Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction
Abstract
:1. Introduction
2. A Brief History of Hyperbaric Oxygen Therapy
3. From Hyperbaric Oxygen Therapy to Aqueous Oxygen Infusion
4. Study Results for Super-Saturated Oxygen Therapy in STEMI
4.1. Pilot Trials
4.2. Clinical Trials
4.3. Experience in Everyday Clinical Practice
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, K.H.; Maier, S.K.G.; Maier, L.S.; Lengenfelder, B.; Jacobshagen, C.; Jung, J.; Fleischmann, C.; Werner, G.S.; Olbrich, H.G.; Ott, R.; et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 2018, 39, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Hps Timi Reveal Collaborative Group; Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Morrow, D.A.; Braunwald, E.; Bonaca, M.P.; Ameriso, S.F.; Dalby, A.J.; Fish, M.P.; Fox, K.A.; Lipka, L.J.; Liu, X.; Nicolau, J.C.; et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 2012, 366, 1404–1413. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Bhatt, D.L.; Cohen, M.; Steg, P.G.; Storey, R.F.; Jensen, E.C.; Magnani, G.; Bansilal, S.; Fish, M.P.; Im, K.; et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N. Engl. J. Med. 2015, 372, 1791–1800. [Google Scholar] [CrossRef] [Green Version]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Stone, G.W.; Selker, H.P.; Thiele, H.; Patel, M.R.; Udelson, J.E.; Ohman, E.M.; Maehara, A.; Eitel, I.; Granger, C.B.; Jenkins, P.L.; et al. Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials. J. Am. Coll. Cardiol. 2016, 67, 1674–1683. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M. Time to take myocardial reperfusion injury seriously. N. Engl. J. Med. 2008, 359, 518–520. [Google Scholar] [CrossRef]
- Kloner, R.A. Does reperfusion injury exist in humans? J. Am. Coll. Cardiol. 1993, 21, 537–545. [Google Scholar] [CrossRef]
- Verma, S.; Fedak, P.W.; Weisel, R.D.; Butany, J.; Rao, V.; Maitland, A.; Li, R.K.; Dhillon, B.; Yau, T.M. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 2002, 105, 2332–2336. [Google Scholar] [CrossRef] [PubMed]
- Piot, C.; Croisille, P.; Staat, P.; Thibault, H.; Rioufol, G.; Mewton, N.; Elbelghiti, R.; Cung, T.T.; Bonnefoy, E.; Angoulvant, D.; et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 2008, 359, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausenloy, D.J.; Yellon, D.M. Preconditioning and postconditioning: United at reperfusion. Pharmacol. Ther. 2007, 116, 173–191. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Duchen, M.R.; Yellon, D.M. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc. Res. 2003, 60, 617–625. [Google Scholar] [CrossRef]
- Kloner, R.A.; Hale, S.L.; Dai, W.; Gorman, R.C.; Shuto, T.; Koomalsingh, K.J.; Gorman, J.H.; Sloan, R.C., 3rd; Frasier, C.R.; Watson, C.A.; et al. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective Peptide. J. Am. Heart Assoc. 2012, 1, e001644. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.M.; Giugliano, R.P.; Kloner, R.A.; Bode, C.; Tendera, M.; Janosi, A.; Merkely, B.; Godlewski, J.; Halaby, R.; Korjian, S.; et al. EMBRACE STEMI study: A Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur. Heart J. 2016, 37, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Erlinge, D.; Gotberg, M.; Grines, C.; Dixon, S.; Baran, K.; Kandzari, D.; Olivecrona, G.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention 2013, 8, 1435–1440. [Google Scholar] [CrossRef]
- Noc, M.; Erlinge, D.; Neskovic, A.N.; Kafedzic, S.; Merkely, B.; Zima, E.; Fister, M.; Petrovic, M.; Cankovic, M.; Veress, G.; et al. COOL AMI EU pilot trial: A multicentre, prospective, randomised controlled trial to assess cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction. EuroIntervention 2017, 13, e531–e539. [Google Scholar] [CrossRef] [Green Version]
