Integrating Regular Exergaming Sessions in the ExerCube into a School Setting Increases Physical Fitness in Elementary School Children: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Baseline Assessment
2.2.1. Anthropometrics
2.2.2. Physical Fitness
2.2.3. Aerobic Fitness
2.3. Exergaming Intervention
2.4. Physical Education Classes
2.5. Statistics
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Heal. 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- Casonatto, J.; Fernandes, R.A.; Batista, M.B.; Cyrino, E.S.; Coelho-e-Silva, M.J.; de Arruda, M.; Vaz Ronque, E.R. Association between health-related physical fitness and body mass index status in children. J. Child Heal. Care 2016, 20, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Engelen, L.; Gale, J.; Chau, J.Y.; Hardy, L.L.; Mackey, M.; Johnson, N.; Shirley, D.; Bauman, A. Who is at risk of chronic disease? Associations between risk profiles of physical activity, sitting and cardio-metabolic disease in Australian adults. Aust. N. Z. J. Public Health 2017, 41, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Hands, B.; Larkin, D.; Parker, H.; Straker, L.; Perry, M. The relationship among physical activity, motor competence and health-related fitness in 14-year-old adolescents. Scand. J. Med. Sci. Sports 2009, 19, 655–663. [Google Scholar] [CrossRef]
- Okely, A.D.; Booth, M.L.; Patterson, J.W. Relationship of physical activity to fundamental movement skills among adolescents. Med. Sci. Sports Exerc. 2001, 33, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Bouffard, M.; Watkinson, J.E.; Thompson, L.P.; Causgrove Dunn, J.L.; Romanow, S.K.E. A test of the activity deficit hypothesis with children with movement difficulties. Adapt. Phys. Act. Q. 1996, 13, 61–73. [Google Scholar] [CrossRef]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Lee, J.E.; Zeng, N.; Stodden, D.; McDonough, D.J.; Liu, W.; Gao, Z. Bidirectional relationships among children’s perceived competence, motor skill competence, physical activity, and cardiorespiratory fitness across one school year. Biomed Res. Int. 2021, 2021, 1704947. [Google Scholar] [CrossRef]
- Hardy, L.L.; Barnett, L.; Espinel, P.; Okely, A.D. Thirteen-year trends in child and adolescent fundamental movement skills: 1997–2010. Med. Sci. Sports Exerc. 2013, 45, 1965–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, L.M.; Morgan, P.J.; van Beurden, E.; Beard, J.R. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: A longitudinal assessment. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, B.; McLennan, S.; Latimer, K.; Graham, D.; Gilmore, J.; Rush, E. Improvement of fundamental movement skills through support and mentorship of class room teachers. Obes. Res. Clin. Pract. 2013, 7, e230–e234. [Google Scholar] [CrossRef]
- Peng, W.; Lin, J.H.; Crouse, J. Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z. Fight fire with fire? Promoting physical activity and health through active video games. J. Sport Heal. Sci. 2017, 6, 1–3. [Google Scholar] [CrossRef]
- Ye, S.; Lee, J.; Stodden, D.; Gao, Z. Impact of Exergaming on Children’s Motor Skill Competence and Health-Related Fitness: A Quasi-Experimental Study. J. Clin. Med. 2018, 7, 261. [Google Scholar] [CrossRef] [Green Version]
- Kari, T. Promoting physical activity and fitness with exergames: Updated systematic review of systematic reviews. In Transforming Gaming and Computer Simulation Technologies across Industries; Dubbels, B., Ed.; IGI Global: Hershey, PA, USA, 2016; pp. 225–245. ISBN 9781522518181. [Google Scholar]
- Gao, Z.; Zeng, N.; Pope, Z.C.; Wang, R.; Yu, F. Effects of exergaming on motor skill competence, perceived competence, and physical activity in preschool children. J. Sport Heal. Sci. 2019, 8, 106–113. [Google Scholar] [CrossRef]
