Rapidity and Precision of Steroid Hormone Measurement
Abstract
:1. Introduction
2. Early Methods for Steroid Hormone Analysis
3. IAs
3.1. RIAs and Non-RIAs
3.2. Rapid IAs
4. MS
4.1. GC-MS
4.2. LC/MS/MS
4.3. Matrix-Assisted Laser Desorption/Ionization (MALDI)-MS Imaging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butenandt, A. Uber Progynon ein Krystallisiertes Weibliches Sexualhormon. Naturwissenschaften 1929, 17, 879. [Google Scholar] [CrossRef]
- Doisy, E.A.; Veler, C.D.; Thayer, S.A. Folliculin From Urine of Pregnant Women. Am. J. Physiol. 1929, 90, 329. [Google Scholar]
- The Nobel Prize in Physiology or Medicine 1950. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1950/ (accessed on 28 May 2021).
- Butenandt, A. Über Die Chemische Untersuchung Der Sexualhormone. Angew. Chem. 1931, 44, 905–908. [Google Scholar] [CrossRef]
- Butenandt, A.; Westphal, U. Zur Isolierung und Charakterisierung des Corpus-Luteum-Hormons. Ber. Dtsch Chem. Ges. A/B 1934, 67, 1440–1442. [Google Scholar] [CrossRef]
- MacCorquodale, D.W.; Thayer, S.A.; Doisy, E.A. The Crystalline Ovarian Follicular Hormone. Exp. Biol. Med. 1935, 32, 1182. [Google Scholar] [CrossRef]
- David, K.; Dingemanse, E.; Freud, J.; Laqueur, E. Über Krystallinisches Männliches Hormon aus Hoden (Testosteron), Wirksamer als aus Harn oder aus Cholesterin Bereitetes Androsteron. Hoppe Seylers Z. Physiol. Chem. 1935, 233, 281–283. [Google Scholar] [CrossRef]
- Simpson, S.A.; Tait, J.F.; Wettstein, A.; Neher, R.; Von Euw, J.V.; Reichstein, T. Isolation From the Adrenals of a New Crystalline Hormone With Especially High Effectiveness on Mineral Metabolism. Experientia 1953, 9, 333–335. [Google Scholar] [CrossRef]
- Simpson, S.A.; Tait, J.F.; Wettstein, A.; Neher, R.; Von Euw, J.V.; Schindler, O.; Reichstein, T. Constitution of Aldosterone, a New Mineralocorticoid. Experientia 1954, 10, 132–133. [Google Scholar] [CrossRef]
- Nelson, D.H.; Samuels, L.T.; Willardson, D.G.; Tyler, F.H. The Levels of 17-Hydroxycorticosteroids in Peripheral Blood of Human Subjects. J. Clin. Endocrinol. Metab. 1951, 11, 1021–1029. [Google Scholar] [CrossRef]
- Nelson, D.H.; Samuels, L.T. A Method for the Determination of 17-Hydroxycorticosteroids in Blood; 17-Hydroxycorticosterone in the Peripheral Circulation. J. Clin. Endocrinol. Metab. 1952, 12, 519–526. [Google Scholar] [CrossRef]
- Takeda, R. A Criticism of the Sweat’s Method for the Estimation of Cortical Hormones in Plasma. Endocrinol. Jpn. 1956, 3, 73–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfman, R.I. Methods in Hormone Research Vol. 1, 2nd ed.; Academic Press: London, UK, 1969. [Google Scholar]
- Yalow, R.S.; Berson, S.A. Assay of Plasma Insulin in Human Subjects by Immunological Methods. Nature 1959, 184 (Suppl. 21), 1648–1649. [Google Scholar] [CrossRef] [PubMed]
- Yalow, R.S.; Berson, S.A. Immunoassay of Endogenous Plasma Insulin in Man. J. Clin. Investig. 1960, 39, 1157–1175. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.P.; Pattee, C.J. A Study of the Binding Capacity of Corticosteroid-Binding Globulin in Plasma. J. Clin. Endocrinol. Metab. 1963, 23, 459–464. [Google Scholar] [CrossRef]
- Abraham, G.E. Solid-Phase Radioimmunoassay of Estradiol-17 Beta. J. Clin. Endocrinol. Metab. 1969, 29, 866–870. [Google Scholar] [CrossRef]
- Wu, C.H.; Lundy, L.E. Radioimmunoassay of plasma estrogens. Steroids 1971, 18, 91–111. [Google Scholar] [CrossRef]
- Furuyama, S.; Mayes, D.M.; Nugent, C.A. A Radioimmunoassay for Plasma Testosterone. Steroids 1970, 16, 415–428. [Google Scholar] [CrossRef]
- Abraham, G.E.; Swerdloff, R.; Tulchinsky, D.; Odell, W.D. Radioimmunoassay of Plasma Progesterone. J. Clin. Endocrinol. Metab. 1971, 32, 619–624. [Google Scholar] [CrossRef]
- Ruder, H.J.; Guy, R.L.; Lipsett, M.B. A Radioimmunoassay for Cortisol in Plasma and Urine. J. Clin. Endocrinol. Metab. 1972, 35, 219–224. [Google Scholar] [CrossRef]