- El Farissi, M.; Mast, T.P.; van de Kar, M.R.D.; Dillen, D.M.M.; Demandt, J.P.A.; Vervaat, F.E.; Eerdekens, R.; Dello, S.A.G.; Keulards, D.C.; Zelis, J.M.; et al. Hypothermia for Cardioprotection in Patients with St-Elevation Myocardial Infarction: Do Not Give It the Cold Shoulder Yet! J. Clin. Med. 2022, 11, 1082. [Google Scholar] [CrossRef]
- Esposito, M.L.; Zhang, Y.; Qiao, X.; Reyelt, L.; Paruchuri, V.; Schnitzer, G.R.; Morine, K.J.; Annamalai, S.; Bogins, C.; Natov, P.S.; et al. Left ventricular unloading before reperfusion promotes functional recovery after myocardial infarction. J. Am. Coll. Cardiol. 2018, 72, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.K.; Alkhouli, M.; DeMartini, T.; Faraz, H.; George, Z.; Goodwin, M.; Hernandez-Montfort, J.A.; Iyer, V.; Josephy, N.; Kalra, S.; et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment elevation myocardial infarction: A pilot study using the Impella CP. Circulation 2019, 139, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.J.; Schuleri, K.H.; Chakrabarti, A.K.; O’Neill, W.W.; Kapur, N.K.; Wohns, D.H. Door-to-unload: Left ventricular unloading before reperfusion in ST-elevation myocardial infarction. Future Cardiol. 2021, 17, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Kloner, R.A.; Hale, S.L.; Dai, W.; Shi, J. Cardioprotection: Where to from here? Cardiovasc. Drugs Ther. 2017, 31, 53–61. [Google Scholar] [CrossRef]
- Gerczuk, P.Z.; Kloner, R.A. An update on cardioprotection: A review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol. 2012, 59, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Kloner, R.A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ. Res. 2013, 113, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Demming, J.; Eleff, M.; Eckstein, R.W. Further studies on the effect of arteriovenous fistulas and elevations of sinus pressure on mortality rates following acute coronary occlusions. Circulation 1952, 6, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Lawson, D.A. Experimental coronary arterial occlusion: Effects of the administration of oxygen under pressure. Scott. Med. J. 1958, 3, 346–350. [Google Scholar] [CrossRef]
- Chardack, W.M.; Gage, A.A.; Federico, A.J.; Cusick, J.K.; Matsumoto, P.J.; Lanphier, E.H. Reduction by Hyperbaric Oxygenation of the Mortality from Ventricular Fibrillation Following Coronary Artery Ligation. Circ. Res. 1964, 15, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Peter, R.H.; Rau, R.W.; Whalen, R.E.; Entman, M.L.; McIntosh, H.D. Effects of hyperbaric oxygenation on coronary artery occlusion in pigs. Circ. Res. 1966, 18, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.J.; Hutton, I.; Kenmure, A.C.; Murdoch, W.R. Haemodynamic and metabolic effects of hyperbaric oxygen in myocardial infarction. Lancet 1966, 2, 833–837. [Google Scholar] [CrossRef]
- Thurston, J.G.; Greenwood, T.W.; Bending, M.R.; Connor, H.; Curwen, M.P. A controlled investigation into the effects of hyperbaric oxygen on mortality following acute myocardial infarction. Q. J. Med. 1973, 42, 751–770. [Google Scholar] [PubMed]
- Sterling, D.L.; Thornton, J.D.; Swafford, A.; Gottlieb, S.F.; Bishop, S.P.; Stanley, A.W.; Downey, J.M. Hyperbaric oxygen limits infarct size in ischemic rabbit myocardium in vivo. Circulation 1993, 88, 1931–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirsjo, A.; Lehr, H.A.; Nolte, D.; Haapaniemi, T.; Lewis, D.H.; Nylander, G.; Messmer, K. Hyperbaric oxygen treatment enhances the recovery of blood flow and functional capillary density in postischemic striated muscle. Circ. Shock 1993, 40, 9–13. [Google Scholar]
- Cason, B.A.; Hickey, R.F.; Shubayev, I. Therapeutic hyperoxia diminishes myocardial stunning. J. Card. Surg. 1994, 9, 459–464. [Google Scholar] [CrossRef]
