Urinary Mass Spectrometry Profiles in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Study Protocol
2.4. AMD Diagnosis and Staging
2.5. Mass Spectrometry Analysis
2.6. Statistical Analysis
3. Results
3.1. Urinary Metabolites Associated with AMD
3.2. Urinary Metabolites Associated with AMD Severity Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Schmier, J.K.; Covert, D.W.; Lau, E.C. Patterns and Costs Associated with Progression of Age-Related Macular Degeneration. Am. J. Ophthalmol. 2012, 154, 675–681.e1. [Google Scholar] [CrossRef] [PubMed]
- Yonekawa, Y.; Miller, J.W.; Kim, I.K. Age-Related Macular Degeneration: Advances in Management and Diagnosis. J. Clin. Med. 2015, 4, 343–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.W. Age-Related Macular Degeneration Revisited–Piecing the Puzzle: The LXIX Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 2013, 155, 1–35.e13. [Google Scholar] [CrossRef]
- Parfitt, A.; Boxell, E.; Amoaku, W.M.; Bradley, C. Patient-reported reasons for delay in diagnosis of age-related macular degeneration: A national survey. BMJ Open Ophthalmol. 2019, 4, e000276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Ohkubo, Y.; Sato, A.; Takezawa, M.; Fujino, Y.; Yanagi, Y.; Kawashima, H. Relationship between visual prognosis and delay of intravitreal injection of ranibizumab when treating age-related macular degeneration. Retina 2015, 35, 1331–1338. [Google Scholar] [CrossRef]
- Kersten, E.; Paun, C.C.; Schellevis, R.L.; Hoyng, C.B.; Delcourt, C.; Lengyel, I.; Peto, T.; Ueffing, M.; Klaver, C.; Dammeier, S.; et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol. 2018, 63, 9–39. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Myers, C.E.; Buitendijk, G.H.; Rochtchina, E.; Gao, X.; de Jong, P.T.; Sivakumaran, T.A.; Burlutsky, G.; McKean-Cowdin, R.; Hofman, A.; et al. Lipids, Lipid Genes, and Incident Age-Related Macular Degeneration: The Three Continent Age-Related Macular Degeneration Consortium. Am. J. Ophthalmol. 2014, 158, 513–524.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laíns, I.; Gantner, M.; Murinello, S.; Lasky-Su, J.A.; Miller, J.W.; Friedlander, M.; Husain, D. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res. 2018, 69, 57–79. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical environments. Nature 2012, 491, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.; Benton, H.P.; Casazza, K.; Cooper, S.J.; Cui, X.; Du, X.; Engler, J.; Kabarowski, J.H.; Li, S.; Pathmasiri, W.; et al. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J. Mass Spectrom. 2016, 51, 461–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The Human Serum Metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [Green Version]
- Suhre, K.; Gieger, C. Genetic variation in metabolic phenotypes: Study designs and applications. Nat. Rev. Genet. 2012, 13, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Lains, I.; Duarte, D.; Barros, A.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.; Cachulo, M.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12, e0177749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laíns, I.; Duarte, D.; Barros, A.S.; Martins, A.S.; Carneiro, T.J.; Gil, J.Q.; Miller, J.B.; Marques, M.; Mesquita, T.S.; Barreto, P.; et al. Urine Nuclear Magnetic Resonance (NMR) Metabolomics in Age-Related Macular Degeneration. J. Proteome Res. 2019, 18, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lains, I.; Kelly, R.S.; Miller, J.B.; Silva, R.; Vavvas, D.; Kim, I.; Murta, J.; Lasky-Su, J.; Miller, J.W.; Husain, D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2018, 125, 245–254. [Google Scholar] [CrossRef]