- Mayes, D.; Furuyama, S.; Kem, D.C.; Nugent, C.A. A Radioimmunoassay for Plasma Aldosterone. J. Clin. Endocrinol. Metab. 1970, 30, 682–685. [Google Scholar] [CrossRef]
- Wu, A.H.B. A Selected History and Future of Immunoassay Development and Applications in Clinical Chemistry. Clin. Chim. Acta 2006, 369, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Aston, F.W. LXXIV. A Positive Ray Spectrograph. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1919, 38, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Urey, H.C.; Brickwedde, F.G.; Murphy, G.M. A Hydrogen Isotope of mass 2. Phys. Rev. 1932, 39, 164–165. [Google Scholar] [CrossRef]
- Schoenheimer, R.; Rittenberg, D. Deuterium as an Indicator in the Study of Intermediary Metabolism. Science 1935, 82, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C. Clinical Steroid Mass Spectrometry: A 45-Year History Culminating in HPLC-MS/MS Becoming an Essential Tool for Patient Diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 481–490. [Google Scholar] [CrossRef]
- Eneroth, P.; Hellstroem, K.; Ryhage, R. Identification and Quantification of Neutral Fecal Steroids by Gas–Liquid Chromatography and Mass Spectrometry: Studies of Human Excretion During Two Dietary Regimens. J. Lipid Res. 1964, 5, 245–262. [Google Scholar] [CrossRef]
- Björkhem, I.; Lantto, O.; Svensson, L. Serum Testosterone Determination by Mass Fragmentography. Clin. Chim. Acta 1975, 60, 59–66. [Google Scholar] [CrossRef]
- Braselton, W.E., Jr.; Orr, J.C.; Engel, L.L. The twin ion technique for detection of metabolites by gas chromatography-mass spectrometry: Intermediates in estrogen biosynthesis. Anal. Biochem. 1973, 53, 64–85. [Google Scholar] [CrossRef]
- Dehennin, L.; Reiffsteck, A.; Scholler, R. A quantitative method for the estimation of testosterone and progesterone in human plasma. Using the gas chromatograph-mass spectrometer combination with single ion monitoring. J. Steroid Biochem. 1974, 5, 81–86. [Google Scholar] [CrossRef]
- Johnson, D.W.; Phillipou, G.; Ralph, M.M.; Seamark, R.F. Specific quantitation of urinary progesterone by gas chromatography-mass spectrometry. Clin. Chim. Acta 1979, 94, 207–208. [Google Scholar] [CrossRef]
- Björkhem, I.; Blomstrand, R.; Lantto, O.; Löf, A.; Svensson, L. Plasma cortisol determination by mass fragmentography. Clin. Chem. Acta 1974, 56, 241–248. [Google Scholar] [CrossRef]
- Külpmann, W.R.; Siekmann, L.; Breuer, H. An improved method for the gas-liquid chromatographic determination of aldosterone in urine. J. Steroid Biochem. 1973, 4, 649–657. [Google Scholar] [CrossRef]
- Zettner, A. Principles of Competitive Binding Assays (Saturation Analysis). 1. Equilibrium Techniques. Clin. Chem. 1973, 19, 699–705. [Google Scholar] [CrossRef]
- Zettner, A.; Duly, P.E. Principles of Competitive Binding Assays (Saturation Analyses). II. Sequential Saturation. Clin. Chem. 1974, 20, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Belanger, L.; Sylvestre, C.; DuFour, D. Enzyme-Linked Immunoassay for Alpha-Fetoprotein by Competitive and Sandwich Procedures. Clin. Chim. Acta 1973, 48, 15–18. [Google Scholar] [CrossRef]
- Lequin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [Green Version]
- Engvall, E.; Perlmann, P. Enzyme-Linked Immunosorbent Assay (ELISA). Quantitative Assay of Immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Schroeder, H.R.; Vogelhut, P.O.; Carrico, R.J.; Boguslaski, R.C.; Buckler, R.T. Competitive Protein Binding Assay for Biotin Monitored by Chemiluminescence. Anal. Chem. 1976, 48, 1933–1937. [Google Scholar] [CrossRef]
- Blackburn, G.F.; Shah, H.P.; Kenten, J.H.; Leland, J.; Kamin, R.A.; Link, J.; Peterman, J.; Powell, M.J.; Shah, A.; Talley, D.B. Electrochemiluminescence Detection for Development of Immunoassays and DNA Probe Assays for Clinical Diagnostics. Clin. Chem. 1991, 37, 1534–1539. [Google Scholar] [CrossRef]