- Bartorelli, A.L. Hyperoxemic perfusion for treatment of reperfusion microvascular ischemia in patients with myocardial infarction. Am. J. Cardiovasc. Drugs 2003, 3, 253–263. [Google Scholar] [CrossRef]
- Spears, J.R.; Wang, B.; Wu, X.; Prcevski, P.; Jiang, A.J.; Spanta, A.D.; Crilly, R.J.; Brereton, G.J. Aqueous oxygen: A highly O2-supersaturated infusate for regional correction of hypoxemia and production of hyperoxemia. Circulation 1997, 96, 4385–4391. [Google Scholar] [CrossRef]
- Spears, J.R.; Henney, C.; Prcevski, P.; Xu, R.; Li, L.; Brereton, G.J.; DiCarli, M.; Spanta, A.; Crilly, R.; Sulaiman, A.M.; et al. Aqueous oxygen hyperbaric reperfusion in a porcine model of myocardial infarction. J. Invasive Cardiol. 2002, 14, 160–166. [Google Scholar]
- Hofmann, R.; James, S.K.; Jernberg, T.; Lindahl, B.; Erlinge, D.; Witt, N.; Arefalk, G.; Frick, M.; Alfredsson, J.; Nilsson, L.; et al. Oxygen Therapy in Suspected Acute Myocardial Infarction. N. Engl. J. Med. 2017, 377, 1240–1249. [Google Scholar] [CrossRef]
- Stub, D.; Smith, K.; Bernard, S.; Nehme, Z.; Stephenson, M.; Bray, J.E.; Cameron, P.; Barger, B.; Ellims, A.H.; Taylor, A.J.; et al. Air Versus Oxygen in ST-Segment-Elevation Myocardial Infarction. Circulation 2015, 131, 2143–2150. [Google Scholar] [CrossRef] [Green Version]
- Kloner, R.A.; Creech, J.L.; Stone, G.W.; O’Neill, W.W.; Burkhoff, D.; Spears, J.R. Update on Cardioprotective Strategies for STEMI: Focus on Supersaturated Oxygen Delivery. JACC Basic Transl. Sci. 2021, 6, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.R.; Bartorelli, A.L.; Marcovitz, P.A.; Spears, R.; David, S.; Grinberg, I.; Qureshi, M.A.; Pepi, M.; Trabattoni, D.; Fabbiocchi, F.; et al. Initial experience with hyperoxemic reperfusion after primary angioplasty for acute myocardial infarction: Results of a pilot study utilizing intracoronary aqueous oxygen therapy. J. Am. Coll. Cardiol. 2002, 39, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Trabattoni, D.; Bartorelli, A.L.; Fabbiocchi, F.; Montorsi, P.; Ravagnani, P.; Pepi, M.; Celeste, F.; Maltagliati, A.; Marenzi, G.; O’Neill, W.W. Hyperoxemic perfusion of the left anterior descending coronary artery after primary angioplasty in anterior ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2006, 67, 859–865. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, W.W.; Martin, J.L.; Dixon, S.R.; Bartorelli, A.L.; Trabattoni, D.; Oemrawsingh, P.V.; Atsma, D.E.; Chang, M.; Marquardt, W.; Oh, J.K.; et al. Acute Myocardial Infarction with Hyperoxemic Therapy (AMIHOT): A prospective, randomized trial of intracoronary hyperoxemic reperfusion after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2007, 50, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Martin, J.L.; de Boer, M.J.; Margheri, M.; Bramucci, E.; Blankenship, J.C.; Metzger, D.C.; Gibbons, R.J.; Lindsay, B.S.; Weiner, B.H.; et al. Effect of supersaturated oxygen delivery on infarct size after percutaneous coronary intervention in acute myocardial infarction. Circ. Cardiovasc. Interv. 2009, 2, 366–375. [Google Scholar] [CrossRef] [Green Version]
- David, S.W.; Khan, Z.A.; Patel, N.C.; Metzger, D.C.; Wood, F.O.; Wasserman, H.S.; Lotfi, A.S.; Hanson, I.D.; Dixon, S.R.; LaLonde, T.A.; et al. Evaluation of intracoronary hyperoxemic oxygen therapy in acute anterior myocardial infarction: The IC-HOT study. Catheter. Cardiovasc. Interv. 2019, 93, 882–890. [Google Scholar] [CrossRef]
- Diekmann, J.; Koenig, T.; Zwadlo, C.; Derlin, T.; Neuser, J.; Thackeray, J.T.; Schafer, A.; Ross, T.L.; Bauersachs, J.; Bengel, F.M. Molecular Imaging Identifies Fibroblast Activation Beyond the Infarct Region After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1835–1837. [Google Scholar] [CrossRef]
