Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Diagnosis and Grading of AARF
2.3. Remodeling Therapy of AARF and Imaging Analyses
2.4. Study Groups
2.5. Statistical Analyses
2.6. Compliance with Ethical Standards
3. Results
3.1. Patient Characteristics and Incidence of Spontaneous Osseous Fusion
3.2. Comparison of Clinical and Radiological Findings
3.3. Direct Osseous Contact of the Facet Joint before and during Halo Fixation
3.4. Recovery of Rotatory ROM after Halo Removal
4. Discussion
4.1. Spontaneous Osseous Fusion after Halo Traction/Fixation
4.2. Compensatory Mechanism to Gain Rotatory ROM after Halo Removal
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Terminology
AARF | Atlantoaxial Rotatory Fixation |
Chronic AARF | Persistent or recurrent AARF which is resistant to the primary conservative treatment and exhibits C2 facet deformity on 3D CT images. |
Remodeling therapy | Conservative treatment strategy for chronic AARF. By a careful closed reduction of atlantoaxial under general anesthesia followed by halo fixation, the remodeling of C2 facet deformity is obtained, preventing recurrence of subluxation. |
SOF | Spontaneous Osseous Fusion of affected vertebrae which is confirmed after remodeling therapy for chronic AARF |
DOC | Direct Osseous Contact of facet joints which is defined as disappearance of facet joint space between the adjacent vertebrae on sagittal or coronal CT images. |
Segmental rotatory ROM | Range of motion (ROM) of axial rotation at each segment (e.g., Oc/C1, C2/C3). ROM is measured using dynamic CT images examined in three different head positions (i.e., the neutral position and maximally rotated positions to both sides). |
Macroscopic rotatory ROM | Outward rotatory ROM of the cervical spine which is measured from overhead in a sitting position and is defined as the sum of the angles made by the midline with the line connecting occiput and nose on the maximum rotated head position to each side. |
References
- Pitzen, T.; Ruf, M.; Meyer, C.; Drumm, J. Atlantoaxial Rotatory Dislocation: Delayed Diagnose Will Result in More Invasive Treatment Options. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2021, 82, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sae-Huang, M.; Borg, A.; Hill, C.S. Systematic review of the nonsurgical management of atlantoaxial rotatory fixation in childhood. J. Neurosurg. Pediatrics 2021, 27, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Perrini, P.; Montemurro, N. Congenital absence of a cervical spine pedicle. Neurol. India 2016, 64, 189. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Romero, R.; Vargas-Serrano, B.; Carro-Martinez, A. Congenital absence of the neural arch in the cervical spine: An extreme form of pedicle absence. Eur. J. Radiol. 1995, 20, 100–104. [Google Scholar] [CrossRef]
- Smoker, W.R. Congenital anomalies of the cervical spine. Neuroimag. Clin. N. Am. 1995, 5, 427–449. [Google Scholar]
- Wiener, M.D.; Martinez, S.; Forsberg, D.A. Congenital absence of a cervical spine pedicle: Clinical and radiologic findings. Am. J. Roentgenol. 1990, 155, 1037–1041. [Google Scholar] [CrossRef]
- Fielding, J.; Hawkins, R. Atlanto-axial rotatory fixation. (Fixed rotatory subluxation of the atlanto-axial joint). J. Bone Jt. Surg. 1977, 59, 37–44. [Google Scholar] [CrossRef]
- Parikh, S.N.; Crone, K.R.; Crawford, A.H. Chronic Atlantoaxial Rotatory Fixation with Anterolisthesis: Case Report. J. Trauma Acute Care Surg. 2004, 57, 392–395. [Google Scholar] [CrossRef]
- Phillips, W.A.; Hensinger, R.N. The management of rotatory atlanto-axial subluxation in children. J. Bone Jt. Surg. 1989, 71, 664–668. [Google Scholar] [CrossRef]
- Pang, D.; Li, V. AtlantoAxial Rotatory Fixation: Part 3—A Prospective Study of the Clinical Manifestation, Diagnosis, Management, and Outcome of Children with AlantoAxial Rotatory Fixation. Neurosurgery 2005, 57, 954–972. [Google Scholar] [CrossRef]