- Laíns, I.; Chung, W.; Kelly, R.S.; Gil, J.; Marques, M.; Barreto, P.; Murta, J.N.; Kim, I.K.; Vavvas, D.G.; Miller, J.B.; et al. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Senn, T.; Hazen, S.L.; Tang, W.W. Translating Metabolomics to Cardiovascular Biomarkers. Prog. Cardiovasc. Dis. 2012, 55, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, I.F.; Gil, A.M. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 62, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Duarte, I.F.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L. Can nuclear magnetic resonance (NMR) spectroscopy reveal different metabolic signatures for lung tumours? Virchows Arch. 2010, 457, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.M.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma. J. Proteome Res. 2011, 10, 4314–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Ryan, D.; Brennan, L.; Tenori, L.; Luchinat, C.; Gao, X.; Zeri, A.C.; Gowda, G.A.N.; et al. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis. J. Proteome Res. 2016, 15, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Miller, J.B.; Mukai, R.; Mach, S.; Vavvas, D.; Kim, I.; Miller, J.W.; Husain, D. Health conditions linked to age-related macular degeneration associated with dark adaptation. Retina 2018, 38, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Tsikata, E.; Laíns, I.; Gil, J.; Marques, M.; Brown, K.; Mesquita, T.; Melo, P.; da Luz Cachulo, M.; Kim, I.K.; Vavvas, D.; et al. Automated Brightness and Contrast Adjustment of Color Fundus Photographs for the Grading of Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- The Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [Google Scholar] [CrossRef]
- Danis, R.P.; Domalpally, A.; Chew, E.Y.; Clemons, T.E.; Armstrong, J.; SanGiovanni, J.P.; Ferris, F. Methods and Reproducibility of Grading Optimized Digital Color Fundus Photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2). Investig. Opthalmology Vis. Sci. 2013, 54, 4548–4554. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Pappan, K.L.; Donti, T.R.; Evans, A.M.; Wulff, J.E.; Miller, L.A.; Sutton, V.R.; Sun, Q.; Miller, M.J.; Elsea, S.H. Elucidation of the complex metabolic profile of cerebrospinal fluid using an untargeted biochemical profiling assay. Mol. Genet. Metab. 2017, 121, 83–90. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Shuai, P.; Wang, H.; Zhang, S.; Li, J.; Du, M.; Huang, P.; Qu, C.; Huang, L. Untargeted metabolomics for uncovering plasma biological markers of wet age-related macular degeneration. Aging 2021, 13, 13968–14000. [Google Scholar] [CrossRef]
- Shen, Y.; Li, M.; Liu, K.; Xu, X.; Zhu, S.; Wang, N.; Guo, W.; Zhao, Q.; Lu, P.; Yu, F.; et al. Integrated bioinformatics analysis of aberrantly-methylated differentially-expressed genes and pathways in age-related macular degeneration. BMC Ophthalmol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.V.; Basu, S.K.; Qaladize, B.; Grambergs, R.; Rotstein, N.P.; Mandal, N. Sphingolipids as critical players in retinal physiology and pathology. J. Lipid Res. 2021, 62, 100037. [Google Scholar] [CrossRef] [PubMed]
- Shiwani, H.A.; Elfaki, M.Y.; Memon, D.; Ali, S.; Aziz, A.; Egom, E.E. Updates on sphingolipids: Spotlight on retinopathy. Biomed. Pharmacother. 2021, 143, 112197. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, P.; Kaarniranta, K.; Blasiak, J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013, 14, 461–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarrett, S.G.; Lin, H.; Godley, B.F.; Boulton, M.E. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog. Retin. Eye Res. 2008, 27, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Lains, I.; Zhu, S.; Han, X.; Chung, W.; Yuan, Q.; Kelly, R.S.; Gil, J.Q.; Katz, R.; Nigalye, A.; Kim, I.K.; et al. Genomic-Metabolomic Associations Support the Role of LIPC and Glycerophospholipids in Age-Related Macular Degeneration. Ophthalmol. Sci. 2021, 1, 100017. [Google Scholar] [CrossRef]
- Fliesler, S.J. Lipids and lipid metabolism in the eye. J. Lipid Res. 2010, 51, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Chistyakov, D.V.; Baksheeva, V.E.; Tiulina, V.V.; Goriainov, S.V.; Azbukina, N.V.; Gancharova, O.S.; Arifulin, E.A.; Komarov, S.V.; Chistyakov, V.V.; Tikhomirova, N.K.; et al. Mechanisms and Treatment of Light-Induced Retinal Degeneration-Associated Inflammation: Insights from Biochemical Profiling of the Aqueous Humor. Int. J. Mol. Sci. 2020, 21, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrin, L.; Seddon, J.M. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog. Retin. Eye Res. 2013, 40, 1–15. [Google Scholar] [CrossRef]
Boston, US | |||||
---|---|---|---|---|---|
Control | Early AMD | Intermediate AMD | Late AMD | Total | |
Number, n (%) | 45 (24.3) | 32 (17.3) | 62 (33.5) | 46 (24.9) | 185 (100.0) |
Age, Mean ± SD | 72.1 ± 8.5 | 73.7 ± 6.9 | 77.5 ± 6.7 | 81.3 ± 7.8 | 76.6 ± 8.1 |
Female Gender, n (%) | 27 (60.0) | 21 (65.6) | 45 (72.6) | 20 (54.1) | 119 (64.3) |
BMI, Mean ± SD | 27.1 ± 4.4 | 26.5 ± 4.2 | 27.6 ± 5.5 | 26.9 ± 4.5 | 27.1 ± 4.8 |
Race/Ethnicity, n (%)
| 42 (93.3) 1 (2.2) 2 (4.4) 0 (0.0) | 30 (93.8) 0 (0.0) 2 (6.3) 0 (0.0) | 60 (96.8) 0 (0.0) 0 (0.0) 2 (3.2) | 43 (93.5) 0 (0.0) 3 (6.5) 0 (0.0) | 175 (94.6) 1 (0.5) 7 (3.8) 2 (1.1) |
Smoking, n (%)
| 24 (53.3) 19 (42.2) 2 (4.4) | 18 (56.3) 14 (43.8) 0 (0.0) | 26 (41.9) 33 (53.2) 3 (4.8) | 16 (34.8) 30 (65.2) 0 (0.0) | 84 (45.4) 96 (51.9) 5 (2.7) |
On AREDS Supplementation (Yes), n (%) | 2 (4.4) | 2 (6.3) | 45 (72.6) | 31 (67.4) | 80 (43.2) |
Coimbra, Portugal | |||||
Number, n (%) | 50 (16.7) | 57 (19.1) | 139 (46.5) | 53 (17.7) | 299 (100.0) |
Age, Mean ± SD | 72.5 ± 5.1 | 75.0 ± 6.1 | 80.4 ± 7.5 | 85.7 ± 6.9 | 79.0 ± 8.0 |
Female Gender, n (%) | 32 (64.0) | 34 (59.6) | 96 (69.1) | 31 (58.5) | 193 (64.5) |
BMI, Mean ± SD | 27.0 ± 4.6 | 27.2 ± 4.3 | 27.6 ± 4.6 | 26.5 ± 4.3 | 27.2 ± 4.5 |
Race/Ethnicity, n (%)
| 50 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) | 57 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) | 137 (98.6) 2 (1.4) 0 (0.0) 0 (0.0) | 52 (98.1) 1 (1.9) 0 (0.0) 0 (0.0) | 296 (99.0) 1 (1.0) 0 (0.0) 0 (0.0) |
Smoking, n (%)
| 40 (80.0) 10 (20.0) 0 (0.0) | 49 (86.0) 8 (14.0) 0 (0.0) | 123 (88.5) 16 (11.5) 0 (0.0) | 38 (71.7) 14 (26.4) 1 (1.9) | 250 (83.6) 48 (16.1) 1 (0.3) |
On AREDS Supplementation (Yes), n (%) | 0 (0.0) | 1 (1.8) | 2 (1.4) | 8 (15.1) | 11 (3.7) |
Metabolite | HMDB | Super Pathway | Sub Pathway | Odds Ratio Boston | Odds Ratio Portugal | p-Value Meta-Analysis | Significant in Plasma [18] |
---|---|---|---|---|---|---|---|
Indoleacetylglutamine | HMDB0013240 | Amino Acid | Tryptophan Metabolism | 0.918 | 0.349 | 0.0022 | No |
11-ketoetiocholanolone sulfate | NA | Lipid | Androgenic Steroids | 2.021 | 1.753 | 0.0040 | Not Measured in Plasma |
Tetrahydrocortisol sulfate (2) | NA | Lipid | Corticosteroids | 4.853 | 1.280 | 0.0051 | Not Measured in Plasma |
Adipate (C6-DC) | HMDB0000448 | Lipid | Fatty Acid, Dicarboxylate | 0.566 | 0.517 | 0.0061 | Not Measured in Plasma |
Sphingosine | HMDB0000252 | Lipid | Sphingosines | 0.437 | 0.664 | 0.0063 | Yes |
Phosphoethanolamine | HMDB0000224 | Lipid | Phospholipid Metabolism | 1.767 | 1.752 | 0.0100 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lains, I.; Mendez, K.M.; Gil, J.Q.; Miller, J.B.; Kelly, R.S.; Barreto, P.; Kim, I.K.; Vavvas, D.G.; Murta, J.N.; Liang, L.; et al. Urinary Mass Spectrometry Profiles in Age-Related Macular Degeneration. J. Clin. Med. 2022, 11, 940. https://doi.org/10.3390/jcm11040940
Lains I, Mendez KM, Gil JQ, Miller JB, Kelly RS, Barreto P, Kim IK, Vavvas DG, Murta JN, Liang L, et al. Urinary Mass Spectrometry Profiles in Age-Related Macular Degeneration. Journal of Clinical Medicine. 2022; 11(4):940. https://doi.org/10.3390/jcm11040940
Chicago/Turabian StyleLains, Ines, Kevin M. Mendez, João Q. Gil, John B. Miller, Rachel S. Kelly, Patrícia Barreto, Ivana K. Kim, Demetrios G. Vavvas, Joaquim Neto Murta, Liming Liang, and et al. 2022. "Urinary Mass Spectrometry Profiles in Age-Related Macular Degeneration" Journal of Clinical Medicine 11, no. 4: 940. https://doi.org/10.3390/jcm11040940
APA StyleLains, I., Mendez, K. M., Gil, J. Q., Miller, J. B., Kelly, R. S., Barreto, P., Kim, I. K., Vavvas, D. G., Murta, J. N., Liang, L., Silva, R., Miller, J. W., Lasky-Su, J., & Husain, D. (2022). Urinary Mass Spectrometry Profiles in Age-Related Macular Degeneration. Journal of Clinical Medicine, 11(4), 940. https://doi.org/10.3390/jcm11040940