- Thackeray, J.T.; Derlin, T.; Haghikia, A.; Napp, L.C.; Wang, Y.; Ross, T.L.; Schafer, A.; Tillmanns, J.; Wester, H.J.; Wollert, K.C.; et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc. Imaging 2015, 8, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Ries, W.; Torzewski, J.; Heigl, F.; Pfluecke, C.; Kelle, S.; Darius, H.; Ince, H.; Mitzner, S.; Nordbeck, P.; Butter, C.; et al. C-Reactive Protein Apheresis as Anti-inflammatory Therapy in Acute Myocardial Infarction: Results of the CAMI-1 Study. Front. Cardiovasc. Med. 2021, 8, 591714. [Google Scholar] [CrossRef]
- Watanabe, S.; Fish, K.; Kovacic, J.C.; Bikou, O.; Leonardson, L.; Nomoto, K.; Aguero, J.; Kapur, N.K.; Hajjar, R.J.; Ishikawa, K.; et al. Left ventricular unloading using an Impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. J. Am. Heart Assoc. 2018, 7, e006462. [Google Scholar] [CrossRef] [Green Version]
Principle to Reduce Infarct Size | Therapies Tested |
---|---|
Endogenours Cardioprotection | Several studies on post- or remote ischemic conditioning, small study on cyclosporine, negative multicentre study for PKC inhibitor, negative trials for intracoronary adenosine. |
Reduction of coronary thrombus burden | Mechanical removal of thrombus by routine aspiration, small-molecule glycoprotein IIb/IIIa inhibitors improving coronary flow with varying data on infarct size. Abciximab reducing transmurality of infarction, potentially reducing infarct size compared to thrombectomy or eptifibatide, less new-onset heart failure. |
Mechanical protection | Intra-aortic balloon pump without benefit on infarct size. |
Slowing metabolism | Intravenous and endovascular cooling indicating a potential in small series, but rapid cooling prior to reperfusion yet not successful in larger trials. |
Pharmacological | Agents tested include erythropoietin, glucose-insulin-potassium infusion, statins, several classes of antidiabetic drugs, fibrin-derived peptide, iron chelation, ranolazine, and mitochondria-targeted peptides. |
AMIHOT I | AMIHOT II | IC-HOT | |
---|---|---|---|
Year of publication | 2007 | 2009 | 2019 |
Patients (n) | 269 | 301 | 100 |
Location of MI | Anterior or large inferior | Anterior | Anterior |
Symptom onset | ≤24 h | ≤6 h | ≤6 h |
Reperfusion coronary artery | Proximal infarct- related artery | Proximal LAD | Left-main |
Duration of SSO2 | 90 min (87%), 60–89 min (4%), <60 min (8%) | ≥90 min (85%), 60–89 min (4%), <60 min (11%) | ≥60 min (94%), <60 min (6%) |
AMIHOT I | AMIHOT II | AMIHOT I+II | IC-HOT | ||||
---|---|---|---|---|---|---|---|
Control | SSO2 | Control | SSO2 | Control | SSO2 | SSO2 | |
Patients (n) | 135 | 134 | 79 | 222 | 124 | 258 | 100 |
30-day MACE | 7 (5.2%) | 9 (6.7%) | 3 (3.8%) * | 12 (5.4%) * | - | - | 1 (1.0%) |
Infarct size for anterior AMI | 23.0 (5.0; 37.0) | 9.0 (0; 30.0) | 26.5 (8.5; 44.0) | 20.0 (6.0; 37.0) | 25.0 (7.0; 42.0) | 18.5 (3.5; 34.5) | 19.4 (8.8; 28.9) |
Infarct size for LV-EF < 40% | 30 ± 26 | 20 ± 30 | 33.5 (17.5; 38.5) | 23.5 (7.5; 38.5) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäfer, A.; Akin, M.; Diekmann, J.; König, T. Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction. J. Clin. Med. 2022, 11, 1509. https://doi.org/10.3390/jcm11061509
Schäfer A, Akin M, Diekmann J, König T. Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction. Journal of Clinical Medicine. 2022; 11(6):1509. https://doi.org/10.3390/jcm11061509
Chicago/Turabian StyleSchäfer, Andreas, Muharrem Akin, Johanna Diekmann, and Tobias König. 2022. "Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction" Journal of Clinical Medicine 11, no. 6: 1509. https://doi.org/10.3390/jcm11061509
APA StyleSchäfer, A., Akin, M., Diekmann, J., & König, T. (2022). Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction. Journal of Clinical Medicine, 11(6), 1509. https://doi.org/10.3390/jcm11061509