- Krasowski, M.D.; Drees, D.; Morris, C.S.; Maakestad, J.; Blau, J.L.; Ekins, S. Cross-Reactivity of Steroid Hormone Immunoassays: Clinical Significance and Two-Dimensional Molecular Similarity Prediction. BMC Clin. Pathol. 2014, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Taieb, J.; Mathian, B.; Millot, F.; Patricot, M.C.; Mathieu, E.; Queyrel, N.; Lacroix, I.; Somma-Delpero, C.; Boudou, P. Testosterone Measured by 10 Immunoassays and by Isotope-Dilution Gas Chromatography-Mass Spectrometry in Sera From 116 Men, Women, and Children. Clin. Chem. 2003, 49, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Catlin, D.H.; Demers, L.M.; Starcevic, B.; Swerdloff, R.S. Measurement of Total Serum Testosterone in Adult Men: Comparison of Current Laboratory Methods Versus Liquid Chromatography-Tandem Mass Spectrometry. J. Clin. Endocrinol. Metab. 2004, 89, 534–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikaris, K.; McLachlan, R.I.; Kazlauskas, R.; de Kretser, D.; Holden, C.A.; Handelsman, D.J. Reproductive Hormone Reference Intervals for Healthy Fertile Young Men: Evaluation of Automated Platform Assays. J. Clin. Endocrinol. Metab. 2005, 90, 5928–5936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankarberg-Lindgren, C.; Norjavaara, E. A Purification Step Prior to Commercial Sensitive Immunoassay Is Necessary to Achieve Clinical Usefulness When Quantifying Serum 17Beta-Estradiol in Prepubertal Children. Eur. J. Endocrinol. 2008, 158, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Huhtaniemi, I.T.; Tajar, A.; Lee, D.M.; O’Neill, T.W.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Giwercman, A.; Han, T.S.; et al. Comparison of Serum Testosterone and Estradiol Measurements in 3174 European Men Using Platform Immunoassay and Mass Spectrometry; Relevance for the Diagnostics in Aging Men. Eur. J. Endocrinol. 2012, 166, 983–991. [Google Scholar] [CrossRef]
- Khosla, S.; Amin, S.; Singh, R.J.; Atkinson, E.J.; Melton, L.J., III; Riggs, B.L. Comparison of Sex Steroid Measurements in Men by Immunoassay Versus Mass Spectroscopy and Relationships with Cortical and Trabecular Volumetric Bone Mineral Density. Osteoporos. Int. 2008, 19, 1465–1471. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Ettinger, B.; Stanczyk, F.Z.; Vittinghoff, E.; Hanes, V.; Cauley, J.A.; Chandler, W.; Settlage, J.; Beattie, M.S.; Folkerd, E.; et al. Comparison of Methods to Measure Low Serum Estradiol Levels in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2006, 91, 3791–3797. [Google Scholar] [CrossRef] [Green Version]
- Dowsett, M.; Folkerd, E. Deficits in Plasma Oestradiol Measurement in Studies and Management of Breast Cancer. Breast Cancer Res. 2005, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.T.; Owen, W.E.; Ramsay, C.S.; Xie, H.; Roberts, W.L. Performance Characteristics of Eight Estradiol Immunoassays. Am. J. Clin. Pathol. 2004, 122, 332–337. [Google Scholar] [CrossRef]
- Rothman, M.S.; Carlson, N.E.; Xu, M.; Wang, C.; Swerdloff, R.; Lee, P.; Goh, V.H.H.; Ridgway, E.C.; Wierman, M.E. Reexamination of Testosterone, Dihydrotestosterone, Estradiol and Estrone Levels Across the Menstrual Cycle and in Postmenopausal Women Measured by Liquid Chromatography-Tandem Mass Spectrometry. Steroids 2011, 76, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Santen, R.J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Goss, P.E.; Wang, S. Superiority of Gas Chromatography/Tandem Mass Spectrometry Assay (GC/MS/MS) for Estradiol for Monitoring of Aromatase Inhibitor Therapy. Steroids 2007, 72, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Rosner, W.; Auchus, R.J.; Azziz, R.; Sluss, P.M.; Raff, H. Position Statement: Utility, Limitations, and Pitfalls in Measuring Testosterone: An Endocrine Society Position Statement. J. Clin. Endocrinol. Metab. 2007, 92, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the Measurement of Estradiol: An Endocrine Society Position Statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [Green Version]