- Gao, Z.; Pope, Z.C.; Lee, J.E.; Quan, M. Effects of active video games on children’s psychosocial beliefs and school day energy expenditure. J. Clin. Med. 2019, 8, 1268. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zeng, N.; McDonough, D.J.; Su, X. A systematic review of active video games on youth’s body composition and physical activity. Int. J. Sports Med. 2020, 41, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Pope, Z.C.; Lee, J.E.; Gao, Z. Effects of school-based exergaming on urban children’s physical activity and cardiorespiratory fitness: A quasi-experimental study. Int. J. Environ. Res. Public Health 2019, 16, 4080. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Pope, Z.; Lee, J.E.; Stodden, D.; Roncesvalles, N.; Pasco, D.; Huang, C.C.; Feng, D. Impact of exergaming on young children’s school day energy expenditure and moderate-to-vigorous physical activity levels. J. Sport Heal. Sci. 2017, 6, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; Ridgers, N.D.; Reynolds, J.; Hanna, L.; Salmon, J. Playing Active Video Games may not develop movement skills: An intervention trial. Prev. Med. Rep. 2015, 2, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, E.J.; Tate, D.F.; Ward, D.S.; Bowling, J.M.; Ribisl, K.M.; Kalyararaman, S. Energy expenditure and enjoyment during video game play: Differences by game type. Med. Sci. Sports Exerc. 2011, 43, 1987–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch. Pediatrics Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Mahrer, A.; Rogers, K.; de Bruin, E.D.; Schättin, A. “HIIT” the ExerCube: Comparing the effectiveness of functional high-intensity interval training in conventional vs. exergame-based training. Front. Comput. Sci. 2020, 2, 33. [Google Scholar] [CrossRef]
- Ketelhut, S.; Röglin, L.; Kircher, E.; Martin-Niedecken, A.L.; Ketelhut, R.; Hottenrott, K.; Ketelhut, K. The New Way to Exercise? Evaluating an innovative heart-rate-controlled exergame. Int. J. Sports Med. 2021, 43, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Focke, A.; Strutzenberger, G.; Jekauc, D.; Worth, A.; Woll, A.; Schwameder, H. Effects of age, sex and activity level on counter-movement jump performance in children and adolescents. Eur. J. Sport Sci. 2013, 13, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Gabel, L.; Nettlefold, L.; Macdonald, H.; Race, D.; McKay, H. Estimation of peak muscle power from a countermovement vertical jump in children and adolescents. J. Strength Cond. Res. 2019, 33, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Woll, A.; Kurth, B.M.; Opper, E.; Worth, A.; Bös, K. The “Motorik-Modul” (MoMo): Physical fitness and physical activity in German children and adolescents. Eur. J. Pediatrics 2011, 170, 1129–1142. [Google Scholar] [CrossRef]
- Pyne, D.B.; Gardner, A.S.; Sheehan, K.; Hopkins, W.G. Fitness testing and career progression in AFL football. J. Sci. Med. Sport 2005, 8, 321–332. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Rogers, K.; Vidal, L.T.; Mekler, E.D.; Segura, E.M. Exercube vs. Personal trainer: Evaluating a holistic, immersive, and adaptive fitness game setup. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019; pp. 1–15. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice; Pearson: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Smits-Engelsman, B.C.M.; Jelsma, L.D.; Ferguson, G.D. The effect of exergames on functional strength, anaerobic fitness, balance and agility in children with and without motor coordination difficulties living in low-income communities. Hum. Mov. Sci. 2017, 55, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, K.; Place, M. A Randomised control trial of the impact of a computer-based activity programme upon the fitness of children with autism. Autism Res. Treat. 2014, 2014, 419653. [Google Scholar] [CrossRef] [Green Version]
- McGann, J.; Issartel, J.; Hederman, L.; Conlan, O. Hop.Skip.Jump.Games: The effect of “principled” exergameplay on children’s locomotor skill acquisition. Br. J. Educ. Technol. 2020, 51, 798–816. [Google Scholar] [CrossRef]
- Vernadakis, N.; Papastergiou, M.; Zetou, E.; Antoniou, P. The impact of an exergame-based intervention on children’s fundamental motor skills. Comput. Educ. 2015, 83, 90–102. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, N.; McDonough, D.J.; Gao, Z. Effect of active video games on healthy children’s fundamental motor skills and physical fitness: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 8264. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Bogdanis, G.C. The effects of a five-month lockdown due to COVID-19 on physical fitness parameters in adolescent students: A comparison between cohorts. Int. J. Environ. Res. Public Health 2022, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Kircher, E.; Ketelhut, S.R.; Wehlan, E.; Ketelhut, K. Effectiveness of multi-activity, high-intensity interval training in school-aged children. Int. J. Sports Med. 2020, 41, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Ketelhut, S.R.; Ketelhut, K. School-based exercise intervention improves blood pressure and parameters of arterial stiffness in children: A randomized controlled trial. Pediatr. Exerc. Sci. 2021, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.G.; Chaput, J.P.; McFarlane, A.; Colley, R.C.; Thivel, D.; Biddle, S.J.H.; Maddison, R.; Leatherdale, S.T.; Tremblay, M.S. Active video games and health indicators in children and youth: A systematic review. PLoS ONE 2013, 8, e65351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Hannan, P.; Xiang, P.; Stodden, D.F.; Valdez, V.E. Video game-based exercise, Latino children’s physical health, and academic achievement. Am. J. Prev. Med. 2013, 44, S240–S246. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, G.D.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B.C.M. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor task training and nintendo wii fit training. Res. Dev. Disabil. 2013, 34, 2449–2461. [Google Scholar] [CrossRef]
- Staiano, A.E.; Beyl, R.A.; Guan, W.; Hendrick, C.A.; Hsia, D.S.; Newton, R.L. Home-based exergaming among children with overweight and obesity: A randomized clinical trial. Pediatric Obes. 2018, 13, 724–733. [Google Scholar] [CrossRef]
- Maddison, R.; Mhurchu, C.N.; Jull, A.; Prapavessis, H.; Rodgers, A. Energy expended playing video console games: An opportunity to increase children’s physical activity? Ralph. Pediatric Exerc. Sci. 2007, 19, 334–343. [Google Scholar] [CrossRef]
- Graves, L.E.F.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef]
- Norris, E.; Hamer, M.; Stamatakis, E. Active video games in schools and effects on physical activity and health: A systematic review. J. Pediatrics 2016, 172, 40–46.e5. [Google Scholar] [CrossRef]
- Van De Laar, R.J.; Ferreira, I.; van Mechelen, W.; Prins, M.H.; Twisk, J.W.; Stehouwer, C.D. Lifetime vigorous but not light-to-moderate habitual physical activity impacts favorably on carotid stiffness in young adults: The amsterdam growth and health longitudinal study. Hypertension 2010, 55, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Schnohr, P.; Marott, J.L.; Jensen, J.S.; Jensen, G.B. Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: The Copenhagen City Heart Study. Eur. J. Prev. Cardiol. 2012, 19, 73–80. [Google Scholar] [CrossRef]
- Baranowski, T.; Maddison, R.; Maloney, A.; Medina, E.; Simons, M. Building a better mousetrap (exergame) to increase youth physical activity. Games Health J. 2014, 3, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, K.A.; Yen, S.; Wlasiuk, L.; Newman, T.B.; Lustig, R. Feasibility of a dance videogame to promote weight loss among overweight children and adolescents. Arch. Pediatrics Adolesc Med. 2007, 161, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Finco, M.D.; Reategui, E.; Zaro, M.A.; Sheehan, D.D.; Katz, L. Exergaming as an alternative for students unmotivated to participate in regular physical education classes. Int. J. Game-Based Learn. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, D.; Katz, L.; Kooiman, B. Exergaming and physical education: A qualitative examination from the teachers’ perspective. J. Case Stud. Educ. 2015, 4, 1–14. [Google Scholar]
- Goodway, J.D.; Branta, C.F. Influence of a motor skill intervention on fundamental motor skill development of disadvantaged preschool children. Res. Q. Exerc. Sport 2003, 74, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Castelli, D.M.; Valley, J.A. Chapter 3: The relationship of physical fitness and motor competence to physical activity. J. Teach. Phys. Educ. 2007, 26, 358–374. [Google Scholar] [CrossRef]
- Wrotniak, B.H.; Epstein, L.H.; Dorn, J.M.; Jones, K.E.; Kondilis, V.A. The relationship between motor proficiency and physical activity in children. Pediatrics 2006, 118, e1758–e1765. [Google Scholar] [CrossRef] [PubMed]
- Boreham, C.; Riddoch, C. The physical activity, fitness and health of children. J. Sports Sci. 2001, 19, 915–929. [Google Scholar] [CrossRef]
- Wedderkopp, N.; Froberg, K.; Hansen, H.S.; Riddoch, C.; Andersen, L.B. Cardiovascular risk factors cluster in children and adolescents with low physical fitness: The European Youth Heart Study (EYHS). Pediatric Exerc. Sci. 2003, 15, 419–427. [Google Scholar] [CrossRef]
