Prognostic Value of Decreased High-Density Lipoprotein Cholesterol Levels in Infective Endocarditis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Analysed Variables
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. HDL and Lipid Profile in IE Patients
3.3. HDL Cholesterol Cut-Off
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hoen, B.; Duval, X. Infective Endocarditis. N. Engl. J. Med. 2013, 368, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Leone, S.; Ravasio, V.; Durante-Mangoni, E.; Crapis, M.; Carosi, G.; Scotton, P.G.; Barzaghi, N.; Falcone, M.; Chinello, P.; Pasticci, M.B.; et al. Epidemiology, characteristics, and outcome of infective endocarditis in Italy: The Italian Study on Endocarditis. Infection 2012, 40, 527–535. [Google Scholar] [CrossRef]
- Cahill, T.J.; Prendergast, B.D. Infective endocarditis. Lancet 2016, 387, 882–893. [Google Scholar] [CrossRef] [Green Version]
- Delahaye, F.; Alla, F.; Béguinot, I.; Bruneval, P.; Doco-Lecompte, T.; Lacassin, F.; Selton-Suty, C.; Vandenesch, F.; Vernet, V.; Hoen, B.; et al. In-hospital mortality of infective endocarditis: Prognostic factors and evolution over an 8-year period. Scand. J. Infect. Dis. 2007, 39, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Mourvillier, B.; Trouillet, J.-L.; Timsit, J.-F.; Baudot, J.; Chastre, J.; Régnier, B.; Gibert, C.; Wolff, M. Infective endocarditis in the intensive care unit: Clinical spectrum and prognostic factors in 228 consecutive patients. Intensiv. Care Med. 2004, 30, 2046–2052. [Google Scholar] [CrossRef]
- Gelsomino, S.; Maessen, J.G.; van der Veen, F.; Livi, U.; Renzulli, A.; Lucà, F.; Carella, R.; Crudeli, E.; Rubino, A.; Rostagno, C.; et al. Emergency Surgery for Native Mitral Valve Endocarditis: The Impact of Septic and Cardiogenic Shock. Ann. Thorac. Surg. 2012, 93, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Olmos, C.; Vilacosta, I.; Fernández, C.; López, J.; Sarriá, C.; Ferrera, C.; Revilla, A.; Silva, J.; Vivas, D.; González, I.; et al. Contemporary epidemiology and prognosis of septic shock in infective endocarditis. Eur. Hear. J. 2013, 34, 1999–2006. [Google Scholar] [CrossRef]
- Netzer, R.O.M.; Altwegg, S.C.; Zollinger, E.; Täuber, M.; Carrel, T.; Seiler, C. Infective endocarditis: Determinants of long term outcome. Heart 2002, 88, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Vikram, H.R.; Buenconsejo, J.; Hasbun, R.; Quagliarello, V.J. Impact of Valve Surgery on 6-Month Mortality in Adults with Complicated, Left-Sided Native Valve Endocarditis. JAMA J. Am. Med. Assoc. 2003, 290, 3207–3214. [Google Scholar] [CrossRef] [Green Version]
- Filippas-Ntekouan, S.; Liberopoulos, E.; Elisaf, M. Lipid testing in infectious diseases: Possible role in diagnosis and prognosis. Infection 2017, 45, 575–588. [Google Scholar] [CrossRef]
- Golucci, A.P.B.S.; Marson, F.A.L.; Ribeiro, A.F.; Nogueira, R.J.N. Lipid profile associated with the systemic inflammatory response syndrome and sepsis in critically ill patients. Nutrition 2018, 55-56, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Couret, D.; Tran-Dinh, A.; Duranteau, J.; Montravers, P.; Schwendeman, A.; Meilhac, O. High-density lipoproteins during sepsis: From bench to bedside. Crit. Care 2020, 24, 134. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.; Grunfeld, C. The Effect of Inflammation and Infection on Lipids and Lipoproteins; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK326741/ (accessed on 15 May 2021).