- El-Farhan, N.; Pickett, A.J.; Ducroq, D.; Bailey, C.; Mitchem, K.; Morgan, N.; Armston, A.; Jones, L.; Evans, C.; Rees, D.A. Method-Specific Serum Cortisol Responses to the Adrenocorticotrophin Test: Comparison of Gas Chromatography–Mass Spectrometry and Five Automated Immunoassays. Clin. Endocrinol. 2013, 78, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Plessow, F.; Rauh, M.; Gröschl, M.; Kirschbaum, C. Comparison of Salivary Cortisol as Measured by Different Immunoassays and Tandem Mass Spectrometry. Psychoneuroendocrinology 2013, 38, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Briegel, J.; Sprung, C.L.; Annane, D.; Singer, M.; Keh, D.; Moreno, R.; Möhnle, P.; Weiss, Y.; Avidan, A.; Brunkhorst, F.M.; et al. Multicenter Comparison of Cortisol as Measured by Different Methods in Samples of Patients with Septic Shock. Intensive Care Med. 2009, 35, 2151–2156. [Google Scholar] [CrossRef]
- Monaghan, P.J.; Owen, L.J.; Trainer, P.J.; Brabant, G.; Keevil, B.G.; Darby, D. Comparison of Serum Cortisol Measurement by Immunoassay and Liquid Chromatography-Tandem Mass Spectrometry in Patients Receiving the 11β-Hydroxylase Inhibitor Metyrapone. Ann. Clin. Biochem. 2011, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.; Ducroq, D.H.; Fraser, H.L.; Gillingwater, S.; Evans, C.; Pickett, A.J.; Rees, D.W.; John, R.; Turkes, A. Measurement of Urinary Free Cortisol by Tandem Mass Spectrometry and Comparison With Results Obtained by Gas Chromatography–Mass Spectrometry and Two Commercial Immunoassays. Ann. Clin. Biochem. 2008, 45, 380–388. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Wartofsky, L. Requirement for Mass Spectrometry Sex Steroid Assays in the Journal of Clinical Endocrinology and Metabolism. J. Clin. Endocrinol. Metab. 2013, 98, 3971–3973. [Google Scholar] [CrossRef] [Green Version]
- Vesper, H.W.; Botelho, J.C.; Shacklady, C.; Smith, A.; Myers, G.L. CDC Project on Standardizing Steroid Hormone Measurements. Steroids 2008, 73, 1286–1292. [Google Scholar] [CrossRef]
- Phinney, K.W.; Ballihaut, G.; Bedner, M.; Benford, B.S.; Camara, J.E.; Christopher, S.J.; Davis, W.C.; Dodder, N.G.; Eppe, G.; Lang, B.E.; et al. Development of a Standard Reference Material for Metabolomics Research. Anal. Chem. 2013, 85, 11732–11738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, T.; Karashima, S.; Kometani, M.; Usukura, M.; Demura, M.; Sanada, J.; Minami, T.; Koda, W.; Gabata, T.; Matsui, O.; et al. Impact of New Quick Gold Nanoparticle-Based Cortisol Assay During Adrenal Vein Sampling for Primary Aldosteronism. J. Clin. Endocrinol. Metab. 2016, 101, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, R.; Ono, Y.; Tezuka, Y.; Kudo, M.; Yamamoto, S.; Arai, T.; Gomez-Sanchez, C.E.; Sasano, H.; Ito, S.; Satoh, F. Rapid Screening of Primary Aldosteronism by a Novel Chemiluminescent Immunoassay. Hypertension 2017, 70, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Karashima, S.; Yoneda, T. Primary Aldosteronism, Diagnosis and Treatment in Japan. Rev. Endocr. Metab. Disord. 2011, 12, 21–25. [Google Scholar] [CrossRef]
- Vonend, O.; Ockenfels, N.; Gao, X.; Allolio, B.; Lang, K.; Mai, K.; Quack, I.; Saleh, A.; Degenhart, C.; Seufert, J.; et al. Adrenal Venous Sampling: Evaluation of the German Conn’s Registry. Hypertension 2011, 57, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Mengozzi, G.; Rossato, D.; Bertello, C.; Garrone, C.; Milan, A.; Pagni, R.; Veglio, F.; Mulatero, P. Rapid Cortisol Assay During Adrenal Vein Sampling in Patients With Primary Aldosteronism. Clin. Chem. 2007, 53, 1968–1971. [Google Scholar] [CrossRef] [Green Version]
- Auchus, R.J.; Michaelis, C.; Wians, F.H., Jr.; Dolmatch, B.L.; Josephs, S.C.; Trimmer, C.K.; Anderson, M.E.; Nwariaku, F.E. Rapid Cortisol Assays Improve the Success Rate of Adrenal Vein Sampling for Primary Aldosteronism. Ann. Surg. 2009, 249, 318–321. [Google Scholar] [CrossRef]
- Reardon, M.A.; Angle, J.F.; Abi-Jaoudeh, N.; Bruns, D.E.; Haverstick, D.M.; Matsumoto, A.H.; Carey, R.M. Intraprocedural Cortisol Levels in the Evaluation of Proper Catheter Placement in Adrenal Venous Sampling. J. Vasc. Interv. Radiol. 2011, 22, 1575–1580. [Google Scholar] [CrossRef]