- Crossman, J.E.; David, K.; Hayward, R.; Crockard, H.A. Open reduction of pediatric atlantoaxial rotatory fixation: Long-term outcome study with functional measurements. J. Neurosurg. Spine 2004, 100, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-T.; Chung, H.-Y.; Wang, J.-L.; Lew, H.L. Successful Conservative Treatment of Chronic Atlantoaxial Rotatory Fixation in a Child with Torticollis. Am. J. Phys. Med. Rehabil. 2010, 89, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Burkus, J.K.; DePonte, R.J. Chronic Atlantoaxial Rotatory Fixation Correction by Cervical Traction, Manipulation, and Bracing. J. Pediatric Orthop. 1986, 6, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Beier, A.D.; Vachhrajani, S.; Bayerl, S.H.; Aguilar, C.Y.D.; Lamberti-Pasculli, M.; Drake, J.M. Rotatory subluxation: Experience from the Hospital for Sick Children. J. Neurosurg. Pediatrics 2012, 9, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Glotzbecker, M.P.; Wasser, A.M.; Hresko, M.T.; Karlin, L.I.; Emans, J.B.; Hedequist, D.J. Efficacy of Nonfusion Treatment for Subacute and Chronic Atlanto-Axial Rotatory Fixation in Children. J. Pediatric Orthop. 2014, 34, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.L.; Pratts, I.; Ramos, E. Grisel’s syndrome: An unusual cause of torticollis. J. Pediatric Rehabil. Med. 2013, 6, 175–180. [Google Scholar] [CrossRef]
- Park, S.W.; Cho, K.H.; Shin, Y.S.; Kim, S.H.; Ahn, Y.H.; Cho, K.G.; Huh, J.S.; Yoon, S.H. Successful reduction for a pediatric chronic atlantoaxial rotatory fixation (Grisel syndrome) with long-term halter traction: Case report. Spine 2005, 30, E444–E449. [Google Scholar] [CrossRef]
- Akbay, A.; Bilginer, B.; Akalan, N. Closed manual reduction maneuver of atlantoaxial rotatory dislocation in pediatric age. Child’s Nerv. Syst. 2014, 30, 1083–1089. [Google Scholar] [CrossRef]
- Ishii, K.; Toyama, Y.; Nakamura, M.; Chiba, K.; Matsumoto, M. Management of Chronic Atlantoaxial Rotatory Fixation. Spine 2012, 37, E278–E285. [Google Scholar] [CrossRef]
- Ishii, T.; Mukai, Y.; Hosono, N.; Sakaura, H.; Nakajima, Y.; Sato, Y.; Sugamoto, K.; Yoshikawa, H. Kinematics of the upper cervical spine in rotation: In vivo three-dimensional analysis. Spine 2004, 29, E139–E144. [Google Scholar] [CrossRef]
- Mifsud, M.; Abela, M.; Wilson, N.I. The delayed presentation of atlantoaxial rotatory fixation in children: A review of the management. Bone Jt. J. 2016, 98, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, H.; Hamzaoglu, V.; Avci, E.; Karatas, D.; Ismi, O.; Talas, D.U.; Bagdatoglu, C.; Dagtekin, A. Early diagnosis of Grisel’s syndrome in children with favorable outcome. Child’s Nerv. Syst. 2018, 35, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Dahdaleh, N.S.; Dlouhy, B.J.; Menezes, A.H. One-Step Fixation of Atlantoaxial Rotatory Subluxation: Technical Note and Report of Three Cases. World Neurosurg. 2013, 80, e391–e395. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Chiba, K.; Maruiwa, H.; Nakamura, M.; Matsumoto, M.; Toyama, Y. Pathognomonic radiological signs for predicting prognosis in patients with chronic atlantoaxial rotatory fixation. J. Neurosurg. Spine 2006, 5, 385–391. [Google Scholar] [CrossRef]
- Ishii, K.; Matsumoto, M.; Momoshima, S.; Watanabe, K.; Tsuji, T.; Takaishi, H.; Nakamura, M.; Toyama, Y.; Chiba, K. Remodeling of C2 facet deformity prevents recurrent subluxation in patients with chronic atlantoaxial rotatory fixation: A novel strategy for treatment of chronic atlantoaxial rotatory fixation. Spine 2011, 36, E256–E262. [Google Scholar] [CrossRef]
- Pang, D.; Li, V. Atlantoaxial Rotatory Fixation: Part 1—Biomechanics OF Normal Rotation at the Atlantoaxial Joint in Children. Neurosurgery 2004, 55, 614–626. [Google Scholar] [CrossRef]
