Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Inclusion Criteria, and Setting
2.2. Clinical Parameters
2.3. Glucose and Lipid Metabolism
2.3.1. Insulin Sensitivity by Hyperinsulinemic-Euglycemic Clamp
2.3.2. Muscular Metabolites by Microdialysis in the M. vastus lateralis
2.4. Protein Degradation, Content, and Muscle Morphology
Molecular and Histological Analyses in Surgical Biopsies of M. vastus lateralis
2.5. Statistical Analysis
3. Results
- Observation: n = 33, ♂n = 24 (72.7%), ♀n = 9 (24.3%). Standard physiotherapy was performed.
- Intervention: n = 33, ♂n = 24 (72.7%), ♀n = 9 (24.3%). Advanced muscle-activating measures (e.g., electrical muscle stimulation, vibration therapy) were used in addition to protocol-based physiotherapy. The control arm of the interventional study included n = 17 patients, ♂n = 9 (52.9%), ♀n = 8 (47.1%), who received protocol-based physiotherapy. See Figure S1 for details.
3.1. Clinical Baseline Characteristics
3.2. Clinical Diagnosis of ICUAW by MRC at First Awakening and ICU Discharge
3.3. Glucose and Lipid Metabolism
3.3.1. Insulin Sensitivity Index (ISI) by Hyperinsulinemic-Euglycemic Clamp
3.3.2. Muscular Metabolites of Glycolysis by Microdialysis in M. vastus lateralis
3.3.3. Muscular Glycerol Concentrations by Microdialysis in M. vastus lateralis
3.4. Protein Degradation, Content, and Muscle Morphology
3.4.1. Molecular Analysis of Protein Degradation Pathways, Myosin Heavy Chains, and Myosin Protein Content in M. vastus lateralis Biopsies
3.4.2. Histological Analysis of Surgical Biopsies of M. vastus lateralis—Myocyte Cross-Sectional Area (MCSA)
4. Discussion
4.1. Insulin Sensitivity
4.2. Muscular Substrate Metabolism
4.3. Muscular Phenotype and Atrophy
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Aerde, N.; Meersseman, P.; Debaveye, Y.; Wilmer, A.; Gunst, J.; Casaer, M.P.; Bruyninckx, F.; Wouters, P.J.; Gosselink, R.; Van den Berghe, G.; et al. Five-year impact of ICU-acquired neuromuscular complications: A prospective, observational study. Intensive Care Med. 2020, 46, 1184–1193. [Google Scholar] [CrossRef]
- De Jonghe, B.; Sharshar, T.; Lefaucheur, J.-P.; Authier, F.-J.; Durand-Zaleski, I.; Boussarsar, M.; Cerf, C.; Renaud, E.; Mesrati, F.; Carlet, J.; et al. Paresis Acquired in the Intensive Care Unit: A Prospective Multicenter Study. Available online: https://pubmed.ncbi.nlm.nih.gov/12472328/ (accessed on 11 January 2021).
- Wollersheim, T.; Woehlecke, J.; Krebs, M.; Hamati, J.; Lodka, D.; Luther-Schroeder, A.; Langhans, C.; Haas, K.; Radtke, T.; Kleber, C.; et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med. 2014, 40, 528–538. [Google Scholar] [CrossRef]
- Thomas, S.; Mehrholz, J. Health-related quality of life, participation, and physical and cognitive function of patients with intensive care unit-acquired muscle weakness 1 year after rehabilitation in Germany: The GymNAST cohort study. BMJ Open Br. Med. J. Publ. Group 2018, 8, e020163. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Liu, K.; Kawakami, D.; Kawai, Y.; Morisawa, T.; Nishida, T.; Sumita, H.; Unoki, T.; Hifumi, T.; Iida, Y.; et al. Post-Intensive Care Syndrome and Its New Challenges in Coronavirus Disease 2019 (COVID-19) Pandemic: A Review of Recent Advances and Perspectives. J. Clin. Med. 2021, 10, 3870. [Google Scholar] [CrossRef] [PubMed]
- Weber-Carstens, S.; Deja, M.; Koch, S.; Spranger, J.; Bubser, F.; Wernecke, K.D.; Spies, C.D.; Spuler, S.; Keh, D. Risk factors in critical illness myopathy during the early course of critical illness: A prospective observational study. Crit. Care 2010, 14, R119. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef]
