Comparing the Time-Dependent Evolution of Microcirculation in Gracilis vs. ALT Flaps Using Laser-Doppler Flowmetry and Tissue-Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Assessments and Outcomes
2.4. Data Extraction and Statistical Analysis
3. Results
3.1. Microvascular Flow
3.2. Hemoglobin Oxygenation (SO2)
3.3. Relative Amount of Hemoglobin (rHb)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smit, J.M.; Acosta, R.; Zeebregts, C.J.; Liss, A.G.; Anniko, M.; Hartman, E.H.M. Early reintervention of compromised free flaps improves success rate. Microsurgery 2007, 27, 612–616. [Google Scholar] [CrossRef]
- Rothenberger, J.; Amr, A.; Schaller, H.-E.; Rahmanian-Schwarz, A. Evaluation of a non-invasive monitoring method for free flap breast reconstruction using laser doppler flowmetrie and tissue spectrophotometry. Microsurgery 2013, 33, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Hölzle, F.; Loeffelbein, D.J.; Nolte, D.; Wolff, K.-D. Free flap monitoring using simultaneous non-invasive laser Doppler flowmetry and tissue spectrophotometry. J. Cranio-Maxillofac. Surg. 2006, 34, 25–33. [Google Scholar] [CrossRef]
- Hölzle, F.; Rau, A.; Loeffelbein, D.; Mücke, T.; Kesting, M.; Wolff, K.-D. Results of monitoring fasciocutaneous, myocutaneous, osteocutaneous and perforator flaps: 4-year experience with 166 cases. Int. J. Oral Maxillofac. Surg. 2010, 39, 21–28. [Google Scholar] [CrossRef]
- Moellhoff, N.; Gernert, C.; Frank, K.; Giunta, R.E.; Ehrl, D. The 72-Hour Microcirculation Dynamics in Viable Free Flap Reconstructions. J. Reconstr. Microsurg. 2022. [Google Scholar] [CrossRef]
- Cai, Z.G.; Zhang, J.; Zhang, J.G.; Zhao, F.Y.; Yu, G.Y.; Li, Y.; Ding, H.S. Evaluation of near infrared spectroscopy in monitoring postoperative regional tissue oxygen saturation for fibular flaps. J. Plast. Reconstr. Aesthetic Surg. 2008, 61, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, F.; Suominen, S.; Tukiainen, E.; Kuokkanen, H.; Suominen, E.; Vuola, J.; Asko-Seljavaara, S. Evaluation of Blood Flow in Free Microvascular Flaps. J. Reconstr. Microsurg. 2001, 17, 163–168. [Google Scholar] [CrossRef]
- Begue, T.; Masquelet, A.C.; Nordin, J.Y. Anatomical basis of the anterolateral thigh flap (25.05.1990). Surg. Radiol. Anat. 1990, 12, 311–313. [Google Scholar] [CrossRef]
- Yamada, S.; Okamoto, H.; Sekiya, I.; Wada, I.; Kobayashi, M.; Goto, H.; Mizutani, J.; Nozaki, M.; Hayashi, K.; Murakami, S.; et al. Anatomical basis of distally based anterolateral thigh flap. J. Plast. Surg. Hand Surg. 2013, 48, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Nie, K.; Jin, W.; Li, H.; Li, S.; Wu, B.; Wang, D.; Wei, Z. Is the Oblique Branch a Preferable Vascular Pedicle for Anterolateral Thigh Free Flaps? J. Reconstr. Microsurg. 2018, 34, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, F.; Salmi, A.; Ahovuo, J.; Tukiainen, E.; Asko-Seljavaara, S. Postoperative changes in blood flow in free muscle flaps: A prospective study. Microsurgery 1999, 19, 196–199. [Google Scholar] [CrossRef]
- Mücke, T.; Rau, A.; Merezas, A.; Kanatas, A.; Mitchell, D.; Wagenpfeil, S.; Wolff, K.-D.; Steiner, T. Changes of perfusion of microvascular free flaps in the head and neck: A prospective clinical study. Br. J. Oral Maxillofac. Surg. 2014, 52, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Figus, A.; Ramakrishnan, V.; Rubino, C. Hemodynamic Changes in the Microcirculation of DIEP Flaps. Ann. Plast. Surg. 2008, 60, 644–648. [Google Scholar] [CrossRef]
- Mathes, S.J.; Nahai, F. Classification of the vascular anatomy of muscles: Experimental and clinical correlation. Plast. Reconstr. Surg. 1981, 67, 177–187. [Google Scholar] [CrossRef]
- Mathes, S.J.; Nahai, F. Reconstructive Surgery: Principles, Anatomy & Technique; Churchill Livingstone: London, UK, 1997. [Google Scholar]
- Available online: http://www.lea.de/eng/indexe.html (accessed on 20 February 2022).
- Siemionow, M.; Andreasen, T.; Chick, L.; Lister, G. Effect of muscle flap denervation on flow hemodynamics: A new model for chronic in vivo studies. Microsurgery 1994, 15, 891–894. [Google Scholar] [CrossRef]
- Chen, L.-E.; Seaber, A.V.; Bossen, E.; Urbaniak, J.R. The effect of acute denervation on the microcirculation of skeletal muscle: Rat cremaster model. J. Orthop. Res. 1991, 9, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Rosenberry, R.; Chung, S.; Nelson, M.D. Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with ‘One Stop Shop’ Near-infrared Spectroscopy. J. Vis. Exp. 2018, 20, e57317. [Google Scholar] [CrossRef]
- Nasir, S.; Baykal, B.; Altuntaş, S.; Aydin, M.A. Hemodynamic Differences in Blood Flow between Free Skin and Muscles Flaps: Prospective Study. J. Reconstr. Microsurg. 2009, 25, 355–360. [Google Scholar] [CrossRef]
- Hanasono, M.; Ogunleye, O.; Yang, J.; Hartley, C.; Miller, M. Changes in Blood Velocity Following Microvascular Free Tissue Transfer. J. Reconstr. Microsurg. 2009, 25, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, S.U.; Schmidt, Y.; Karaxha, G.; Iblher, N.; Penna, V.; Torio-Padron, N.; Stark, G.B.; Bannasch, H. Monitoring molecular changes induced by ischemia/reperfusion in human free muscle flap tissue samples. Ann. Plast. Surg. 2012, 68, 202–208. [Google Scholar] [CrossRef]
- Taylor, G.I.; Palmer, J.H. The vascular territories (angiosomes) of the body: Experimental study and clinical applications. Br. J. Plast. Surg. 1987, 40, 113–141. [Google Scholar] [CrossRef]
- Miyamoto, S.; Minabe, T.; Harii, K. Effect of Recipient Arterial Blood Inflow on Free Flap Survival Area. Plast. Reconstr. Surg. 2008, 121, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Rozen, W.M.; Ashton, M.W.; Le Roux, C.M.; Pan, W.-R.; Corlett, R.J. The perforator angiosome: A new concept in the design of deep inferior epigastric artery perforator flaps for breast reconstruction. Microsurgery 2010, 30, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.C.; Taylor, G.I. The Delay Phenomenon: The Story Unfolds. Plast. Reconstr. Surg. 1999, 104, 2079–2091. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian-Schwarz, A.; Schiefer, J.L.; Amr, A.; Rothenberger, J.; Schaller, H.-E.; Hirt, B. Thermoregulatory response of anterolateral thigh flap compared with latissimus dorsi myocutaneous flap: An evaluation of flaps cutaneous flow and velocity due to thermal stress. Microsurgery 2011, 31, 650–654. [Google Scholar] [CrossRef]
- Oksman, D.; de Almeida, O.M.; de Arruda, R.G.; de Almeida, M.L.M.; Do Carmo, F.S. Comparative study between fasciocutaneous and myocutaneous flaps in the surgical treatment of pressure ulcers of the sacral region. JPRAS Open 2018, 16, 50–60. [Google Scholar] [CrossRef]
- Wolff, K.D.; Stiller, D. Ischemia tolerance of free-muscle flaps: An NMR-spectroscopic study in the rat. Plast. Reconstr. Surg. 1993, 91, 485–491. [Google Scholar] [CrossRef]
- Wang, W.; Ong, A.; Vincent, A.G.; Shokri, T.; Scott, B.; Ducic, Y. Flap Failure and Salvage in Head and Neck Reconstruction. Semin. Plast. Surg. 2020, 34, 314–320. [Google Scholar] [CrossRef]
- Chim, H.; Zoghbi, Y.; Nugent, A.G.; Kassira, W.; Askari, M.; Salgado, C.J. Immediate application of vacuum assisted closure dressing over free muscle flaps in the lower extremity does not compromise flap survival and results in decreased flap thickness. Arch. Plast. Surg. 2018, 45, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, Y.; Takahara, T.; Ota, Y.; Aoki, T.; Yamazaki, H.; Otsuru, M.; Takahashi, M.; Aoyama, K.-I.; Kaneko, A.; Kawada, S.; et al. MRI analysis of chronological changes in free-flap volume in head and neck reconstruction by volumetry. Tokai J. Exp. Clin. Med. 2014, 39, 44–50. [Google Scholar]
- Eisenhardt, S.U.; Schmidt, Y.; Thiele, J.R.; Iblher, N.; Penna, V.; Torio-Padron, N.; Stark, G.B.; Bannasch, H. Negative pressure wound therapy reduces the ischaemia/reperfusion-associated inflammatory response in free muscle flaps. J. Plast. Reconstr. Aesthet. Surg. 2012, 65, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Eisenhardt, S.U.; Momeni, A.; Iblher, N.; Penna, V.; Schmidt, Y.; Torio, N.; Stark, G.B.; Bannasch, H. The use of the vacuum-assisted closure in microsurgical reconstruction revisited: Application in the reconstruction of the posttraumatic lower extremity. J. Reconstr. Microsurg. 2010, 26, 615–622. [Google Scholar] [CrossRef] [PubMed]
Time Post-Anastomosis (Hours) | Gracilis Muscle | ALT | p-Value | ||
---|---|---|---|---|---|
Mean Flow (A.U.) | Standard Deviation | Mean Flow (A.U.) | Standard Deviation | ||
1 | 86.31 | 24.98 | 106.67 | 50.71 | 0.217 |
3 | 109.3 | 41.93 | 116.12 | 39.92 | 0.583 |
6 | 113.36 | 38.85 | 118.65 | 45.86 | 0.644 |
12 | 120.74 | 40.38 | 132.92 | 44.70 | 0.275 |
18 | 139.24 | 41.02 | 134.70 | 36.98 | 0.672 |
24 | 137.34 | 39.39 | 132.22 | 41.60 | 0.667 |
36 | 142.35 | 36.74 | 132.75 | 38.33 | 0.365 |
48 | 138.41 | 32.11 | 149.84 | 58.40 | 0.398 |
60 | 139.88 | 38.06 | 138.22 | 50.70 | 0.904 |
72 | 145.77 | 43.26 | 140.41 | 48.64 | 0.756 |
Time Post-Anastomosis (hours) | Gracilis Muscle | ALT | p-Value | ||
---|---|---|---|---|---|
Mean SO2 (A.U.) | Standard Deviation | Mean SO2 (A.U.) | Standard Deviation | ||
1 | 52.69 | 25.70 | 45.83 | 35.47 | 0.62 |
3 | 58.73 | 16.62 | 41.41 | 27.56 | 0.008 |
6 | 47.91 | 21.34 | 35.26 | 27.03 | 0.056 |
12 | 56.00 | 17.05 | 33.36 | 24.52 | <0.001 |
18 | 60.32 | 18.86 | 34.43 | 24.71 | <0.001 |
24 | 60.94 | 17.95 | 31.78 | 18.84 | <0.001 |
36 | 59.53 | 17.14 | 37.70 | 21.41 | <0.001 |
48 | 56.59 | 17.39 | 35.53 | 20.10 | <0.001 |
60 | 54.58 | 17.58 | 33.17 | 23.15 | 0.001 |
72 | 54.46 | 21.45 | 34.41 | 19.35 | 0.012 |
Time Post-Anastomosis (Hours) | Gracilis Muscle | ALT | p-Value | ||
---|---|---|---|---|---|
Mean rHb (A.U.) | Standard Deviation | Mean rHb (A.U.) | Standard Deviation | ||
1 | 48.44 | 22.08 | 32.67 | 7.26 | 0.106 |
3 | 54.03 | 17.03 | 34.47 | 15.19 | <0.001 |
6 | 48.91 | 16.47 | 40.35 | 23.70 | 0.116 |
12 | 48.51 | 15.99 | 38.24 | 24.03 | 0.051 |
18 | 47.18 | 14.93 | 38.83 | 24.10 | 0.112 |
24 | 48.72 | 13.69 | 36.39 | 14.02 | 0.004 |
36 | 47.91 | 13.22 | 33.65 | 15.21 | 0.001 |
48 | 45.44 | 13.80 | 38.68 | 14.82 | 0.12 |
60 | 43.88 | 13.31 | 34.61 | 15.91 | 0.047 |
72 | 48.15 | 16.30 | 38.94 | 20.98 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moellhoff, N.; Heidekrueger, P.I.; Frank, K.; Pistek, S.; Alt, V.; Giunta, R.E.; Ehrl, D. Comparing the Time-Dependent Evolution of Microcirculation in Gracilis vs. ALT Flaps Using Laser-Doppler Flowmetry and Tissue-Spectrometry. J. Clin. Med. 2022, 11, 2425. https://doi.org/10.3390/jcm11092425
Moellhoff N, Heidekrueger PI, Frank K, Pistek S, Alt V, Giunta RE, Ehrl D. Comparing the Time-Dependent Evolution of Microcirculation in Gracilis vs. ALT Flaps Using Laser-Doppler Flowmetry and Tissue-Spectrometry. Journal of Clinical Medicine. 2022; 11(9):2425. https://doi.org/10.3390/jcm11092425
Chicago/Turabian StyleMoellhoff, Nicholas, Paul I. Heidekrueger, Konstantin Frank, Svenja Pistek, Verena Alt, Riccardo E. Giunta, and Denis Ehrl. 2022. "Comparing the Time-Dependent Evolution of Microcirculation in Gracilis vs. ALT Flaps Using Laser-Doppler Flowmetry and Tissue-Spectrometry" Journal of Clinical Medicine 11, no. 9: 2425. https://doi.org/10.3390/jcm11092425
APA StyleMoellhoff, N., Heidekrueger, P. I., Frank, K., Pistek, S., Alt, V., Giunta, R. E., & Ehrl, D. (2022). Comparing the Time-Dependent Evolution of Microcirculation in Gracilis vs. ALT Flaps Using Laser-Doppler Flowmetry and Tissue-Spectrometry. Journal of Clinical Medicine, 11(9), 2425. https://doi.org/10.3390/jcm11092425