- Pang, D.; Li, V. Atlantoaxial Rotatory Fixation: Part 2—New Diagnostic Paradigm and a New Classification Based on Motion Analysis Using Computed Tomographic Imaging. Neurosurgery 2005, 57, 941–953. [Google Scholar] [CrossRef]
- Arbogast, K.B.; Gholve, P.A.; Friedman, J.E.; Maltese, M.R.; Tomasello, M.F.; Dormans, J.P. Normal Cervical Spine Range of Motion in Children 3–12 Years Old. Spine 2007, 32, E309–E315. [Google Scholar] [CrossRef]
- Castro, W.H.M.; Sautmann, A.; Schilgen, M.; Sautmann, M. Noninvasive Three-Dimensional Analysis of Cervical Spine Motion in Normal Subjects in Relation to Age and Sex. Spine 2000, 25, 443–449. [Google Scholar] [CrossRef]
- Dvorak, J.; Antinnes, J.A.; Panjabi, M.; Loustalot, D.; Bonomo, M. Age and Gender Related Normal Motion of the Cervical Spine. Spine 1992, 17, S393–S398. [Google Scholar] [CrossRef]
- Crockard, H.A.; Rogers, M.A. Open Reduction of Traumatic Atlanto-Axial Rotatory Dislocation with Use of the Extreme Lateral Approach. A Report of Two Cases. J. Bone Jt. Surg. 1996, 78, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Dove, J.; Hsu, L.C.; Yau, A.C. The cervical spine after halo-pelvic traction. An analysis of the complications of 83 patients. J. Bone Jt. Surg. Br. 1980, 62, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Krengel, W.F.; Kim, P.H.; Wiater, B. Spontaneous Ankylosis of Occiput to C2 following Closed Traction and Halo Treatment of Atlantoaxial Rotary Fixation. Glob. Spine J. 2015, 5, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Brewerton, D.; Hart, F.; Nicholls, A.; Caffrey, M.; James, D.; Sturrock, R. Ankylosing spondylitis and HL-A 27. Lancet 1973, 301, 904–907. [Google Scholar] [CrossRef]
- Schroeder, G.D.; Canseco, J.A.; Patel, P.D.; Divi, S.N.; Karamian, B.A.; Kandziora, F.; Vialle, E.N.; Oner, F.C.; Schnake, K.J.; Dvorak, M.F.; et al. Establishing the Injury Severity of Subaxial Cervical Spine Trauma: Validating the Hierarchical Nature of the AO Spine Subaxial Cervical Spine Injury Classification System. Spine 2021, 46, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Yanni, D.S.; Perin, N.I. Fixation of the Axis. Neurosurgery 2010, 66, A147–A152. [Google Scholar] [CrossRef]
- Tang, B.; Yao, H.; Wang, S.; Zhong, Y.; Cao, K.; Wan, Z. In vivo 3-Dimensional Kinematics Study of the Healthy Cervical Spine Based on CBCT Combined with 3D-3D Registration Technology. Spine 2021, 46, E1301–E1310. [Google Scholar] [CrossRef]
- Bogduk, N.; Mercer, S. Biomechanics of the cervical spine. I: Normal kinematics. Clin. Biomech. 2000, 15, 633–648. [Google Scholar] [CrossRef]
- Kang, J.; Chen, G.; Zhai, X.; He, X. In vivo three-dimensional kinematics of the cervical spine during maximal active head rotation. PLoS ONE 2019, 14, e0215357. [Google Scholar] [CrossRef]
- Salem, W.; Lenders, C.; Mathieu, J.; Hermanus, N.; Klein, P. In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Man. Ther. 2013, 18, 339–344. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Z.-X.; Han, B.-J.; Yan, Y.-B.; Zhang, Y.; Lei, W. Three-dimensional analysis of cervical spine segmental motion in rotation. Arch. Med. Sci. 2013, 3, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Zhou, C.; Wang, C.; Tsai, T.-Y.; Yu, Y.; Wang, W.; Li, G.; Cha, T. In vivo primary and coupled segmental motions of the healthy female head-neck complex during dynamic head axial rotation. J. Biomech. 2021, 123, 110513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, H.; Wang, C.; Tsai, T.-Y.; Yu, Y.; Ostergaard, P.; Li, G.; Cha, T. Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions. J. Biomech. 2020, 98, 109418. [Google Scholar] [CrossRef] [PubMed]