- Weber-Carstens, S.; Koch, S.; Spuler, S.; Spies, C.D.; Bubser, F.; Wernecke, K.D.; Deja, M. Nonexcitable muscle membrane predicts intensive care unit-acquired paresis in mechanically ventilated, sedated patients. Crit. Care Med. 2009, 37, 2632–2637. [Google Scholar] [CrossRef] [PubMed]
- Weber-Carstens, S.; Schneider, J.; Wollersheim, T.; Assmann, A.; Bierbrauer, J.; Marg, A.; Al Hasani, H.; Chadt, A.; Wenzel, K.; Koch, S.; et al. Critical Illness Myopathy and GLUT4: Significance of Insulin and Muscle Contraction. Am. J. Respir. Crit. Care Med. 2013, 187, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Wollersheim, T.; Grunow, J.J.; Carbon, N.M.; Haas, K.; Malleike, J.; Ramme, S.F.; Schneider, J.; Spies, C.D.; Märdian, S.; Mai, K.; et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: An explorative trial. J. Cachexia Sarcopenia Muscle 2019, 10, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Grunow, J.J.; Goll, M.; Carbon, N.M.; Liebl, M.E.; Weber-Carstens, S.; Wollersheim, T. Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Crit. Care 2019, 23, 308. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. -Endocrinol. Metab. 1979, 237, E214. [Google Scholar] [CrossRef]
- Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Murray, T.F.; Hostler, D.P.; Crill, M.T.; Ragg, K.E.; Toma, K. Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women. J. Histochem. Cytochem. 2000, 48, 623–629. [Google Scholar] [CrossRef]
- Uyttendaele, V.; Chase, J.G.; Knopp, J.L.; Gottlieb, R.; Shaw, G.M.; Desaive, T. Insulin sensitivity in critically ill patients: Are women more insulin resistant? Ann. Intensive Care 2021, 11, 12. [Google Scholar] [CrossRef]
- Yan, H.; Yang, W.; Zhou, F.; Li, X.; Pan, Q.; Shen, Z.; Han, G.; Newell-Fugate, A.; Tian, Y.; Majeti, R.; et al. Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes 2019, 68, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Chlebowski, R.T.; Stefanick, M.L.; Aragaki, A.K.; Rossouw, J.E.; Prentice, R.L.; Anderson, G.; Howard, B.V.; Thomson, C.A.; LaCroix, A.Z.; et al. Menopausal Hormone Therapy and Health Outcomes During the Intervention and Extended Poststopping Phases of the Women’s Health Initiative Randomized Trials. JAMA 2013, 310, 1353. [Google Scholar] [CrossRef] [PubMed]
- Geer, E.B.; Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 2009, 6, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Sharshar, T.; Bastuji-Garin, S.; De Jonghe, B.; Stevens, R.D.; Polito, A.; Maxime, V.; Rodriguez, P.; Cerf, C.; Outin, H.; Touraine, P.; et al. Hormonal status and ICU-acquired paresis in critically ill patients. Intensive Care Med. 2010, 36, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Langer, H.T.; Afzal, S.; Kempa, S.; Spuler, S. Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci. Rep. 2020, 10, 1908. Available online: http://www.nature.com/articles/s41598-020-58213-1 (accessed on 24 July 2020). [CrossRef]
- Horton, T.J.; Dow, S.; Armstrong, M.; Donahoo, W.T. Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. J. Appl. Physiol. 2009, 107, 200–210. [Google Scholar] [CrossRef]
- Schmidt, S.L.; Bessesen, D.H.; Stotz, S.; Peelor, F.F.; Miller, B.F.; Horton, T.J. Adrenergic control of lipolysis in women compared with men. J. Appl. Physiol. 2014, 117, 1008–1019. [Google Scholar] [CrossRef]
- Horton, T.J.; Pagliassotti, M.J.; Hobbs, K.; Hill, J.O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 1998, 85, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Caldwell, M.E.; Greene, N.P. Muscle metabolism and atrophy: Let’s talk about sex. Biol. Sex Differ. BioMed Cent. 2019, 10, 43. [Google Scholar] [CrossRef]