- Rossi, E.; Regolisti, G.; Perazzoli, F.; Negro, A.; Grasselli, C.; Santi, R.; Cavalieri, S.; Belloni, L.; Gemelli, G.; Della Valle, E.; et al. Intraprocedural Cortisol Measurement Increases Adrenal Vein Sampling Success Rate in Primary Aldosteronism. Am. J. Hypertens. 2011, 24, 1280–1285. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.J.; Sampson, M.L.; Ruddel, M.E.; Remaley, A.T. Rapid Intraoperative Cortisol Assay: Design and Utility for Localizing Adrenal Tumors by Venous Sampling. Clin. Biochem. 2000, 33, 501–503. [Google Scholar] [CrossRef]
- Ozeki, Y.; Tanimura, Y.; Nagai, S.; Nomura, T.; Kinoshita, M.; Shibuta, K.; Matsuda, N.; Miyamoto, S.; Yoshida, Y.; Okamoto, M.; et al. Development of a New Chemiluminescent Enzyme Immunoassay Using a Two-Step Sandwich Method for Measuring Aldosterone Concentrations. Diagnostics 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Ruoppolo, M.; Costanzo, M.; Albano, L.; Crisci, D.; Sotgiu, G.; Saderi, L.; Montella, A.; Franconi, F.; Campesi, I. Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites 2021, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Costanzo, M.; Fedele, R.; Cevenini, A.; Gelzo, M.; Di Minno, A.; Andolfo, I.; Capasso, M.; Russo, R.; Annunziata, A.; et al. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int. J. Mol. Sci. 2021, 22, 9548. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, L.P.; Annis, J.L. Use of a Conventional Mass Spectrometer as a Detector for Gas Chromatography. Anal. Chem. 1960, 32, 1742–1749. [Google Scholar] [CrossRef]
- Dempster, A.J. A New Method of Positive Ray Analysis. Phys. Rev. 1918, 11, 316–325. [Google Scholar] [CrossRef]
- Shackleton, C.H. Mass Spectrometry: Application to Steroid and Peptide Research. Endocr. Rev. 1985, 6, 441–486. [Google Scholar] [CrossRef]
- Hansen, M.; Jacobsen, N.W.; Nielsen, F.K.; Björklund, E.; Styrishave, B.; Halling-Sørensen, B. Determination of Steroid Hormones in Blood by GC–MS/MS. Anal. Bioanal. Chem. 2011, 400, 3409–3417. [Google Scholar] [CrossRef]
- Toribio-Delgado, A.F.; Maynar-Mariño, M.; Caballero-Loscos, M.J.; Robles-Gil, M.C.; Olcina-Camacho, G.J.; Maynar-Mariño, J.I. Qualification and Quantification of Seventeen Natural Steroids in Plasma by GC–Q-MS and GC-IT–MS/MS. J. Chromatogr. Sci. 2012, 50, 349–357. [Google Scholar] [CrossRef]
- Mazzarino, M.; Abate, M.G.; Alocci, R.; Rossi, F. Urine stability and steroid profile: Towards a screening index of urine sample degradation for anti-doping purpose. Anal. Chim. Acta 2011, 683, 221–226. [Google Scholar] [CrossRef]
- De Wilde, L.; Van Renterghem, P.; Van Eenoo, P. Long-term stability study and evaluation of intact steroid conjugate ratios after the administration of endogenous steroids. Drug Test Anal. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Albertsdóttir, A.D.; Van Gansbeke, W.; Van Eenoo, P.; Polet, M. Enabling the inclusion of non-hydrolysed sulfated long term anabolic steroid metabolites in a screening for doping substances by means of gas chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2021, 1642, 462039. [Google Scholar] [CrossRef] [PubMed]
- Matysik, S.; Gerd Schmitz, G. Determination of steroid hormones in human plasma by GC-triple quadrupole MS. Steroids 2015, 99, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Jeanneret, F.; Tonoli, D.; Rossier, M.F.; Saugye, M.; Boccarda, J.; Rudaz, S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J. Chromatogr. A 2016, 1430, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Temerdashev, A.; Dmitrieva, E.; Podolskiy, I. Analytics for steroid hormone profiling in body fluids. Microchem. J. 2021, 168, 106395. [Google Scholar] [CrossRef]
- Conklin, S.E.; Knezevic, C.E. Advancements in the gold standard: Measuring steroid sex hormones by mass spectrometry. Clin. Biochem. 2020, 82, 21–32. [Google Scholar] [CrossRef]