Case | Age | Sex | Cause of AARF | Duration from Onset to Initial Visit (Months) | FC | IG | ADI (mm) | C1 LI (Degree) | Duration of Halo Fixation (Months) | Direct Osseous Contact of Facet | Osseously Fused Segment after Halo Removal | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial Visit | During Halo Fixation | ||||||||||||
Non-SOF group | 1 | 11 | F | Upper RTI | 6 | 3 | 2 | 13 | 18 | 3.1 | Unknown * | - | - |
2 | 8 | F | Unknown | 3.8 | 2 | 2 | 3.6 | 18 | 2.3 | Unknown * | - | - | |
3 | 4 | F | Upper RTI | 3.4 | 2 | 3 | 4.2 | 38 | 2.1 | C1/C2 | - | - | |
4 | 5 | F | Upper RTI | 2.1 | 1 | 2 | 3.5 | −3 | 2.1 | - | - | - | |
5 | 5 | F | Otitis media | 2.6 | 2 | 2 | 5 | 4 | 3 | - | - | - | |
6 | 9 | F | Lymphangitis | 1.5 | 1 | 2 | 2 | 8.5 | 2.1 | C1/C2 | - | - | |
7 | 6 | F | Kawasaki disease | 3.2 | 3 | 3 | 4 | 26 | 2.6 | C1/C2 | - | - | |
SOF group | 8 | 7 | F | Upper RTI | 5.4 | 3 | 3 | 7 | 28 | 3.8 | Unknown * | Oc/C1, C1/C2 | Oc-C2 |
9 | 7 | F | Minor trauma | 8.8 | 3 | 3 | 8 | 24 | 2.9 | C1/C2 | C1/C2 | C1-C2 | |
10 | 9 | M | Minor trauma | 3.9 | 3 | 2 | 10.2 | 13.5 | 2.8 | Oc/C1, C1/C2 | - | Oc-C2 | |
11 | 8 | F | Mumps | 7.2 | 3 | 3 | 3.3 | 22.8 | 1.9 | C1/C2 | C1/C2 | C1-C2 | |
12 | 7 | M | Lymphangitis | 3.4 | 2 | 3 | 8 | 20.9 | 3 | C1/C2 | C2/C3 | C2-C3 |
Parameter | Non-SOF Group | SOF Group | p Value |
---|---|---|---|
Case 1–7 | Case 8–12 | ||
No. of patients | 7 | 5 | |
Age (yrs) | |||
mean | 7.3 ± 2.6 | 8.1 ± 0.7 | 0.489 |
range | 4–11 | 7–9 | |
Sex | |||
male | 1 | 2 | |
female | 6 | 3 | 0.523 |
Duration from onset to initial visit (months) | 3.2 ± 1.4 | 5.7 ± 2.3 | 0.040 |
Causes (no. of cases) | |||
upper RTI | 3 | 1 | |
minor trauma | 0 | 2 | |
lymphangitis | 1 | 1 | |
otitis media | 1 | 0 | |
Kawasaki disease | 1 | 0 | |
mumpus | 0 | 1 | |
unknown | 1 | 0 | 0.334 |
Fielding classification (no. of cases) | |||
I | 2 | 0 | |
II | 3 | 1 | |
III | 2 | 4 | 0.180 |
Ishii grading (no. of cases) | |||
I | 0 | 0 | |
II | 5 | 1 | |
III | 2 | 4 | 0.079 |
C1 lateral inclination (degree) | 15.6 ± 13.9 | 21.8 ± 5.3 | 0.369 |
ADI (mm) | 5.0 ± 3.6 | 7.3 ± 2.5 | 0.260 |
Macroscopic cervical rotatory ROM (degree) | |||
At initial visit | 66.5 ± 7.7 | 38.0 ± 22.2 | 0.018 |
Two weeks after halo removal | 173.0 ± 5.9 | 57.0 ± 4.1 | <0.001 |
At final follow-up | 174.3 ± 3.8 | 118.3 ± 26.3 | <0.001 |
Duration of halo fixation (months) | 2.5 ± 0.4 | 2.9 ± 0.7 | 0.221 |
Direct osseous contact of facet joints (no. of cases) | |||
At initial visit * Present | 3 | 4 | |
Absent | 2 | 0 | 0.151 |
During halo fixation Present | 0 | 4 | |
Absent | 7 | 1 | 0.004 |
Segmental rotatory ROM on final follow-up CT | |||
Oc/C1 | 9.8 ± 3.5 | 20.1 ± 2.3 † | 0.003 |
C1/C2 | 50.7 ± 9.9 | - | - |
C2/C3 | 7.9 ± 3.2 | 13.0 ± 3.4 ‡ | 0.051 |
C3/C4 | 12.0 ± 2.8 | 15.4 ± 3.4 | 0.115 |
Time from reduction to final CT (mos) | 8.3 ± 3.6 | 37.8 ± 14.9 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamura, K.; Ishii, K.; Nagoshi, N.; Chiba, K.; Matsumoto, M.; Nakamura, M.; Watanabe, K. Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine. J. Clin. Med. 2022, 11, 1504. https://doi.org/10.3390/jcm11061504
Kitamura K, Ishii K, Nagoshi N, Chiba K, Matsumoto M, Nakamura M, Watanabe K. Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine. Journal of Clinical Medicine. 2022; 11(6):1504. https://doi.org/10.3390/jcm11061504
Chicago/Turabian StyleKitamura, Kazuya, Ken Ishii, Narihito Nagoshi, Kazuhiro Chiba, Morio Matsumoto, Masaya Nakamura, and Kota Watanabe. 2022. "Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine" Journal of Clinical Medicine 11, no. 6: 1504. https://doi.org/10.3390/jcm11061504
APA StyleKitamura, K., Ishii, K., Nagoshi, N., Chiba, K., Matsumoto, M., Nakamura, M., & Watanabe, K. (2022). Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine. Journal of Clinical Medicine, 11(6), 1504. https://doi.org/10.3390/jcm11061504