- Gao, Z.; Podlog, L.; Huang, C. Associations among children’s situational motivation, physical activity participation, and enjoyment in an active dance video game. J. Sport Heal. Sci. 2013, 2, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.R.; Bredin, S.S.D.; Horita, L.T.L.; Zbogar, D.; Scott, J.M.; Esch, B.T.A.; Rhodes, R.E. The health benefits of interactive video game exercise. Appl. Physiol. Nutr. Metab. 2007, 32, 655–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, M.J.; Simmers, C.S. Exergaming: Virtual inspiration, real perspiration. Young Consum. 2009, 10, 35–45. [Google Scholar] [CrossRef]
- Dishman, R.K.; Motl, R.W.; Saunders, R.; Felton, G.; Ward, D.S.; Dowda, M.; Pate, R.R. Enjoyment mediates effects of a school-based physical-activity intervention. Med. Sci. Sports Exerc. 2005, 37, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Röglin, L.; Ketelhut, S.; Ketelhut, K.; Kircher, E.; Ketelhut, R.G.; Martin-Niedecken, A.L.; Hottenrott, K.; Stoll, O. Adaptive high-intensity exergaming: The more enjoyable alternative to conventional training approaches despite working harder. Games Health J. 2021, 10, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Wade, T.J.; Corna, L.; Flouris, A. Developmental coordination disorder, generalized self-efficacy toward physical activity, and participation in organized and free play activities. J. Pediatrics 2005, 147, 515–520. [Google Scholar] [CrossRef]
- Carroll, B.; Loumidis, J. Children’s perceived competence and enjoyment in physical education and physical activity outside school. Eur. Phys. Educ. Rev. 2001, 7, 24–43. [Google Scholar] [CrossRef]
- Barnett, L.M.; Hinkley, T.; Okely, A.D.; Hesketh, K.; Salmon, J. Use of electronic games by young children and fundamental movement skills? Percept. Mot. Skills 2012, 114, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
Items | Total (n = 34) | IG (n = 18) | CG (n = 16) | |
---|---|---|---|---|
M ± SD | M ± SD | M ± SD | p-Value | |
Boys/Girls (n) | 17/17 | 8/10 | 9/7 | |
Age (yrs) | 10.5 ± 0.7 | 10.5 ± 0.7 | 10.5 ± 0.6 | 0.894 |
Height (cm) | 147.3 ± 7.6 | 147.9 ± 8.7 | 146.5 ± 6.3 | 0.591 |
Body mass (kg) | 45.3 ± 12.4 | 48.2 ± 12.4 | 42.1 ± 11.9 | 0.154 |
Body Mass Index (kg·m−2) | 20.6 ± 4.2 | 21.7 ± 4.0 | 19.3 ± 4.1 | 0.094 |
Waist-to-height ratio | 0.46 ± 0.06 | 0.47 ± 0.05 | 0.44 ± 0.07 | 0.285 |
Outcome | IG (n = 18) | CG (n = 16) | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | p-Values | η2 | |
BMI (kg·m−2) | 21.7 ± 4.0 | 21.6 ± 4.2 | 19.3 ± 4.1 | 19.7 ± 4.1 | n.s. | 0.063 |
WHtR | 0.47 ± 0.05 | 0.46 ± 0.05 | 0.44 ± 0.07 | 0.45 ± 0.07 | n.s. | 0.114 |
CMJ (cm) | 18.6 ± 5.4 | 21.1 ± 5.2 *** | 20.5 ± 5.2 | 18.6 ± 3.6 ** | <0.001 | 0.403 |
ST (s) | 4.12 ± 0.45 | 4.08 ± 0.47 | 4.06 ± 0.35 | 4.18 ± 0.32 | 0.020 | 0.157 |
SRT (m) | 450.0 ± 228.0 | 537.8 ± 210.5 * | 498.7 ± 208.3 | 469.3 ± 162.3 | 0.046 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketelhut, S.; Röglin, L.; Martin-Niedecken, A.L.; Nigg, C.R.; Ketelhut, K. Integrating Regular Exergaming Sessions in the ExerCube into a School Setting Increases Physical Fitness in Elementary School Children: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 1570. https://doi.org/10.3390/jcm11061570
Ketelhut S, Röglin L, Martin-Niedecken AL, Nigg CR, Ketelhut K. Integrating Regular Exergaming Sessions in the ExerCube into a School Setting Increases Physical Fitness in Elementary School Children: A Randomized Controlled Trial. Journal of Clinical Medicine. 2022; 11(6):1570. https://doi.org/10.3390/jcm11061570
Chicago/Turabian StyleKetelhut, Sascha, Lisa Röglin, Anna Lisa Martin-Niedecken, Claudio R. Nigg, and Kerstin Ketelhut. 2022. "Integrating Regular Exergaming Sessions in the ExerCube into a School Setting Increases Physical Fitness in Elementary School Children: A Randomized Controlled Trial" Journal of Clinical Medicine 11, no. 6: 1570. https://doi.org/10.3390/jcm11061570
APA StyleKetelhut, S., Röglin, L., Martin-Niedecken, A. L., Nigg, C. R., & Ketelhut, K. (2022). Integrating Regular Exergaming Sessions in the ExerCube into a School Setting Increases Physical Fitness in Elementary School Children: A Randomized Controlled Trial. Journal of Clinical Medicine, 11(6), 1570. https://doi.org/10.3390/jcm11061570