- Marciano, D.P.; Snyder, M.P. Personalized Metabolomics. Methods Mol. Biol. 2019, 1978, 447–456. [Google Scholar] [CrossRef]
- Broccardo, C.J.; Schauer, K.L.; Kohrt, W.M.; Schwartz, R.S.; Murphy, J.P.; Prenni, J.E. Multiplexed Analysis of Steroid Hormones in Human Serum Using Novel Microflow Tile Technology and LC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 934, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite Identification and Quantitation in LC-MS/MS-Based Metabolomics. Trends Analyt. Chem. 2012, 32, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Matysik, S.; Liebisch, G. Quantification of Steroid Hormones in Human Serum by Liquid Chromatography-High Resolution Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1526, 112–118. [Google Scholar] [CrossRef]
- Laszlo, C.F.; Paz Montoya, J.P.; Shamseddin, M.; De Martino, F.; Beguin, A.; Nellen, R.; Bruce, S.J.; Moniatte, M.; Henry, H.; Brisken, C. A High Resolution LC–MS Targeted Method for the Concomitant Analysis of 11 Contraceptive Progestins and 4 Steroids. J. Pharm. Biomed. Anal. 2019, 175, 112756. [Google Scholar] [CrossRef] [PubMed]
- Buhrman, D.L.; Price, P.I.; Rudewiczcor, P.J. Quantitation of SR 27417 in Human Plasma Using Electrospray Liquid Chromatography-Tandem Mass Spectrometry: A Study of Ion Suppression. J. Am. Soc. Mass Spectrom. 1996, 7, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion Suppression; A Critical Review on Causes, Evaluation, Prevention and Applications. Talanta 2013, 115, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.N.L. Analytical Performance of LC-MS/MS Method for Simultaneous Determination of Five Steroids in Serum. Mass Spectrom. Purif. Tech. 2015, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Koren, L.; Ng, E.S.M.; Soma, K.K.; Wynne-Edwards, K.E. Sample Preparation and Liquid Chromatography-Tandem Mass Spectrometry for Multiple Steroids in Mammalian and Avian Circulation. PLoS ONE 2012, 7, e32496. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Calton, L.; Hammond, G.; Brown, H.A.; Wallace, A.M.; Sacchetta, P.; Morris, M. Serum Steroid Profiling for Congenital Adrenal Hyperplasia Using Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chim. Acta 2010, 411, 222–228. [Google Scholar] [CrossRef]
- Newman, A.E.M.; Chin, E.H.; Schmidt, K.L.; Bond, L.; Wynne-Edwards, K.E.; Soma, K.K. Analysis of Steroids in Songbird Plasma and Brain by Coupling Solid Phase Extraction to Radioimmunoassay. Gen. Comp. Endocrinol. 2008, 155, 503–510. [Google Scholar] [CrossRef]
- Soo, H.H.; Yun, W.S.; Cho, S.-H. Development and validation of an LC-MS/MS method for profiling 39 urinary steroids (estrogens, androgens, corticoids, and progestins). Biomed. Chromatogr. 2020, 34, e4723. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, Y.I.; DeSantos-Garcia, J.L.; Mechref, Y. Quantitation of Permethylated N-Glycans Through Multiple-Reaction Monitoring (MRM) LC-MS/MS. J. Am. Soc. Mass Spectrom. 2015, 26, 596–603. [Google Scholar] [CrossRef] [Green Version]
- McLafferty, F.W.; Bente, P.F., III; Kornfeld, R.; Tsai, S.-C.; Howe, I. Collisional Activation Spectra of Organic Ions. J. Mass Spectrom. 1995, 30, 797–806. [Google Scholar] [CrossRef]
- Zeller, M.; König, S. The Impact of Chromatography and Mass Spectrometry on the Analysis of Protein Phosphorylation Sites. Anal. Bioanal. Chem. 2004, 378, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Drotleff, B.; Hallschmid, M.; Lämmerhofer, M. Quantification of Steroid Hormones in Plasma Using a Surrogate Calibrant Approach and UHPLC-ESI-QTOF-MS/MS With SWATH-Acquisition Combined With Untargeted Profiling. Anal. Chim. Acta 2018, 1022, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Badoud, F.; Boccard, J.; Schweizer, C.; Pralong, F.; Saugy, M.; Baume, N. Profiling of Steroid Metabolites After Transdermal and Oral Administration of Testosterone by Ultra-High Pressure Liquid Chromatography Coupled to Quadrupole Time-Of-Flight Mass Spectrometry. J. Steroid Biochem. Mol. Biol. 2013, 138, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Liu, A.; Randall, H.; Haslip, C.; Keune, F.; Murray, M.; Longo, N.; Pasquali, M. Use of Steroid Profiling by UPLC-MS/MS as a Second Tier Test in Newborn Screening for Congenital Adrenal Hyperplasia: The Utah Experience. Pediatr. Res. 2009, 66, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattangady, N.G.; Karashima, S.; Yuan, L.; Ponce-Balbuena, D.; Jalife, J.; Gomez-Sanchez, C.E.; Auchus, R.J.; Rainey, W.E.; Else, T. Mutated KCNJ5 Activates the Acute and Chronic Regulatory Steps in Aldosterone Production. J. Mol. Endocrinol. 2016, 57, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rege, J.; Karashima, S.; Lerario, A.M.; Smith, J.M.; Auchus, R.J.; Kasa-Vubu, J.Z.; Sasano, H.; Nakamura, Y.; White, P.C.; Rainey, W.E. Age-Dependent Increases in Adrenal Cytochrome b5 and serum 5-Androstenediol-3-Sulfate. J. Clin. Endocrinol. Metab. 2016, 101, 4585–4593. [Google Scholar] [CrossRef]
- Gross, J.H. Mass Spectrometry: A Textbook, 3rd ed.; Springer: Berlin/Heidelberg, Geramny, 2017. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef]
- Osaka, I.; Takayama, M. Influence of Hydrophobicity on Positive- and Negative-Ion Yields of Peptides in Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 2222–2226. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Kim, H.-Y. Determination of Steroids by Liquid Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1010–1020. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, B.R.; Ankley, G.T. Simultaneous Determination of a Suite of Endogenous Steroids by LC-APPI-MS: Application to the Identification of Endocrine Disruptors in Aquatic Toxicology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1163, 122513. [Google Scholar] [CrossRef]
- Kurata, Y.; Makinodan, F.; Shimamura, N.; Katoh, M. Metabolism of Di (2-Ethylhexyl) Phthalate (DEHP): Comparative Study in Juvenile and Fetal Marmosets and Rats. J. Toxicol. Sci. 2012, 37, 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, R.; Miura, N.; Iguchi, H.; Nakamura, H.; Ushiro, M.; Wakui, N.; Nakahashi, K.; Iwasaki, Y.; Saito, K.; Suzuki, T.; et al. Determination of tris(2-Ethylhexyl)Trimellitate Released From PVC Tube by LC–MS/MS. Int. J. Pharm. 2008, 360, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyniak, R.; Mpanga, A.Y.; Struck-Lewicka, W.; Kordalewska, M.; Polonis, K.; Patejko, M.; Mironiuk, M.; Szyndler, A.; Chrostowska, M.; Hoffmann, M.; et al. Untargeted Metabolomics Provides Insight into the Mechanisms Underlying Resistant Hypertension. Curr. Med. Chem. 2019, 26, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Albini, A.; Bruno, A.; Bassani, B.; D’Ambrosio, G.; Pelosi, G.; Consonni, P.; Castellani, L.; Conti, M.; Cristoni, S.; Noonan, D.M. Serum Steroid Ratio Profiles in Prostate Cancer: A New Diagnostic Tool Toward a Personalized Medicine Approach. Front. Endocrinol. 2018, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Martins-Júnior, H.A.; Simas, R.C.; Brolio, M.P.; Ferreira, C.R.; Perecin, F.; Nogueira, G.D.P.; Miglino, M.A.; Martins, D.S.; Eberlin, M.N.; Ambrósio, C.E. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS. PLoS ONE 2015, 10, e0126585. [Google Scholar] [CrossRef] [PubMed]
- Dalle Luche, G.D.; Bengtson Nash, S.; Kucklick, J.R.; Mingramm, F.M.J.; Boggs, A.S.P. Liquid Chromatography Tandem Mass Spectrometry for the Quantification of Steroid Hormone Profiles in Blubber From Stranded Humpback Whales (Megaptera novaeangliae). Conserv. Physiol. 2019, 7, coz030. [Google Scholar] [CrossRef]
- Arthur, K.L.; Turner, M.A.; Brailsford, A.D.; Kicman, A.T.; Cowan, D.A.; Reynolds, J.C.; Creaser, C.S. Rapid Analysis of Anabolic Steroid Metabolites in Urine by Combining Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography and Mass Spectrometry. Anal. Chem. 2017, 89, 7431–7437. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-Of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935–2939. [Google Scholar] [CrossRef]