- Lee, S.H.; Park, M.S.; Park, B.H.; Jung, W.J.; Lee, I.S.; Kim, S.Y.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Kim, Y.S.; et al. Prognostic Implications of Serum Lipid Metabolism over Time during Sepsis. BioMed Res. Int. 2015, 2015, 789298. [Google Scholar] [CrossRef] [Green Version]
- Grion, C.M.C.; Cardoso, L.T.Q.; Perazolo, T.F.; Garcia, A.S.; Barbosa, D.S.; Morimoto, H.K.; Matsuo, T.; Carrilho, A.J.F. Lipoproteins and CETP levels as risk factors for severe sepsis in hospitalized patients. Eur. J. Clin. Investig. 2010, 40, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Lekkou, A.; Mouzaki, A.; Siagris, D.; Ravani, I.; Gogos, C.A. Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. J. Crit. Care 2014, 29, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Biller, K.; Fae, P.; Germann, R.; Drexel, H.; Walli, A.K.; Fraunberger, P. Cholesterol Rather Than Procalcitonin or C-Reactive Protein Predicts Mortality in Patients with Infection. Shock 2014, 42, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.-Y.; Jerng, J.-S.; Yu, C.-J.; Yang, P.-C. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit. Care Med. 2005, 33, 1688–1693. [Google Scholar] [CrossRef] [PubMed]
- Kahveci, G.; Bayrak, F.; Mutlu, B.; Gurel, Y.E.; Karaahmet, T.; Tigen, K.; Basaran, Y. Clinical Significance of High-Density Lipoprotein Cholesterol in Left-Sided Infective Endocarditis. Am. J. Cardiol. 2008, 101, 1170–1173. [Google Scholar] [CrossRef]
- Femlak, M.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Rysz, J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Heal. Dis. 2017, 16, 207. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.H.; Chang, T.I.; Joo, Y.S.; Kim, J.; Lee, S.; Lee, C.; Yun, H.; Park, J.T.; Yoo, T.; Sung, S.A.; et al. Association Between Serum High-Density Lipoprotein Cholesterol Levels and Progression of Chronic Kidney Disease: Results from the KNOW-CKD. J. Am. Hear. Assoc. 2019, 8, e011162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, H.; Francone, O.; Fielding, C.; Shigenaga, J.; Moser, A.; Grunfeld, C.; Feingold, K. Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters. J. Lipid Res. 1995, 36, 1254–1263. [Google Scholar] [CrossRef]
- Levels, J.H.; Pajkrt, D.; Schultz, M.; Hoek, F.J.; van Tol, A.; Meijers, J.C.; van Deventer, S.J. Alterations in lipoprotein homeostasis during human experimental endotoxemia and clinical sepsis. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2007, 1771, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Hosoai, H.; Webb, N.R.; Glick, J.M.; Tietge, U.J.; Purdom, M.S.; de Beer, F.C.; Rader, D.J. Expression of serum amyloid A protein in the absence of the acute phase response does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice. J. Lipid Res. 1999, 40, 648–653. [Google Scholar] [CrossRef]
- Wroblewski, J.M.; Jahangiri, A.; Ji, A.; de Beer, F.C.; van der Westhuyzen, D.R.; Webb, N.R. Nascent HDL formation by hepatocytes is reduced by the concerted action of serum amyloid A and endothelial lipase. J. Lipid Res. 2011, 52, 2255–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blauw, L.L.; Wang, Y.; van Dijk, K.W.; Rensen, P.C. A Novel Role for CETP as Immunological Gatekeeper: Raising HDL to Cure Sepsis? Trends Endocrinol. Metab. 2020, 31, 334–343. [Google Scholar] [CrossRef]
