Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- O’Sullivan, J.M.; Mc Gonagle, D.; Ward, S.E.; Preston, R.J.S.; O’Donnell, J.S. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020, 7, e553–e555. [Google Scholar] [CrossRef]
- Pons, S.; Fodil, S.; Azoulay, E.; Zafrani, L. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care 2020, 24, 353. [Google Scholar] [CrossRef]
- Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2020, 113, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Hoppensteadt, D.A.; Fareed, J. Pharmacological profile of sulodexide. Int. Angiol. A J. Int. Union Angiol. 2014, 33, 229–235. [Google Scholar]
- Li, T.; Liu, X.; Zhao, Z.; Ni, L.; Liu, C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget 2017, 8, 91350. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, F. Pharmacological actions of sulodexide. Semin. Thromb. Hemost. 1998, 24, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Guizzardi, S.; Calanni, F.; Marchi, E.; Babbini, M. Antithrombotic and thrombolytic activity of sulodexide in rats. Int. J. Clin. Lab. Res. 1992, 22, 179–184. [Google Scholar] [CrossRef]
- Buryachkovskaya, L.; Lomakin, N.; Melkumyants, A.; Docenko, J.; Serebruany, V. Tocilizumab, blood cells, and mild COVID-19: Delayed vascular protection by interleukin blockade? Eur. Heart J.-Cardiovasc. Pharmacother. 2021, 7, e81–e82. [Google Scholar] [CrossRef] [PubMed]
- Buryachkovskaya, L.; Lomakin, N.; Melkumyants, A.; Docenko, J.; Serebruany, V. Impact of olokizumab on platelets, leukocytes and erythrocytes during mild COVID-19. Rev. Cardiovasc. Med. 2021, 22, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Melkumyants, A.; Buryachkovskaya, L.; Lomakin, N.; Antonova, O.; Serebruany, V. Mild COVID-19 and Impaired Cell-Endothelial Crosstalk: Considering Long-Term Antithrombotics and Vascular Protection? Thromb. Haemost. 2021, 122, 123–130, Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Dignat-George, F.; Sampol, J. Circulating endothelial cells in vascular disorders: New insights into an old concept. Eur. J. Haematol. 2000, 65, 215–220. [Google Scholar] [CrossRef]
- Furchgott, R.F.; Zawadszki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehmel, M.; Haverich, A.; Welte, T.; Laenger, F.; Jonigk, D. Pulmonary vascular endothelialitis, thrombosis and angiogenesis in COVID-19. N. Eng. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Weinbaum, S.; Tarbell, J.M.; Damiano, E.R. The structure and function of the endothelial glycocalyx layer. Ann. Rev. Biomed. Engl. 2007, 9, 121–167. [Google Scholar] [CrossRef] [PubMed]
- Alphonsus, C.S.; Rodseth, R.N. The endothelial glycocalyx: A review of the vascular barrier. Anaesthesia 2014, 69, 777–784. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, D.; Song, J.W.; Zullo, J.; Lipphardt, M.; Coneh-Gould, L.; Goligorsky, M.S. Endothelial cell dysfunction and glycocalyx-A vicious circle. Matrix Biol. 2018, 71–72, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Frati-Munari, A.C. Medical significance of endothelial glycocalyx. Arch. Cardiol. Mex. 2013, 83, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Ermishkin, V.V.; Lukoshkova, E.V.; Melkumyants, A.M. Malonyldialdehyde-and methylglyoxal-induced suppression of endothelium-mediated dilation of rat iliac artery in response to elevation of blood flow. J. Evol. Biochem. Physiol. 2021, 57, 792–802. [Google Scholar] [CrossRef]
- Becker, B.F.; Jacob, M.; Leipert, S.; Salmon, A.H.; Chappell, D. Degradation of the endothelial glycocalyx in clinical settings: Searching for the sheddases. Brit. J. Clin. Pharmacol. 2015, 80, 389–402. [Google Scholar] [CrossRef]
- Henrich, M.; Gruss, M.; Weigand, M.A. Sepsis-induced degradation of endothelial glycocalyx. Sci. World J. 2010, 10, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka-Tojo, M. Vascular endothelial glycocalyx damage in COVID-19. Int. J. Mol. Sci. 2020, 21, 9712. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Yoshida, S.; Hara, A.; Ogura, S.; Tomita, H. Vascular endothelial injury exacerbates coronavirus disease 2019: The role of endothelial glycocalyx protection. Microcirculation 2021, 28, e12654. [Google Scholar] [CrossRef]
- Harenberg, J. Review of pharmacodynamics, pharmacokinetics, and therapeutic properties of sulodexide. Med. Res. Rev. 1998, 18, 1–20. [Google Scholar] [CrossRef]
- Mattana, P.; Mannello, F.; Ferrari, P.; Agus, G.B. Vascular pathologies and inflammation: The anti-inflammatory properties of sulodexide. J. Vasc. Endovasc. Surg. 2012, 19, 1–7. [Google Scholar]
- Mannello, F.; Ligi, D.; Canale, M.; Raffetto, J.D. Sulodexide down-regulates the release of cytokines, chemokines, and leukocyte colony stimulating factors from human macrophages: Role of glycosaminoglycans in inflammatory pathways of chronic venous disease. Curr. Vasc. Pharmacol. 2014, 12, 173–185. [Google Scholar] [CrossRef]
- Munari, A.C.F.; Cervera, L.F.F. Inflammation, metalloproteinases, chronic venous disease and sulodexide. J. Cardiovasc. Dis. Diag. 2015, 3, 2–7. [Google Scholar] [CrossRef]
- Rajtar, G.; Marchi, E.; De Gaetano, G.; Cerletti, C. Effects of glycosaminoglycans on platelet and leukocyte function: Role of N-sulfation. Biochem. Pharmacol. 1993, 46, 958–960. [Google Scholar] [CrossRef]
- Adiguzel, C.; Iqbal, O.; Hoppensteadt, D.; Jeske, W.; Cunanan, J.; Litinas, E.; Zhu, H.; Walenga, J.M.; Fareed, J. Comparative anticoagulant and platelet modulatory effects of enoxaparin and sulodexide. Clin. Appl. Thromb. Hemost. 2009, 15, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikdeli, B.; Chatterjee, S.; Kirtane, A.J.; Parikh, S.A.; Andreozzi, G.M.; Desai, N.R.; Francese, D.P.; Gibson, C.M.; Piazza, G.; Goldhaber, S.Z.; et al. Sulodexide versus control and the risk of thrombotic and hemorrhagic events: Meta-analysis of randomized trials. Semin. Thromb. Hemost. 2020, 46, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, G.; Integlia, D.; Raffetto, J.; Palareti, G. Comparative efficacy and safety of sulodexide and other extended anticoagulation treatments for prevention of recurrent venous thromboembolism: A Bayesian network meta-analysis. TH Open. 2020, 4, e80–e93. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ochoa, A.J.; Raffetto, J.D.; Hernández, A.G.; Zavala, N.; Gutiérrez, O.; Vargas, A.; Loustaunau, J. Sulodexide in the treatment of patients with early stages of COVID-19: A randomized controlled trial. Thromb. Haemost. 2021, 121, 944–954. [Google Scholar] [CrossRef] [PubMed]
Parameter | Controls (n = 14) | Sulodexide (n = 14) | p-Value for Factor Homogeneity Cross Samples |
---|---|---|---|
men/women, n (%) | 7 (50%)/7 (50%) | 7 (50%)/7 (50%) | - |
Age (years) | 47.4 ± 3.5 (32–71) | 59.2 ± 2.7 (35–74) | 0.02 |
BMI (kg/m2) | 25.3 ± 2.4 (21.8–31.4) | 24.7 ± 2.9 (22.4–32.9) | 0.28 |
Length of stay in hospital (days) | 11.7 ± 1.8 (9–20) | 13.8 ± 1.2 (10–19) | 0.18 |
Obesity | 5 (35.7%) | 6 (42.8%) | 0.49 |
Smokers | 4 (28.6%) | 0 | 0.04 |
Hypertension | 4 (28.6%) | 10 (50%) | 0.02 |
Diabetes | 0 | 2 (14.3%) | 0.12 |
Coronary artery disease | 1 (7.1%) | 3 (21.4%) | 0.05 |
Heart failure | 1 (7.1%) | 1 (7.1%) | 0.56 |
Cancer | 2 (14.3%) | 6 (42.8%) | 0.02 |
Chronic kidney disease | 0 | 1 (7.1%) | 0.33 |
COPD | 0 | 0 | – |
Variable | Controls (n = 14) | p | Sulodexide (n = 14) | p | Experiment/Control Difference on Discharge | ||
---|---|---|---|---|---|---|---|
On Admission | After 10 Days of Treatment | On Admission | After 10 Days of Treatment | ||||
Heart rate (min−1) | 87.5 ± 3.5 | 72.2 ± 3.8 | 0.01 | 89.2 ± 3.7 | 78.3 ± 2.9 | 0.02 | ns |
Respiratory rate (min−1) | 17.0 ± 0.7 | 16.4 ± 0.3 | 0.07 | 18.8 ± 0.4 | 17.4 ± 0.4 | 0.04 | ns |
Temperature (°C) | 37.5 ± 0.2 | 36.5 ± 0.2 | 0.001 | 37.4 ± 0.2 | 36.4 ± 0.1 | 0.002 | ns |
SpO2 (%) | 97.8 ± 0.3 | 98.3 ± 0.1 | 0.53 | 96.7 ± 0.3 | 97.8 ± 0.4 | 0.44 | ns |
Hemoglobin (g/L) | 138.6 ± 5.2 | 136.7 ± 7.3 | 0.19 | 135.9 ± 5.8 | 131.0 ± 7.8 | 0.11 | ns |
Erythrocytes (1012/L) | 4.1 ± 0.6 | 4.3 ± 0.5 | 0.38 | 4.4 ± 0.6 | 4.4 ± 0.4 | 0.58 | ns |
Leukocytes (109/L) | 5.7 ± 0.6 | 5.9 ± 0.9 | 0.34 | 6.4 ± 0.7 | 6.2 ± 0.6 | 0.87 | ns |
Platelets (109/L) | 212.9 ± 10.7 | 251.0 ± 27.2 | 0.04 | 196.6 ±16.6 | 244.6 ± 27.3 | 0.05 | ns |
Lymphocytes (%) | 25.6 ± 2.6 | 33.5 ± 2.8 | 0.01 | 24.2 ± 2.5 | 27.4 ± 1.8 | 0.07 | ns |
Neutrophils (%) | 61.1 ± 2.7 | 48.1 ± 3.4 | 0.001 | 66.4 ± 2.9 | 60.6 ± 3.9 | 0.12 | 0.03 |
ESR (mm/h) | 26.8 ± 7.8 | 26.5 ± 4.9 | 0.68 | 34.9 ± 8.2 | 32.3 ± 6.3 | 0.72 | ns |
CRP (mg/L) | 17.7 ± 7.6 | 4.4 ± 2.4 | 0.05 | 19.1 ± 2.7 | 1.4 ± 1.2 | 0.03 | 0.04 |
Creatinine (mg/dL) | 90.0 ± 2.0 | 87.4 ± 2.9 | 0.28 | 92.6 ± 6.1 | 101.6 ± 12.7 | 0.12 | ns |
D-dimer (ng/L) | 291.2 ± 38.7 | 219.4 ± 42.8 | 0.08 | 313.4 ± 42.3 | 168.9 ± 37.4 | 0.05 | 0.06 |
Fibrinogen (g/L) | 4.9 ± 0.3 | 4.0 ± 0.5 | 0.14 | 4.4 ± 0.2 | 4.2 ± 0.3 | 0.59 | ns |
Ferritin (µg/L) | 244.9 ± 57.4 | 327.8 ± 59.7 | 0.11 | 270.7 ± 54.7 | 409.1 ± 45.3 | 0.08 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melkumyants, A.; Buryachkovskaya, L.; Lomakin, N.; Antonova, O.; Docenko, J.; Ermishkin, V.; Serebruany, V. Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19. J. Clin. Med. 2022, 11, 1995. https://doi.org/10.3390/jcm11071995
Melkumyants A, Buryachkovskaya L, Lomakin N, Antonova O, Docenko J, Ermishkin V, Serebruany V. Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19. Journal of Clinical Medicine. 2022; 11(7):1995. https://doi.org/10.3390/jcm11071995
Chicago/Turabian StyleMelkumyants, Arthur, Lyudmila Buryachkovskaya, Nikita Lomakin, Olga Antonova, Julia Docenko, Vladimir Ermishkin, and Victor Serebruany. 2022. "Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19" Journal of Clinical Medicine 11, no. 7: 1995. https://doi.org/10.3390/jcm11071995
APA StyleMelkumyants, A., Buryachkovskaya, L., Lomakin, N., Antonova, O., Docenko, J., Ermishkin, V., & Serebruany, V. (2022). Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19. Journal of Clinical Medicine, 11(7), 1995. https://doi.org/10.3390/jcm11071995