- Drolz, A.; Wewalka, M.; Horvatits, T.; Fuhrmann, V.; Schneeweiss, B.; Trauner, M.; Zauner, C. Gender-specific differences in energy metabolism during the initial phase of critical illness. Eur. J. Clin. Nutr. Nat. Publ. Group 2014, 68, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Zauner, A.; Schneeweiss, B.; Kneidinger, N.; Lindner, G.; Zauner, C. Weight-adjusted resting energy expenditure is not constant in critically ill patients. Intensive Care Med. 2006, 32, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Pan, J.; Zhao, Z.; Wu, Y.; Bauman, W.A.; Cardozo, C.P. Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J. Steroid Biochem. Mol. Biol. 2008, 110, 125–129. [Google Scholar] [CrossRef]
- Hollinger, A.; Gayat, E.; Féliot, E.; Paugam-Burtz, C.; Fournier, M.-C.; Duranteau, J.; Lefrant, J.-Y.; Leone, M.; Jaber, S.; Mebazaa, A.; et al. Gender and survival of critically ill patients: Results from the FROG-ICU study. Ann. Intensive Care 2019, 9, 43. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441070/ (accessed on 14 May 2021). [CrossRef] [PubMed]
Male ICU Patients ♂n = 57 (68.7%) | Female ICU Patients ♀n = 26 (31.3%) | p-Value | |
---|---|---|---|
Age (years) | 49.0 (37.0/63.0) | 60.5 (44.0/68.0) | 0.082 |
BMI (kg/m2) | 27.1 (23.4/29.8) | 27.0 (23.1/31.2) | 0.833 |
Height (cm) | 178.0 (175.0/185.0) | 165.0 (163.0/170.0) | <0.001 |
Weight (kg) | 85.0 (80.0/96.0) | 71.0 (65.0/85.0) | 0.001 |
SOFA score at ICU admission | 12.0 (10.0/14.0) | 14.0 (11.0/16.0) | 0.167 |
APACHE at ICU admission | 21.0 (17.0/27.0) | 23.5 (17.0/30.0) | 0.170 |
SAPS 2 at ICU admission | 52 (38.0/62.0) | 54.5 (44.0/69.0) | 0.107 |
Length of ICU stay (days) | 29 (20.0/41.0) | 27 (17.0/49.0) | 0.933 |
Survival until ICU discharge (n, %) | 45 (78.9) | 24 (92.3) | 0.132 |
Reasons for ICU admission | 0.289 | ||
ARDS (n, %) | 19 (33.3) | 9 (34.6) | |
Sepsis (n,%) | 13 (22.8) | 7 (26.9) | |
Polytrauma (n,%) | 16 (28.1) | 3 (11.5) | |
Neurological (n,%) | 9 (15.8) | 6 (23.1) | |
Other (n,%) | - | 1 (3.8) | |
Insulin dose and caloric intake | |||
Insulin dose per body surface area during ICU stay (IE/m2) | 18.5 (10.5/26.7) | 20.1 (15.6/30.9) | 0.289 |
Insulin dose per body surface until muscle biopsy (IE/m2) | 18.6 (9.2/27.8) | 30.0 (17.7/37.0) | 0.048 |
Caloric intake per PBW during ICU stay (kcal/kgPBW) | 18.5 (14.0/20.7) | 21.6 (17.5/28.2) | 0.001 |
Caloric intake per PBW ICU day 1–7 (kcal/kgPBW) | 13.7 (10.5/19.1) | 17.7 (13.5/24.9) | 0.008 |
Physiotherapy during ICU stay | |||
Total duration of physiotherapy (min) | 445 (267.5/662.5) | 397.5 (265.0/740.0) | 0.673 |
Time per physiotherapy session (min) | 27.8 (24.8/29.9) | 29.0 (24.0/30.3) | 0.488 |
Number of physiotherapeutic sessions | 16 (11/23.5) | 17 (11/24) | 0.701 |
Model 1 (Unadjusted) | Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | n | B | 95% CI B | p-Value | Variables | n | B | 95% CI B | p-Value |
Sex | 50 | −0.017 | (−0.033 0.047) | 0.014 | Sex | 50 | −0.014 | (−0.026 −0.003) | 0.016 |
Constant | 0.040 | (−0.030 −0.003) | <0.001 | BMI | 50 | −0.001 | (−0.002 0.000) | 0.231 | |
Age | 50 | −0.001 | (−0.001 0.000) | <0.001 | |||||
Caloric intake | 50 | 0.001 | (0.000 0.002) | 0.009 | |||||
Constant | 0.067 | (0.034 0.100) | <0.001 | ||||||
n = 50, R = 0.345, R2 = 0.119 (adjusted R2 = 0.101), p = 0.014 | n = 50, R = 0.662, R2 = 0.439 (adjusted R2 = 0.389), p < 0.001 |
Myocyte Cross-Sectional Area (MCSA) M. vastus lateralis | Male ICU Patients ♂n = 37 | Female ICU Patients ♀n = 17 | p-Value |
---|---|---|---|
Mean MCSA Type I muscle fiber (µm2) Mean MCSA Type IIa muscle fiber (µm2) Mean MCSA Type IIb muscle fiber (µm2) | 3844.4 (2999.7/4929.6) | 2740.0 (2471.8/3591.1) | 0.031 |
4006.2 (2240.7/5002.2) | 2036.3 (1675.4/3245.1) | 0.003 | |
3229.7 (2080.6/4390.5) | 2309.5 (1708.8/2958.8) | 0.020 | |
Results are given as median with interquartile range. MCSA myocyte cross-sectional area. Mann–Whitney Test. | |||
Myocyte cross-sectional area (MCSA) reference values from M. vastus lateralis in n = 95 healthy, untrained men, and n = 55 healthy, untrained women. Staron et al., Table 3. J Histochem Cytochem, 2000 [13] | |||
Healthy male ♂n = 95 | Healthy female ♀n = 55 | ||
Mean MCSA Type I muscle fiber (µm2) Mean MCSA Type IIa muscle fiber (µm2) Mean MCSA Type IIb muscle fiber (µm2) | 4844 ± 1286 | 4084 ± 895 | |
6174 ± 1587 5160 ± 1324 | 3879 ± 867 3116 ± 792 | ||
Values reported by Staron et al. are means ± standard deviation. |
Model 1 (Unadjusted) | Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
MCSA Type I Fibers | |||||||||
Variable | n | B | 95% CI B | p-Value | Variables | n | B | 95% CI B | p-Value |
Sex | 54 | −904.4 | (−1756.6 −52.3) | 0.038 | Sex | 54 | −793.1 | (−1677.2 91.0) | 0.078 |
Constant | 4070.4 | (3592.2 4548.5) | <0.001 | BMI | 54 | 103.4 | (17.6 189.2) | 0.019 | |
Age | 54 | 1.0 | (−24.0 26.0) | 0.938 | |||||
Caloric intake | 54 | −37.2 | (−97.2 22.8) | 0.219 | |||||
Constant | 1865.6 | (−808.7 4539.8) | 0.167 | ||||||
n = 54 ICU patients, R = 0.283, R2 = 0.08 (adjusted R2 = 0.063), p = 0.038 | n = 54 ICU patients, R = 0.437, R2 = 0.191 (adjusted R2 =.125), p = 0.032 | ||||||||
MCSA Type IIa Fibers | |||||||||
Variable | n | B | 95% CI B | p-Value | Variables | n | B | 95% CI B | p-Value |
Sex | 54 | −1651.8 | (−2730.9 −572.7) | 0.003 | Sex | 54 | −1345.6 | (−2411.4 −279.8) | 0.014 |
Constant | 4027.2 | (3421.8 4632.7) | <0.001 | BMI | 54 | 161.7 | (58.3 265.1) | 0.003 | |
Age | 54 | −20.2 | (−50.4 9.9) | 0.183 | |||||
Caloric intake | 54 | −49.3 | (−121.7 23.0) | 0.177 | |||||
Constant | 1529.1 | (−1694.7 4753.0) | 0.345 | ||||||
n = 54 ICU patients, R = 0.392, R2 = 0.154 (adjusted R2 = 0.137), p = 0.003 | n = 54 ICU patients, R = 0.570, R2 = 0.325 (adjusted R2 = 0.270), p < 0.001 | ||||||||
MCSA Type IIb Fibers | |||||||||
Variable | n | B | 95% CI B | p-Value | Variables | n | B | 95% CI B | p-Value |
Sex | 54 | −1161.7 | (−2166.4 −157.1) | 0.024 | Sex | 54 | −960.1 | (−1945.8 64.6) | 0.067 |
Constant | 3403.8 | (2840.1 3967.5) | <0.001 | BMI | 54 | 123.1 | (23.1 219.9) | 0.017 | |
Age | 54 | −20.7 | (−50.3 7.3) | 0.159 | |||||
Caloric intake | 54 | −21.6 | (−89.2 29.2) | 0.538 | |||||
Constant | 1485.7 | (−1467.8 4733.3) | 0.343 | ||||||
n = 54 ICU patients, R = 0.306, R2 = 0.094 (adjusted R2 = 0.076), p = 0.024 | n = 54 ICU patients, R = 0.470, R2 = 0.221 (adjusted R2 = 0.158), p = 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelhardt, L.J.; Grunow, J.J.; Wollersheim, T.; Carbon, N.M.; Balzer, F.; Spranger, J.; Weber-Carstens, S. Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness. J. Clin. Med. 2022, 11, 846. https://doi.org/10.3390/jcm11030846
Engelhardt LJ, Grunow JJ, Wollersheim T, Carbon NM, Balzer F, Spranger J, Weber-Carstens S. Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness. Journal of Clinical Medicine. 2022; 11(3):846. https://doi.org/10.3390/jcm11030846
Chicago/Turabian StyleEngelhardt, Lilian Jo, Julius J. Grunow, Tobias Wollersheim, Niklas M. Carbon, Felix Balzer, Joachim Spranger, and Steffen Weber-Carstens. 2022. "Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness" Journal of Clinical Medicine 11, no. 3: 846. https://doi.org/10.3390/jcm11030846
APA StyleEngelhardt, L. J., Grunow, J. J., Wollersheim, T., Carbon, N. M., Balzer, F., Spranger, J., & Weber-Carstens, S. (2022). Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness. Journal of Clinical Medicine, 11(3), 846. https://doi.org/10.3390/jcm11030846