- Trinder, M.; Wang, Y.; Madsen, C.M.; Ponomarev, T.; Bohunek, L.; Daisely, B.A.; Kong, H.J.; Blauw, L.L.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; et al. Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis. Circulation 2021, 143, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Levels, J.H.M.; Abraham, P.R.; van Barreveld, E.P.; Meijers, J.C.M.; van Deventer, S.J.H. Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid. Infect. Immun. 2003, 71, 3280–3284. [Google Scholar] [CrossRef] [Green Version]
- De Nardo, D.; Labzin, L.; Kono, H.; Seki, R.; Schmidt, S.V.; Beyer, M.; Xu, D.; Zimmer, S.; Lahrmann, C.; Schildberg, F.A.; et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 2014, 15, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Kumaraswamy, S.B.; Linder, A.; Akesson, P.; Dahlback, B. Decreased Plasma Concentrations of Apolipoprotein M in Sepsis and Systemic Inflammatory Response Syndromes. Crit. Care 2012, 16, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Stoep, M.; Korporaal, S.J.A.; Van Eck, M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc. Res. 2014, 103, 362–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nofer, J.-R.; Walter, M.; Kehrel, B.; Wierwille, S.; Tepel, M.; Seedorf, U.; Assmann, G. HDL 3 -Mediated Inhibition of Thrombin-Induced Platelet Aggregation and Fibrinogen Binding Occurs via Decreased Production of Phosphoinositide-Derived Second Messengers 1,2-Diacylglycerol and Inositol 1,4,5-tris-Phosphate. Arter. Thromb. Vasc. Biol. 1998, 18, 861–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oslakovic, C.; Krisinger, M.J.; Andersson, A.; Jauhiainen, M.; Ehnholm, C.; Dahlbäck, B. Anionic Phospholipids Lose Their Procoagulant Properties When Incorporated into High Density Lipoproteins. J. Biol. Chem. 2009, 284, 5896–5904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Beer, F.C.; Connell, P.M.; Yu, J.; de Beer, M.C.; Webb, N.R.; van der Westhuyzen, D.R. HDL modification by secretory phospholipase A(2) promotes scavenger receptor class B type I interaction and accelerates HDL catabolism. J. Lipid Res. 2000, 41, 1849–1857. [Google Scholar] [CrossRef]
- Nofer, J.-R.; Brodde, M.F.; Kehrel, B.E. High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin. Exp. Pharmacol. Physiol. 2010, 37, 726–735. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Adinolfi, L.E.; Tripodi, M.-F.; Andreana, A.; Gambardella, M.; Ragone, E.; Precone, D.F.; Utili, R.; Ruggiero, G. Risk factors for “major” embolic events in hospitalized patients with infective endocarditis. Am. Hear. J. 2003, 146, 311–316. [Google Scholar] [CrossRef]
- Zampino, R.; Iossa, D.; Ursi, M.P.; Bertolino, L.; Andini, R.; Molaro, R.; Fabrazzo, O.; Leonardi, S.; Atripaldi, L.; Durante-Mangoni, E. Prognostic value of pro-adrenomedullin and copeptin in acute infective endocarditis. BMC Infect. Dis. 2021, 21, 23. [Google Scholar] [CrossRef]
- Nunes, M.C.P.; Guimarães-Júnior, M.H.; Pinto, P.H.O.M.; Coelho, R.M.P.; Barros, T.L.S.; Maia, N.D.P.A.F.; Madureira, D.A.; Reis, R.C.P.; Costa, P.H.N.; Bráulio, R.; et al. Outcomes of infective endocarditis in the current era: Early predictors of a poor prognosis. Int. J. Infect. Dis. 2018, 68, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanan, S.; Nair, R.G.; Vellani, H.; Sajeev, C.G.; George, B.; Krishnan, M.N. Baseline C-reactive protein levels and prognosis in patients with infective endocarditis: A prospective cohort study. Indian Heart J. 2018, 70 (Suppl. 3), S43–S49. [Google Scholar] [CrossRef]
