How Is Body Composition and Nutrition Status Associated with Erythropoietin Response in Hemodialyzed Patients? A Single-Center Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Superiority of Body Composition Analysis over BMI Value in Predicting EPO Response
3.2. Independent Determinants of ERI Value
3.3. Factors Associated with Mortality in the Study Group
4. Discussion
4.1. Anemia and EPO Resistance as a Major Burden in Chronic Kidney Disease
4.2. Erythropoietin Response and Nutrition in ESRD
4.2.1. ERI and Phase Angle
4.2.2. ERI, Fat Mass, Fat Free Mass, Visceral Fat Volume and BMI
4.2.3. ERI and Fluid Status: Total Body Water [%] and Intradialytic Weight Gain
4.2.4. ERI and Malnutrition Inflammation Score
4.2.5. ERI Value and Mortality Rate
4.2.6. ERI and IL-6 Serum Concentration
4.2.7. ERI and Iron-Metabolism Biomarkers: Ferritin, Transferrin and Hepcidin
4.2.8. ERI and Dialysis Adequacy: Kt/V and the Effect of Uremia on EPO Response
5. Conclusions
6. Strengths
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AHTAPol. Agencja Oceny Technologii Medycznych i Taryfikacji. Available online: http://www.aotm.gov.pl/www/index.php?id=398 (accessed on 23 October 2021).
- Tsukamoto, T.; Matsubara, T.; Akashi, Y.; Kondo, M.; Yanagita, M. Annual Iron Loss Associated with Hemodialysis. Am. J. Nephrol. 2016, 43, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.S.; Sun, Y.; Tzamaloukas, A.H. Hypercatabolism in dialysis patients. Curr. Opin. Nephrol. Hypertens. 2008, 17, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Harvinder, G.S.; Swee, W.C.S.; Karupaiah, T.; Sahathevan, S.; Chinna, K.; Ahmad, G.; Bavanandan, S.; Goh, B.L. Dialysis Malnutrition and Malnutrition Inflammation Scores: Screening Tools for Prediction of Dialysis—Related Protein-Energy Wasting in Malaysia. Asia Pac. J. Clin. Nutr. 2016, 25, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Chandrasekaran, S.C.; Alam, M.N. The Malnutrition Inflammation Complex Syndrome-the Micsing Factor in the Perio-Chronic Kidney Disease Interlink. J. Clin. Diagn. Res. 2013, 7, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Babitt, J.L. Hepcidin Regulation in the Anemia of Inflammation. Curr. Opin. Hematol. 2016, 23, 189–197. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Shapiro, J.I. Erythropoietin Resistance in the Treatment of the Anemia of Chronic Renal Failure. Semin. Dial. 2006, 19, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Seca mBCA User Manual. Available online: https://www.seca.com/fileadmin/documents/manual/seca_man_525_535_en.pdf (accessed on 7 March 2020).
- Kalantar-Zadeh, K. 2. History of Erythropoiesis-Stimulating Agents, the Development of Biosimilars, and the Future of Anemia Treatment in Nephrology. Am. J. Nephrol. 2017, 45, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Eschbach, J.W.; Egrie, J.C.; Downing, M.R.; Browne, J.K.; Adamson, J.W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N. Engl. J. Med. 1987, 316, 73–78. [Google Scholar] [CrossRef]
- Portolés, J.; Martín, L.; Broseta, J.J.; Cases, A. Anemia in Chronic Kidney Disease: From Pathophysiology and Current Treatments, to Future Agents. Front. Med. 2021, 8, 642296. [Google Scholar] [CrossRef]
- Awobusuyi, J.O.; Mapayi, F.A.; Adedolapo, A. Blood loss during vascular access cannulation: Quantification Using the Weighed Gauze and Drape Method. Hemodial. Int. 2008, 12, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Chen, H.Y.; Huang, S.C.; Hsu, S.P.; Pai, M.F.; Peng, Y.S.; Chiu, Y.L. Increased blood loss from access cannulation site during hemodialysis is associated with anemia and arteriovenous graft use. Ther. Apher. Dial. 2014, 18, 51–56. [Google Scholar] [CrossRef]
- Saneela, S.; Iqbal, R.; Raza, A.; Qamar, M.F. Hepcidin: A Key Regulator of Iron. J. Pak. Med. Assoc. 2019, 69, 1170–1175. [Google Scholar] [PubMed]
- Agarwal, A.K.; Yee, J. Hepcidin. Adv. Chronic Kidney Dis. 2019, 26, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Takasawa, K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef] [Green Version]
- Fraenkel, P.G. Anemia of Inflammation: A Review. Med. Clin. N. Am. 2017, 101, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Bella, E.; Pagani, S.; Giavaresi, G.; Capelli, I.; Comai, G.; Donadei, C.; Cappuccilli, M.; La Manna, G.; Fini, M. Uremic Serum Impairs Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stromal Cells. J. Cell. Physiol. 2017, 232, 2201–2209. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Zha, Y.; Qian, Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017, 9, 208. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Horwitz, R.I.; Chertow, G.M. Phase angle, frailty and mortality in older adults. J. Gen. Intern. Med. 2014, 29, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance analysis (BIA)—Derived phase angle in sarcopenia: A Systematic Review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase Angle and Impedance Ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef]
- Hung, S.C.; Tung, T.Y.; Yang, C.S.; Tarng, D.C. High-calorie supplementation increases serum leptin levels and improves response to rHuEPO in long-term hemodialysis patients. Am. J. Kidney Dis. 2005, 45, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, J.; Qureshi, A.R.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P.; Bárány, P. Body fat mass and serum leptin levels influence epoetin sensitivity in patients with ESRD. Am. J. Kidney Dis. 2005, 46, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Alnaeeli, M.; Noguchi, C.T. Erythropoietin and obesity-induced white adipose tissue inflammation: Redefining the Boundaries of the Immunometabolism Territory. Adipocyte 2015, 4, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Ruiz, C.; Abad, S.; Quiroga, B.; Velázquez, K.; Yuste, C.; Aragoncillo, I.; López Gómez, J.M. Body composition affects the response to erythropoiesis-stimulating agents in patients with chronic kidney disease in dialysis. Ren. Fail. 2014, 36, 1073–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotanko, P.; Thijssen, S.; Levin, N.W. Association between erythropoietin responsiveness and body composition in dialysis patients. Blood Purif. 2008, 26, 82–89. [Google Scholar] [CrossRef]
- Gracia-Iguacel, C.; González-Parra, E.; Pérez-Gómez, M.V.; Mahíllo, I.; Egido, J.; Ortiz, A.; Carrero, J.J. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain. Nefrologia 2013, 33, 495–505. [Google Scholar] [CrossRef]
- Hara, T.; Mukai, H.; Nakashima, T.; Sagara, R.; Furusho, M.; Miura, S.; Toyonaga, J.; Sugawara, K.; Takeda, K. Factors Contributing to Erythropoietin Hyporesponsiveness in Patients on Long-Term Continuous Ambulatory Peritoneal Dialysis: A Cross-Sectional Study. Nephron Extra 2015, 5, 79–86. [Google Scholar] [CrossRef]
- Bal, Z.; Demirci, B.G.; Karakose, S.; Tutal, E.; Erkmen Uyar, M.; Acar, N.O.; Sezer, S. Factors Influencing Hemoglobin Variability and Its Association with Mortality in Hemodialysis Patients. Sci. World J. 2018, 2018, 8065691. [Google Scholar] [CrossRef] [Green Version]
- Radić, J.; Bašić-Jukić, N.; Vujičić, B.; Klarić, D.; Radulović, G.; Jakić, M.; Jurić, K.; Altabas, K.; Grđan, Ž.; Kovačević-Vojtušek, I.; et al. Anemia Is Correlated with Malnutrition and Inflammation in Croatian Peritoneal Dialysis Patients: A Multicenter Nationwide Study. J. Int. Soc. Perit. Dial. 2017, 37, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Hejaili, F.; Hafeez, E.; Bhutto, B.; Al Turki, L.; Alsuwida, A.K.; Raza, H.; Al-Sayyari, A. Variables affecting darbepoetin resistance index in hemodialysis patients. Saudi J. Kidney Dis. Transplant. 2017, 28, 737–742. [Google Scholar]
- López-Gómez, J.M.; Portolés, J.M.; Aljama, P. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int. Suppl. 2008, 74, S75–S81. [Google Scholar] [CrossRef] [Green Version]
- Bamgbola, O. Resistance to erythropoietin-stimulating agents: Etiology, Evaluation, and Therapeutic Considerations. Pediatric Nephrol. 2012, 27, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, J.; Wang, S.; Yu, Q.; Li, H. High Erythropoiesis Resistance Index Is a Significant Predictor of Cardiovascular and All-Cause Mortality in Chinese Maintenance Hemodialysis Patients. Mediat. Inflamm. 2020, 2020, 1027230. [Google Scholar] [CrossRef]
- Pan, S.; Zhao, D.L.; Li, P.; Sun, X.F.; Zhou, J.H.; Song, K.K.; Wang, Y.; Miao, L.N.; Ni, Z.H.; Lin, H.L.; et al. Relationships among the Dosage of Erythropoiesis-Stimulating Agents, Erythropoietin Resistance Index, and Mortality in Maintenance Hemodialysis Patients. Blood Purif. 2022, 51, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.N.; Kim, S.H.; Kim, Y.O.; Jin, D.C.; Song, H.C.; Choi, E.J.; Kim, Y.L.; Kim, Y.S.; Kang, S.W.; Kim, N.H.; et al. Association of Erythropoietin-Stimulating Agent Responsiveness with Mortality in Hemodialysis and Peritoneal Dialysis Patients. PLoS ONE 2015, 10, e0143348. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Pergola, P.E.; Devalaraja, M.; Fishbane, S.; Chonchol, M.; Mathur, V.S.; Smith, M.T.; Lo, L.; Herzog, K.; Kakkar, R.; Davidson, M.H. Ziltivekimab for Treatment of Anemia of Inflammation in Patients on Hemodialysis: Results from a Phase 1/2 Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. JASN 2021, 32, 211–222. [Google Scholar] [CrossRef]
- Won, H.S.; Kim, H.G.; Yun, Y.S.; Jeon, E.K.; Ko, Y.H.; Kim, Y.S.; Kim, Y.O.; Yoon, S.A. IL-6 is an independent risk factor for resistance to erythropoiesis-stimulating agents in hemodialysis patients without iron deficiency. Hemodial. Int. 2012, 16, 31–37. [Google Scholar] [CrossRef]
- Neirynck, N.; Vanholder, R.; Schepers, E.; Eloot, S.; Pletinck, A.; Glorieux, G. An update on uremic toxins. Int. Urol. Nephrol. 2013, 45, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Bharati, J.; Jha, V. Achieving dialysis adequacy: A global Perspective. Semin. Dial. 2020, 33, 490–498. [Google Scholar] [CrossRef]
- Hruby, Z. Właściwy Dializator Dla Konkretnego Pacjenta. Forum Nefrol. 2010, 3, 118–120. [Google Scholar]
- Nowicki, M. Wybór Optymalnej Techniki Dializacyjnej. Forum Nefrol. 2010, 3, 121–126. [Google Scholar]
- Vanholder, R.; Van Biesen, W.; Lameire, N. A swan song for Kt/Vurea. Semin. Dial. 2019, 32, 424–437. [Google Scholar] [CrossRef]
- Davenport, A. Differences in prescribed Kt/V and delivered haemodialysis dose—Why obesity makes a difference to survival for haemodialysis patients when using a “one size fits all” Kt/V target. Nephrol. Dial. Transplant. 2013, 28, iv219–iv223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eloot, S.; Van Biesen, W.; Glorieux, G.; Neirynck, N.; Dhondt, A.; Vanholder, R. Does the adequacy parameter Kt/V(urea) reflect uremic toxin concentrations in hemodialysis patients? PLoS ONE 2013, 8, e76838. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.B.; Bargman, J.M. Should we look beyond Kt/V urea in assessing dialysis adequacy? Semin. Dial. 2018, 31, 420–429. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
BMI—body mass index [kg/m2] | A value derived from body mass divided by the square of the body height, traditionally used to group individuals as underweight, normal, overweight or obese. |
FFM—fat free mass [kg], relative to weight [%] | Calculated by subtracting body fat weight from total body weight; also referred to as “lean body mass”. |
FFMI—fat free mass index [kg/m2] | Describes the amount of fat-free mass (“lean body mass”) in relation to height and weight. Similar to BMI. |
FM—fat mass [kg], relative to weight [%] | Total amount of fat; percentage of total bodyweight that is fat. |
FMI—fat mass index [kg/m2] | Describes the amount of fat mass in relation to height and weight. Similar to BMI. |
TBW—total body water [l], relative to weight [%] | The sum of intracellular water and extracellular water volume; approx. 60% of body weight of a normovolemic individual. |
Phase angle φ [°] | Calculated by reactance/resistance ratio during bioelectrical impedance measurement. