Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Control Groups
2.3. Experimental Section
2.4. Biochemical Analyses
2.5. Statistical Methods
3. Results
3.1. Patient with Positive Result of AT1R-Ab and also ETAR-Ab and the Highest Number of Rejections
3.2. The Analysis of the Group of Patient after Hand Transplantation
3.3. The Comparison of Patients after Hand and Kidney Transplantation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petruzzo, P.; Lanzetta, M.; Dubernard, J.M.; Landin, L.; Cavadas, P.; Margreiter, R.; Schneeberger, S.; Breidenbach, W.; Kaufman, C.; Jablecki, J.; et al. The International Registry on Hand and Composite Tissue Transplantation. Transplantation 2010, 90, 1590–1594. [Google Scholar] [CrossRef]
- Hein, R.E.; Ruch, D.S.; Klifto, C.S.; Leversedge, F.J.; Mithani, S.K.; Pidgeon, T.S.; Richard, M.J.; Cendales, L.C. Hand Transplantation in the United States: A Review of the Organ Procurement and Transplantation Network/United Network for Organ Sharing Database. Am. J. Transplant. 2019, 20, 1417–1423. [Google Scholar] [CrossRef]
- Unadkat, J.V.; Schneeberger, S.; Horibe, E.H.; Goldbach, C.; Solari, M.G.; Washington, K.M.; Gorantla, V.S.; Cooper, G.M.; Thomson, A.W.; Lee, W.P.A. Composite Tissue Vasculopathy and Degeneration Following Multiple Episodes of Acute Rejection in Reconstructive Transplantation. Am. J. Transplant. 2010, 10, 251–261. [Google Scholar] [CrossRef]
- Kaufman, C.L.; Ouseph, R.; Blair, B.; Kutz, J.E.; Tsai, T.M.; Scheker, L.R.; Tien, H.Y.; Moreno, R.; Ozyurekoglu, T.; Banegas, R.; et al. Graft Vasculopathy in Clinical Hand Transplantation. Am. J. Transplant. 2012, 12, 1004–1016. [Google Scholar] [CrossRef]
- Kanitakis, J.; Petruzzo, P.; Badet, L.; Gazarian, A.; Thaunat, O.; Testelin, S.; Devauchelle, B.; Dubernard, J.-M.; Morelon, E. Chronic Rejection in Human Vascularized Composite Allotransplantation (Hand and Face Recipients). Transplantation 2016, 100, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Kanitakis, J.; Petruzzo, P.; Gazarian, A.; Karayannopoulou, G.; Buron, F.; Dubois, V.; Thaunat, O.; Badet, L.; Morelon, E. Capillary Thrombosis in the Skin. Transplantation 2016, 100, 954–957. [Google Scholar] [CrossRef] [PubMed]
- Etra, J.W.; Raimondi, G.; Brandacher, G. Mechanisms of Rejection in Vascular Composite Allotransplantation. Curr. Opin. Organ Transplant. 2018, 23, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Kollar, B.; Kamat, P.; Klein, H.J.; Waldner, M.; Schweizer, R.; Plock, J.A. The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation. J. Vasc. Res. 2019, 56, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Sulli, A.; Smith, V.; Pizzorni, C.; Paolino, S.; Alessandri, E.; Cutolo, M. Microvascular Damage Evaluation in Systemic Sclerosis: The Role of Nailfold Videocapillaroscopy and Laser Techniques. Reumatismo 2017, 69, 147–155. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Loupy, A.; Vernerey, D.; Duong-Van-Huyen, J.-P.; Suberbielle, C.; Anglicheau, D.; Vérine, J.; Beuscart, T.; Nochy, D.; Bruneval, P.; et al. Antibody-Mediated Vascular Rejection of Kidney Allografts: A Population-Based Study. Lancet 2013, 381, 313–319. [Google Scholar] [CrossRef]
- Loupy, A.; Hill, G.S.; Jordan, S.C. The Impact of Donor-Specific Anti-HLA Antibodies on Late Kidney Allograft Failure. Nat. Rev. Nephrol. 2012, 8, 348–357. [Google Scholar] [CrossRef]
- Barten, M.J.; Schulz, U.; Beiras-Fernandez, A.; Berchtold-Herz, M.; Boeken, U.; Garbade, J.; Hirt, S.; Richter, M.; Ruhpawar, A.; Sandhaus, T.; et al. The Clinical Impact of Donor-Specific Antibodies in Heart Transplantation. Transplant. Rev. 2018, 32, 207–217. [Google Scholar] [CrossRef]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Mazanowska, O.; Kamińska, D.; Bartoszek, D.; Żabińska, M.; Myszka-Kozłowska, M.; Nowakowska, B.; et al. The Impact of Non-HLA Antibodies Directed against Endothelin-1 Type A Receptors (ETAR) on Early Renal Transplant Outcomes. Transpl. Immunol. 2014, 30, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Bartoszek, D.; Żabińska, M.; Myszka, M.; Zmonarski, S.; Protasiewicz, M.; Nowakowska, B.; et al. The Influence of Non-HLA Antibodies Directed against Angiotensin II Type 1 Receptor (AT1R) on Early Renal Transplant Outcomes. Transpl. Int. 2014, 27, 1029–1038. [Google Scholar] [CrossRef]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Zmonarski, S.; Mazanowska, O.; Krajewska, M.; Bartoszek, D.; Żabińska, M.; Myszka-Kozłowska, M.; et al. Non-HLA Antibodies: Angiotensin II Type 1 Receptor (Anti-AT1R) and Endothelin-1 Type A Receptor (Anti-ETAR) Are Associated with Renal Allograft Injury and Graft Loss. Transplant. Proc. 2014, 46, 2618–2621. [Google Scholar] [CrossRef]
- Hiemann, N.E.; Meyer, R.; Wellnhofer, E.; Schoenemann, C.; Heidecke, H.; Lachmann, N.; Hetzer, R.; Dragun, D. Non-HLA Antibodies Targeting Vascular Receptors Enhance Alloimmune Response and Microvasculopathy after Heart Transplantation. Transplantation 2012, 94, 919–924. [Google Scholar] [CrossRef]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Mazanowska, O.; Bartoszek, D.; Żabińska, M.; Myszka-Kozłowska, M.; Nowakowska, B.; Hałoń, A.; Szyber, P.; et al. Long-Term Follow-Up of Non-HLA and Anti-HLA Antibodies: Incidence and Importance in Renal Transplantation. Transplant. Proc. 2013, 45, 1462–1465. [Google Scholar] [CrossRef]
- Dragun, D.; Hegner, B. Non-HLA Antibodies Post-Transplantation: Clinical Relevance and Treatment in Solid Organ Transplantation. Humoral Immun. Kidney Transplant. 2008, 162, 129–139. [Google Scholar] [CrossRef]
- Bhan, A.K.; Mihm, M.C.; Dvorak, H.F. T Cell Subsets in Allograft Rejection. In Situ Characterization of T Cell Subsets in Human Skin Allografts by the Use of Monoclonal Antibodies. J. Immunol. 1982, 129, 1578–1583. [Google Scholar]
- Chandraker, A.; Arscott, R.; Murphy, G.F.; Lian, C.; Bueno, E.M.; Marty, F.; Rennke, H.G.; Milford, E.; Tullius, S.G.; Pomahac, B. The Management of Antibody-Mediated Rejection in the First Presensitized Recipient of a Full-Face Allotransplant. Am. J. Transplant. 2014, 14, 1446–1452. [Google Scholar] [CrossRef]
- Weissenbacher, A.; Hautz, T.; Zelger, B.; Zelger, B.G.; Mayr, V.; Brandacher, G.; Pratschke, J.; Schneeberger, S. Antibody-Mediated Rejection in Hand Transplantation. Transpl. Int. 2013, 27, e13–e17. [Google Scholar] [CrossRef]
- Banasik, M.; Jabłecki, J.; Boratyńska, M.; Kamińska, D.; Kościelska-Kasprzak, K.; Bartoszek, D.; Chełmoński, A.; Hałoń, A.; Baran, W.; Klinger, M. Humoral Immunity in Hand Transplantation: Anti-HLA and Non-HLA Response. Hum. Immunol. 2014, 75, 859–862. [Google Scholar] [CrossRef]
- Sikorska, D.; Samborski, W.; Kamińska, D.; Kusztal, M.; Jabłecki, J.; Nijakowski, K.; Oko, A.; Karczewski, M.; Korybalska, K.; Witowski, J. Abnormal Nailfold Capillaries in Patients after Hand Transplantation. J. Clin. Med. 2020, 9, 3422. [Google Scholar] [CrossRef]
- Amin, K.; Sivakumar, B.; Clarke, A.; Puri, A.; Denton, C.; Butler, P.E. Hand Disease in Scleroderma: A Clinical Correlate for Chronic Hand Transplant Rejection. SpringerPlus 2013, 2, 577. [Google Scholar] [CrossRef] [Green Version]
- Krezdorn, N.; Lian, C.G.; Wells, M.; Wo, L.; Tasigiorgos, S.; Xu, S.; Borges, T.J.; Frierson, R.M.; Stanek, E.; Riella, L.V.; et al. Chronic Rejection of Human Face Allografts. Am. J. Transplant. 2018, 19, 1168–1177. [Google Scholar] [CrossRef]
- Riemekasten, G.; Philippe, A.; Näther, M.; Slowinski, T.; Muller, D.N.; Heidecke, H.; Matucci-Cerinic, M.; Czirják, L.; Lukitsch, I.; Becker, M.; et al. Involvement of Functional Autoantibodies against Vascular Receptors in Systemic Sclerosis. Ann. Rheum. Dis. 2010, 70, 530–536. [Google Scholar] [CrossRef]
- Zhang, Q.; Reed, E.F. The Importance of Non-HLA Antibodies in Transplantation. Nat. Rev. Nephrol. 2016, 12, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Kadono, K.; Gruszynski, M.; Azari, K.; Kupiec-Weglinski, J.W. Vascularized Composite Allotransplantation Versus Solid Organ Transplantation: Innate-Adaptive Immune Interphase. Curr. Opin. Organ Transplant. 2019, 24, 714–720. [Google Scholar] [CrossRef]
- Jablecki, J.; Kaczmarzyk, L.; Patrzałek, D.; Domanasiewicz, A.; Boratyńska, Z. First Polish Forearm Transplantation: Report After 17 Months. Transplant. Proc. 2009, 41, 549–553. [Google Scholar] [CrossRef]
- Cendales, L.C.; Kanitakis, J.; Schneeberger, S.; Burns, C.; Ruiz, P.; Landin, L.; Remmelink, M.; Hewitt, C.W.; Landgren, T.; Lyons, B.; et al. The Banff 2007 Working Classification of Skin-Containing Composite Tissue Allograft Pathology. Am. J. Transplant. 2008, 8, 1396–1400. [Google Scholar] [CrossRef]
- Marques, O.C.; Marques, A.; Giil, L.M.; De Vito, R.; Rademacher, J.; Günther, J.; Lange, T.; Humrich, J.Y.; Klapa, S.; Schinke, S.; et al. GPCR-Specific Autoantibody Signatures Are Associated with Physiological and Pathological Immune Homeostasis. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Sas-Strózik, A.; Krajewska, M.; Banasik, M. The Significance of Angiotensin II Type 1 Receptor (AT1 Receptor) in Renal Transplant Injury. Adv. Clin. Exp. Med. 2020, 29, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Sas-Strózik, A.; Donizy, P.; Kościelska-Kasprzak, K.; Kamińska, D.; Gawlik, K.; Mazanowska, O.; Madziarska, K.; Hałoń, A.; Krajewska, M.; Banasik, M. Angiotensin II Type 1 Receptor Expression in Renal Transplant Biopsies and Anti-AT1R Antibodies in Serum Indicates the Risk of Transplant Loss. Transplant. Proc. 2020, 52, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Nowańska, K.; Banasik, M.; Donizy, P.; Kościelska-Kasprzak, K.; Zmonarski, S.; Letachowicz, K.; Kamińska, D.; Mazanowska, O.; Augustyniak-Bartosik, H.; Tukiendorf, A.; et al. Endothelin A Receptors Expressed in Glomeruli of Renal Transplant Patients May Be Associated with Antibody-Mediated Rejection. J. Clin. Med. 2021, 10, 422. [Google Scholar] [CrossRef]
- Nowańska, K.; Wiśnicki, K.; Kuriata-Kordek, M.; Krajewska, M.; Banasik, M. The Role of Endothelin II Type A Receptor (ETAR) in Transplant Injury. Transpl. Immunol. 2021, 70, 101505. [Google Scholar] [CrossRef]
- Valujskikh, A.; Heeger, P.S. Emerging Roles of Endothelial Cells in Transplant Rejection. Curr. Opin. Immunol. 2003, 15, 493–498. [Google Scholar] [CrossRef]
- Dragun, D.; Philippe, A.; Catar, R. Role of Non-HLA Antibodies in Organ Transplantation. Curr. Opin. Organ Transplant. 2012, 17, 440–445. [Google Scholar] [CrossRef]
- Dragun, D.; Catar, R.; Philippe, A. Non-HLA Antibodies in Solid Organ Transplantation. Curr. Opin. Organ Transplant. 2013, 18, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Reinsmoen, N.L. Role of Angiotensin II Type 1 Receptor-Activating Antibodies in Solid Organ Transplantation. Hum. Immunol. 2013, 74, 1474–1477. [Google Scholar] [CrossRef]
- Jackson, A.M.; Wiebe, C.; Hickey, M.J. The Role of Non-HLA Antibodies in Solid Organ Transplantation: A Complex Deliberation. Curr. Opin. Organ Transplant. 2020, 25, 536–542. [Google Scholar] [CrossRef]
- Chora, I.; Guiducci, S.; Manetti, M.; Romano, E.; Mazzotta, C.; Bellando-Randone, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M.; Soares, R. Vascular Biomarkers and Correlation with Peripheral Vasculopathy in Systemic Sclerosis. Autoimmun. Rev. 2014, 14, 314–322. [Google Scholar] [CrossRef]
- Kamińska, D.; Kościelska-Kasprzak, K.; Krajewska, M.; Chełmoński, A.; Jabłecki, J.; Żabińska, M.; Myszka, M.; Banasik, M.; Boratyńska, M.; Gomółkiewicz, A.; et al. Immune Activation-and Regulation-Related Patterns in Stable Hand Transplant Recipients. Transpl. Int. 2016, 30, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Blancho, G.; Moreau, J.F.; Chabannes, D.; Chatenoud, L.; Soulillou, J.P. HILDA/LIF, G.CSF, IL-1β, IL-6, and TNFα Production during Acute Rejection of Human Kidney Allografts. Transplantation 1993, 56, 597–602. [Google Scholar] [CrossRef]
- Jordan, S.C.; Choi, J.; Kim, I.; Wu, G.; Toyoda, M.; Shin, B.; Vo, A. Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection. Transplantation 2017, 101, 32–44. [Google Scholar] [CrossRef]
- Alves, L.V.; Martins, S.R.; Silva, A.C.S.E.; Cardoso, C.N.; Gomes, K.B.; Mota, A.P.L. TNF, IL-6, and IL-10 Cytokines Levels and their Polymorphisms in Renal Function and Time after Transplantation. Immunol. Res. 2020, 68, 246–254. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Cozzi, E.; West, L.J.; Warren, D.S. Humoral Immunity and Antibody-Mediated Rejection in Solid Organ Transplantation. Semin. Immunol. 2011, 23, 224–234. [Google Scholar] [CrossRef]
- Cozzi, E.; Colpo, A.; De Silvestro, G. The Mechanisms of Rejection in Solid Organ Transplantation. Transfus. Apher. Sci. 2017, 56, 498–505. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, L. Effects of Alkaloid Sinomenine on Levels of IFN-γ, IL-1β, TNF-α and IL-6 in a Rat Renal Allograft Model. Immunotherapy 2012, 4, 785–791. [Google Scholar] [CrossRef]
- Sicard, A.; Kanitakis, J.; Dubois, V.; Morelon, E.; Thaunat, O. Humoral Alloreactivity in VCA Recipients: Should We Learn from Our Experience? Transplantation 2020, 104, 2003–2010. [Google Scholar] [CrossRef]
- Wu, M.; Skaug, B.; Bi, X.; Mills, T.; Salazar, G.; Zhou, X.; Reveille, J.; Agarwal, S.K.; Blackburn, M.R.; Mayes, M.D.; et al. Interferon Regulatory Factor 7 (IRF7) Represents a Link between Inflammation and Fibrosis in the Pathogenesis of Systemic Sclerosis. Ann. Rheum. Dis. 2019, 78, 1583–1591. [Google Scholar] [CrossRef]
- Brown, M.; O’Reilly, S. The Immunopathogenesis of Fibrosis in Systemic Sclerosis. Clin. Exp. Immunol. 2018, 195, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Mu, R.; Wei, X. The Roles of IL-1 Family Cytokines in the Pathogenesis of Systemic Sclerosis. Front. Immunol. 2019, 10, 2025. [Google Scholar] [CrossRef] [Green Version]
- Aharinejad, S.; Krenn, K.; Zuckermann, A.; Schäfer, R.; Gmeiner, M.; Thomas, A.; Aliabadi, A.; Schneider, B.; Grimm, M. Serum Matrix Metalloprotease-1 and Vascular Endothelial Growth Factor-A Predict Cardiac Allograft Rejection. Am. J. Transplant. 2008, 9, 149–159. [Google Scholar] [CrossRef]
- Hill, P.A.; Main, I.W.; Atkins, R.C. ICAM-1 and VCAM-1 in Human Renal Allograft Rejection. Kidney Int. 1995, 47, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Dolz, L.; Almenar, L.; Reganon, E.; Vila, V.; Chamorro, C.; Andres, L.; Martínez-Sales, V.; Moro, J.; Agüero, J.; Sánchez-Lázaro, I.; et al. Follow-up Study on the Utility of von Willebrand Factor Levels in the Diagnosis of Cardiac Allograft Vasculopathy. J. Hear. Lung Transplant. 2008, 27, 760–766. [Google Scholar] [CrossRef]
- Barnes, T.; Gliddon, A.; Doré, C.J.; Maddison, P.; Moots, R.J.; The QUINs Trial Study Group. Baseline vWF Factor Predicts the Development of Elevated Pulmonary Artery Pressure in Systemic Sclerosis. Rheumatology 2012, 51, 1606–1609. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, A.I.; Zakynthinos, E.; Kostikas, K.; Kiropoulos, T.; Koutsokera, A.; Ziogas, A.; Koutroumpas, A.; Sakkas, L.; Gourgoulianis, K.I.; Daniil, Z.D. Serum VEGF Levels Are Related to the Presence of Pulmonary Arterial Hypertension in Systemic Sclerosis. BMC Pulm. Med. 2009, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, V.; Patterson, K.A.; Stevens, W.; Wilson, M.; Roddy, J.; Sahhar, J.; Proudman, S.; Hissaria, P.; Nikpour, M. Increased Serum Levels of Adhesion Molecules ICAM-1 and VCAM-1 in Systemic Sclerosis Are not Specific for Pulmonary Manifestations. Clin. Rheumatol. 2018, 37, 1563–1571. [Google Scholar] [CrossRef]
- Morelon, E.; Petruzzo, P.; Kanitakis, J. Chronic Rejection in Vascularized Composite Allotransplantation. Curr. Opin. Organ Transplant. 2018, 23, 582–591. [Google Scholar] [CrossRef]
- Borges, T.J.; O’Malley, J.T.; Wo, L.; Murakami, N.; Smith, B.; Azzi, J.; Tripathi, S.; Lane, J.D.; Bueno, E.M.; Clark, R.A.; et al. Codominant Role of Interferon-γ–and Interleukin-17–Producing T Cells during Rejection in Full Facial Transplant Recipients. Am. J. Transplant. 2016, 16, 2158–2171. [Google Scholar] [CrossRef] [Green Version]
- Lambova, S.N.; Müller-Ladner, U. Capillaroscopic Pattern in Systemic Sclerosis—An Association with Dynamics of Processes of Angio- And Vasculogenesis. Microvasc. Res. 2010, 80, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Mechanisms in the Loss of Capillaries in Systemic Sclerosis: Angiogenesis Versus Vasculogenesis. J. Cell. Mol. Med. 2010, 14, 1241–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, E.; Ljungdahl, M.A.; Bogdanović, D.; Berglund, D.; Wadström, J.; Kowalski, J.; Brandacher, G.; Kamińska, D.; Kaufman, C.L.; Talbot, S.G.; et al. Clinical Significance of Alloantibodies in Hand Transplantation: A Multicenter Study. Transplantation 2019, 103, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.M.; Glass, C. Rejection in the Setting of Non-HLA Antibody: New Tools for Navigating Bench to Bedside. Am. J. Transplant. 2020, 20, 2639–2641. [Google Scholar] [CrossRef]
- Singh, K.D.; Jara, Z.P.; Harford, T.; Saha, P.P.; Pardhi, T.R.; Desnoyer, R.; Karnik, S.S. Novel Allosteric Ligands of the Angiotensin Receptor AT1R as Autoantibody Blockers. Proc. Natl. Acad. Sci. USA 2021, 118, e2019126118. [Google Scholar] [CrossRef]
Patient (the First Letter of the Surname) | (H) | (O) | (W) | (B) | (S) | (T) |
---|---|---|---|---|---|---|
No of acute rejections | 1 | 1 | 2 | 5 | 5 | 6 |
Age (years) | 33 | 45 | 64 | 38 | 38 | 33 |
Time after transplantation (years) | 3 | 11 | 8 | 9 | 9 | 2 |
Changes in microcirculation in capillaroscopy (yes/no) | Y | Y | Y | Y | Y | Y |
No of HLA mismatch | 6 | 5 | 4 | 3 | 5 | 6 |
Donor HLA | A-1,2, B-8,57, DR-3,7 | A-31,32, B-35,39, DR-11,16 | A-2, B-7,39, DR-13,15 | A-26, B-40,56, DR-1,13 | A-1,3, B-7,8, DR-3,11 | A-1,68 B-7,8 DR-13,15 |
Recipient HLA | A-24,25, B-27, DR-1,4 | A-24, B-18,40, DR-1,11 | A-1,2 B-8,15, DR-3,4 | A-24,26, B-13,38, DR-7,13 | A-2,3, B-35,44, DR-13,16 | A-2,3 B-27,51 DR-1,8 |
Anti-HLA cl. I (yes/no) | N | N | Y | N | N | N |
Anti-HLA cl.II (yes/no) | N | N | N | N | Y | N |
AT1R-Ab (U/mL) | 6.25 | 9.98 | 8.95 | 5.88 | 8.24 | 11.73 |
ETAR-Ab (U/mL) | 6.47 | 9.21 | 7.64 | 6.76 | 9.15 | 11.21 |
PAR1-Ab (U/mL) | 3.62 | 4.02 | 8.01 | 1.24 | 2.62 | 7.91 |
VEGF-A-Ab (U/mL) | 2.37 | 3.92 | 3.67 | 2.33 | 2.87 | 5.56 |