- Grudzinska, F.S.; Dosanjh, D.P.; Parekh, D.; Dancer, R.C.; Patel, J.; Nightingale, P.; Walton, G.M.; Sapey, E.; Thickett, D.R. Statin therapy in patients with community-acquired pneumonia. Clin. Med. 2017, 17, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tancevski, I.; Nairz, M.; Duwensee, K.; Auer, K.; Schroll, A.; Heim, C.; Feistritzer, C.; Hoefer, J.; Gerner, R.R.; Moschen, A.R.; et al. Fibrates ameliorate the course of bacterial sepsis by promoting neutrophil recruitment via CXCR 2. EMBO Mol. Med. 2014, 6, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.; Singer, M. Statins, fibrates, thiazolidinediones and resveratrol as adjunctive therapies in sepsis: Could mitochondria be a common target? Intensiv. Care Med. Exp. 2014, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajkrt, D.; Lerch, P.G.; van der Poll, T.; Levi, M.; Illi, M.; Doran, J.E.; Arnet, B.; van den Ende, A.; ten Cate, J.W.; van Deventer, S.J. Differential effects of reconstituted high-density lipoprotein on coagulation, fibrinolysis and platelet activation during human endotoxemia. Thromb. Haemost. 1997, 77, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, L.; Chen, B. Recombinant HDL (Milano) protects endotoxin-challenged rats from multiple organ injury and dysfunction. Biol. Chem. 2015, 396, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Erbay, A.R.; Erbay, A.; Canga, A.; Keskin, G.; Sen, N.; Atak, R.; Demir, A.D.; Balbay, Y.; Duru, E. Risk factors for in-hospital mortality in infective endocarditis: Five years’ experience at a tertiary care hospital in Turkey. J. Heart Valve Dis. 2010, 19, 216–224. [Google Scholar] [PubMed]
- Marques, A.; Cruz, I.; Caldeira, D.; Alegria, S.; Gomes, A.C.; Broa, A.L.; João, I.; Pereira, H. Fatores de Risco para Mortalidade Hospitalar na Endocardite Infecciosa. Arq. Bras. Cardiol. 2019, 114, 1–8. [Google Scholar] [CrossRef]
- Subbaraju, P.; Rai, S.; Morakhia, J.; Midha, G.; Kamath, A.; Saravu, K. Clinical—Microbiological characterization and risk factors of mortality in infective endocarditis from a tertiary care academic hospital in Southern India. Indian Heart J. 2018, 70, 259–265. [Google Scholar] [CrossRef]
- Tran, H.M.; Truong, V.T.; Ngo, T.M.N.; Bui, Q.P.V.; Nguyen, H.C.; Le, T.T.Q.; Mazur, W.; Chung, E.; Cafardi, J.; Pham, K.P.N.; et al. Microbiological profile and risk factors for in-hospital mortality of infective endocarditis in tertiary care hospitals of south Vietnam. PLoS ONE 2017, 12, e0189421. [Google Scholar] [CrossRef] [Green Version]
Parameter | Result | Normal Ranges |
---|---|---|
Age (years), median [IQR] | 65 [56–72] | |
Sex, n (%) | ||
Male | 86 (67.7) | |
Female | 41 (32.3) | |
Fever, (°C), median [IQR] | 39 [38–39] | |
CRP, (mg/dL), median [IQR] | 8.1 [3.6–14.1] | <1.0 |
ESR, (mm/h), median [IQR] | 56 [36.7–78.7] | 2–14 |
White blood cells, (cells/µL), median [IQR] | 10,550 [7960–15,500] | 4500–11,000 |
Neutrophils, (cells/µL), median [IQR] | 9250 [5600–12,700] | 2900–7000 |
Creatinine, (mg/dL), median [IQR] | 1.0 [0.8–1.4] | 0.6–1.1 |
eGFR MDRD, (mL/min), median [IQR] | 70 [50–99] | ≥90 |
Glycemia, (mg/dL), median [IQR] | 109 [91–137] | 74–106 |
Cholesterol, (mg/dL), median [IQR] | ||
Total | 123 [97–162] | <200 |
HDL | 29 [20–37] | 40–60 |
LDL | 69.6 [45.2–96] | 50–129 |
Triglycerides, (mg/dL), median [IQR] | 118 [92–156.7] | 50–150 |
Etiology n (%) | ||
S. aureus | 25 (19.6) | |
Enterococcus spp. | 22 (17.3) | |
Streptococcus spp. | 25 (19.6) | |
Coagulase-negative staphylococci | 30 (23.7) | |
Other pathogens | 9 (7.2) | |
Negative blood cultures | 16 (12.6) | |
Type of IE, n (%) | ||
Native valve | 59 (46.5) | |
Prosthetic valve | 32 (25.2) | |
CIED | 27 (21.2) | |
Other * | 9 (7.1) | |
Comorbidities | ||
Ischemic heart disease, n (%) | 32 (25.1) | |
Chronic heart failure, n (%) | 29 (22.8) | |
Diabetes mellitus, n (%) | 28 (22) | |
Chronic kidney disease, n (%) | 16 (11.9) | |
Intravenous drug use, n (%) | 4 (3.1) | |
Cardiac surgery, n (%) | 79 (62.2) | |
Embolism, n (%) ** | 32 (22.5) | |
Spleen, n (%) | 18 (14.1) | |
Lung, n (%) | 12 (9.4) | |
Kidney, n (%) | 6 (4.7) | |
Brain, n (%) | 5 (3.9) | |
Vascular periphery, n (%) | 2 (1.5) | |
Liver, n (%) | 1 (0.7) | |
Other, n (%) | 2 (1.5) | |
In-hospital mortality, n (%) | 20 (15.7) |
Outcome of Hospitalization Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|
Parameter | Deceased (n = 20) | Discharged Alive (n = 107) | p-Value | O.R. [95% CI] | p |
Age (year), median [IQR] | 68 [62–75] | 65 [55–72] | 0.197 | 1.020 [0.979–1.061] | 0.347 |
Sex | 0.604 | ||||
Male | 15 (75) | 71 (66.3) | |||
Female | 5 (25) | 36 (33.7) | |||
Temp max | 39 [38.2–39.2] | 39 [38–39] | 0.448 | ||
Type of IE, n (%) | 0.684 | ||||
Native | 10 (50) | 49 (45.8) | |||
Prosthetic | 6 (30) | 26 (24.3) | |||
CIED | 4 (20) | 23 (21.5) | |||
Other | 0 (0) | 9 (8.4) | |||
S. aureus etiology | 4 (20) | 21 (19.62) | 0.449 | ||
Vegetation size *, n (%) | 0.265 | ||||
>10 mm | 11 (55) | 53 (49.5) | |||
≤10 mm | 8 (40) | 20 (18.6) | |||
Cardiac surgery, n (%) | 16 (80) | 63 (58.8) | 0.134 | ||
Ischemic heart disease, n (%) | 5 (25) | 27 (25.2) | 1 | ||
Chronic heart failure, n (%) | 5 (25) | 24 (22.4) | 0.777 | ||
Diabetes mellitus, n (%) | 8 (40) | 20 (18.6) | 0.044 | 2.188 (0.662–7.233) | 0.199 |
Chronic kidney disease, n (%) | 8 (40) | 8 (7.4) | 0.001 | 5.171 (1.197–22.340) | 0.028 |
Embolism | 5 (25) | 27 (25.2) | 1 | ||
Cholesterol, (mg/dL), median [IQR] | |||||
Total | 99 [66.7–114.7] | 133 [102–169] | 0.001 | ||
HDL | 19 [11.5–26.5] | 31 [22–38] | 0.001 | 0.937 (0.882–0.996) | 0.037 |
LDL | 54.7 [39.4–74.7] | 76.6 [51.2–99.6] | 0.013 | 0.993 (0.974–1.012) | 0.474 |
Triglycerides, (mg/dL), median [IQR] | 109 [88–152] | 121 [93–164] | 0.281 | ||
White blood cells, (cells/µL), median [IQR] | 14,880 [7897–20,045] | 10,400 [7960–14,400] | 0.162 | ||
Neutrophils, (cells/µL), median [IQR] | 12,725 [6517–18,192.5] | 8200 [5460–12,260] | 0.101 | ||
CRP, (mg/dL), median [IQR] | 11 [3.2–20] | 7.8 [3.7–13] | 0.313 | ||
Creatinine, (mg/dL), median [IQR] | 1.4 [0.73–1.72] | 0.96 [0.8–1.3] | 0.114 | ||
eGFR MDRD, (mL/min), median [IQR] | 45.5 [30.7–85.2] | 74 [55–100] | 0.042 | 1.006 (0.992–1.020) | 0.423 |
Glycemia, (mg/dL), median [IQR] | 118.5 [96.7–167.6] | 109 [91–136] | 0.429 | ||
ESR, (mm/h), median [IQR] | 50 [32–77] | 56 [37–81] | 0.978 |
Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|
Parameter | HDL | p | O.R. [95% CI] | p | |
≤24.5 (n = 46) | >24.5 (n = 81) | ||||
Age (years), median [IQR] | 64.5 [44–72] | 68 [57–72] | 0.343 | ||
Sex, n (%) | 0.844 | ||||
M | 32 (69.5) | 54 (66.6) | |||
F | 14 (30.4) | 27 (33.3) | |||
Fever, (°C), median [IQR] | 39 [38–39.5] | 39 [38–39] | 0.347 | ||
CRP, (mg/dL), median [IQR] | 11 [4.7–18.1] | 6.5 [2.3–11.5] | 0.004 | 0.986 [0.944–1.031] | 0.543 |
ESR, (mm/h), median [IQR] | 60 [34–77] | 54 [37–81] | 0.709 | ||
Neutrophils, (cells/µL), median [IQR] | 11,295 [6152–16,700] | 7590 [5145–10,820] | 0.004 | 1.000 [1.000–1.000] | 0.221 |
Creatinine, (mg/dL), median [IQR] | 1.2 [0.7–2.1] | 0.9 [0.8–1.2] | 0.062 | ||
eGFR MDRD, (mL/min), median [IQR] | 60.5 [33–123.2] | 74 [61–95.5] | 0.156 | ||
Glycemia, (mg/dL), median [IQR] | 109 [86–168] | 110 [91.5–135] | 0.49 | ||
Cholesterol, (mg/dL), median [IQR] | |||||
Total | 100.5 [76.5–122.7] | 145 [115.5–179.5] | 0 | ||
LDL | 55 [35.4–69.8] | 86 [58.9–103.6] | 0 | ||
Triglycerides, (mg/dL), median [IQR] | 142 [113.5–198] | 108 [88.5–141] | 0 | 1.011 [1.003–1.019] | 0.008 |
Left sided IE, n (%) | 27 (58.7) | 64 (79.0) | 0.08 | ||
Right sided IE, n (%) | 16 (34.8) | 15 (18.5) | |||
Etiology, n (%) | 0.026 | 0.664 [0.444–0.993] | 0.046 | ||
S. aureus | 14 (35.9) | 11 (15.2) | |||
Enterococcus spp. | 9 (23.1) | 13 (18.1) | |||
Streptococcus spp. | 3 (7.7) | 22 (30.6) | |||
CoNS | 10 (25.6) | 20 (27.7) | |||
Other pathogens | 3 (7.7) | 6 (8.4) | |||
Diabetes mellitus, n (%) | 11 (23.9) | 17 (20.9) | 0.824 | ||
Chronic heart failure, n (%) | 9 (19.5) | 20 (24.6) | 0.661 | ||
Chronic kidney disease, n (%) | 10 (21.7) | 6 (7.4) | 0.026 | 4.442 [0.885–22.292] | 0.07 |
Ischemic heart disease, n (%) | 13 (28.2) | 19 (23.4) | 0.674 | ||
Cardiac surgery, n (%) | 27 (58.6) | 52 (64.1) | 0.33 | ||
Vegetation size, (mm), median [IQR] | 18 [10–20] | 13 [10–19] | 0.106 | ||
Embolism, n (%) | 16 (34.7) | 16 (19.7) | 0.088 | ||
In-hospital mortality, n (%) | 14 (30.4) | 6 (7.4) | 0.002 | 9.292 [2.059–41.934] | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampino, R.; Patauner, F.; Karruli, A.; Iossa, D.; Ursi, M.P.; Bertolino, L.; Peluso, A.M.; D’Amico, F.; Cavezza, G.; Durante-Mangoni, E., on behalf of the Monaldi Hospital Cardiovascular Infection Study Group. Prognostic Value of Decreased High-Density Lipoprotein Cholesterol Levels in Infective Endocarditis. J. Clin. Med. 2022, 11, 957. https://doi.org/10.3390/jcm11040957
Zampino R, Patauner F, Karruli A, Iossa D, Ursi MP, Bertolino L, Peluso AM, D’Amico F, Cavezza G, Durante-Mangoni E on behalf of the Monaldi Hospital Cardiovascular Infection Study Group. Prognostic Value of Decreased High-Density Lipoprotein Cholesterol Levels in Infective Endocarditis. Journal of Clinical Medicine. 2022; 11(4):957. https://doi.org/10.3390/jcm11040957
Chicago/Turabian StyleZampino, Rosa, Fabian Patauner, Arta Karruli, Domenico Iossa, Maria Paola Ursi, Lorenzo Bertolino, Anna Maria Peluso, Fabiana D’Amico, Giusi Cavezza, and Emanuele Durante-Mangoni on behalf of the Monaldi Hospital Cardiovascular Infection Study Group. 2022. "Prognostic Value of Decreased High-Density Lipoprotein Cholesterol Levels in Infective Endocarditis" Journal of Clinical Medicine 11, no. 4: 957. https://doi.org/10.3390/jcm11040957
APA StyleZampino, R., Patauner, F., Karruli, A., Iossa, D., Ursi, M. P., Bertolino, L., Peluso, A. M., D’Amico, F., Cavezza, G., & Durante-Mangoni, E., on behalf of the Monaldi Hospital Cardiovascular Infection Study Group. (2022). Prognostic Value of Decreased High-Density Lipoprotein Cholesterol Levels in Infective Endocarditis. Journal of Clinical Medicine, 11(4), 957. https://doi.org/10.3390/jcm11040957