- Chaurand, P.; Schwartz, S.A.; Billheimer, D.; Xu, B.J.; Crecelius, A.; Caprioli, R.M. Integrating Histology and Imaging Mass Spectrometry. Anal. Chem. 2004, 76, 1145–1155. [Google Scholar] [CrossRef]
- Leopold, J.; Popkova, Y.; Engel, K.M.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobice, D.F.; Mackay, C.L.; Goodwin, R.J.A.; McBride, A.; Langridge-Smith, P.R.; Webster, S.P.; Walker, B.R.; Andrew, R. Mass Spectrometry Imaging for Dissecting Steroid Intracrinology Within Target Tissues. Anal. Chem. 2013, 85, 11576–11584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeo, E.; Sugiura, Y.; Uemura, T.; Nishimoto, K.; Yasuda, M.; Sugiyama, E.; Ohtsuki, S.; Higashi, T.; Nishikawa, T.; Suematsu, M.; et al. Tandem Mass Spectrometry Imaging Reveals Distinct Accumulation Patterns of Steroid Structural Isomers in Human Adrenal Glands. Anal. Chem. 2019, 91, 8918–8925. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Takeo, E.; Shimma, S.; Yokota, M.; Higashi, T.; Seki, T.; Mizuno, Y.; Oya, M.; Kosaka, T.; Omura, M.; et al. Aldosterone and 18-Oxocortisol Coaccumulation in Aldosterone-Producing Lesions. Hypertension 2018, 72, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Cobice, D.F.; Livingstone, D.E.W.; Mackay, C.L.; Goodwin, R.J.A.; Smith, L.B.; Walker, B.R.; Andrew, R. Spatial Localization and Quantitation of Androgens in Mouse Testis by Mass Spectrometry Imaging. Anal. Chem. 2016, 88, 10362–10367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hankin, J.A.; Barkley, R.M.; Murphy, R.C. Sublimation as a Method of Matrix Application for Mass Spectrometric Imaging. J. Am. Soc. Mass Spectrom. 2007, 18, 1646–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimma, S.; Takashima, Y.; Hashimoto, J.; Yonemori, K.; Tamura, K.; Hamada, A. Alternative Two-Step Matrix Application Method for Imaging Mass Spectrometry to Avoid Tissue Shrinkage and Improve Ionization Efficiency. J. Mass Spectrom. 2013, 48, 1285–1290. [Google Scholar] [CrossRef]
- Sunner, J.; Dratz, E.; Chen, Y.C. Graphite Surface-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry of Peptides and Proteins From Liquid Solutions. Anal. Chem. 1995, 67, 4335–4342. [Google Scholar] [CrossRef]
- McLean, J.A.; Stumpo, K.A.; Russell, D.H. Size-Selected (2–10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 2005, 127, 5304–5305. [Google Scholar] [CrossRef]
- Ozawa, T.; Osaka, I.; Ihozaki, T.; Hamada, S.; Kuroda, Y.; Murakami, T.; Miyazato, A.; Kawasaki, H.; Arakawa, R. Simultaneous Detection of Phosphatidylcholines and Glycerolipids Using Matrix-Enhanced Surface-Assisted Laser Desorption/Ionization-Mass Spectrometry With Sputter-Deposited Platinum Film. J. Mass Spectrom. 2015, 50, 1264–1269. [Google Scholar] [CrossRef]
- Ozawa, T.; Osaka, I.; Hamada, S.; Murakami, T.; Miyazato, A.; Kawasaki, H.; Arakawa, R. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-Assisted Laser Desorption/Ionization With Sputter-Deposited Platinum Film. Anal. Sci. 2016, 32, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozaki, K.; Nakabayashi, Y.; Murakami, T.; Miyazato, A.; Osaka, I. Novel Approach to Enhance Sensitivity in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using Deposited Organic-Inorganic Hybrid Matrices. J. Mass Spectrom. 2019, 54, 612–619. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karashima, S.; Osaka, I. Rapidity and Precision of Steroid Hormone Measurement. J. Clin. Med. 2022, 11, 956. https://doi.org/10.3390/jcm11040956
Karashima S, Osaka I. Rapidity and Precision of Steroid Hormone Measurement. Journal of Clinical Medicine. 2022; 11(4):956. https://doi.org/10.3390/jcm11040956
Chicago/Turabian StyleKarashima, Shigehiro, and Issey Osaka. 2022. "Rapidity and Precision of Steroid Hormone Measurement" Journal of Clinical Medicine 11, no. 4: 956. https://doi.org/10.3390/jcm11040956
APA StyleKarashima, S., & Osaka, I. (2022). Rapidity and Precision of Steroid Hormone Measurement. Journal of Clinical Medicine, 11(4), 956. https://doi.org/10.3390/jcm11040956