VEGF (pg/mL) | 414.4 | 564.2 | 670.2 | 442.8 | 319.8 | 631.2 |
sICAM-1 (ng/mL) | 108.19 | 145.68 | 183.29 | 167.85 | 254.80 | 164.98 |
vWF (ng/mL) | 0.75 | 1.56 | 1.40 | 1.74 | 1.49 | 3.08 |
IFN-gamma (pg/mL) | 2.00 | 23.64 | 6.71 | 2.29 | 1.96 | 1.87 |
hs Il-1 (pg/mL) | 0.37 | 1.08 | 0.51 | 0.32 | 0.64 | 0.62 |
hs Il-6 (pg/mL) | 3.01 | 2.73 | 3.45 | 2.54 | 5.15 | 3.26 |
Patients after Hand Transplantation (n = 6) | Patients after Kidney Transplantation (n = 12) | Healthy Control Group (n = 12) | p-Value (ANOVA Test) | |
---|---|---|---|---|
VEGF (pg/mL) * | 503.5 (414.4–631.2) | 194.0 (123.3–259.5) | 50.0 (17.5–90.8) | <0.001 1 |
sICAM-1 (ng/mL) | 166.4 (145.7–183.3) | 135.7 (122.4–161.6) | 92.8 (69.2–114.6) | 0.003 2 |
vWf (ng/mL) | 1.5 (1.4–1.7) | 1.5 (1.2–1.8) | 0.7 (0.5–0.9) | <0.001 3 |
Patients after Hand Transplantation (n = 6) | Patients after Kidney Transplantation (n = 12) | Healthy Control Group (n = 12) | p-Value (ANOVA Test) | |
---|---|---|---|---|
AT1R-Ab (U/mL) | 8.60 (6.25–9.98) | 9.70 (8.60–11.66) | 9.68 (8.26–11.83) | 0.401 |
ETAR-Ab (U/mL) | 8.40 (6.76–9.21) | 9.67 (8.04–13.36) | 10.07 (9.19–13.09) | 0.185 |
PAR-1-Ab (U/mL) | 4.57 (2.62–7.90) | 5.37 (2.55–10.77) | 2.40 (1.99–4.70) | 0.203 |
VEGF-A-Ab (U/mL) | 3.26 (2.37–3.92) | 4.65 (3.01–5.76) | 3.73 (2.69–7.02) | 0.606 |
Patients after Hand Transplantation (n = 6) | Patients after Kidney Transplantation (n = 12) | Healthy Control Group (n = 12) | p-Value (ANOVA Test) | |
---|---|---|---|---|
IFN-γ (pg/mL) | 2.14 (1.96–6.71) | 1.95 (1.75–3.26) | 1.86 (1.80–2.44) | 0.295 |
IL-1β (pg/mL) | 0.56 (0.37–0.64) | 0.40 (0.33–0.45) | 0.48 (0.33–0.58) | 0.287 |
IL-6 (pg/mL) | 3.13 (2.72–3.44) | 6.20 (4.91–7.03) # | 2.60 (2.34–4.20) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska, D.; Kamińska, D.; Catar, R.; Banasik, M.; Heidecke, H.; Schulze-Forster, K.; Korybalska, K.; Rutkowski, R.; Łuczak, J.; Jabłecki, J.; et al. Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation. J. Clin. Med. 2022, 11, 833. https://doi.org/10.3390/jcm11030833
Sikorska D, Kamińska D, Catar R, Banasik M, Heidecke H, Schulze-Forster K, Korybalska K, Rutkowski R, Łuczak J, Jabłecki J, et al. Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation. Journal of Clinical Medicine. 2022; 11(3):833. https://doi.org/10.3390/jcm11030833
Chicago/Turabian StyleSikorska, Dorota, Dorota Kamińska, Rusan Catar, Mirosław Banasik, Harald Heidecke, Kai Schulze-Forster, Katarzyna Korybalska, Rafał Rutkowski, Joanna Łuczak, Jerzy Jabłecki, and et al. 2022. "Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation" Journal of Clinical Medicine 11, no. 3: 833. https://doi.org/10.3390/jcm11030833
APA StyleSikorska, D., Kamińska, D., Catar, R., Banasik, M., Heidecke, H., Schulze-Forster, K., Korybalska, K., Rutkowski, R., Łuczak, J., Jabłecki, J., Oko, A., Daroszewski, P., Kusztal, M., & Samborski, W. (2022). Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation. Journal of Clinical Medicine, 11(3), 833. https://doi.org/10.3390/jcm11030833