StyleEleftheriadou, Aikaterini, Abraham Francis, Mark Wilcox, and Kanna Jayaprakasan. 2022. "Frozen Blastocyst Embryo Transfer: Comparison of Protocols and Factors Influencing Outcome" Journal of Clinical Medicine 11, no. 3: 737. https://doi.org/10.3390/jcm11030737
APA StyleEleftheriadou, A., Francis, A., Wilcox, M., & Jayaprakasan, K. (2022). Frozen Blastocyst Embryo Transfer: Comparison of Protocols and Factors Influencing Outcome. Journal of Clinical Medicine, 11(3), 737. https://doi.org/10.3390/jcm11030737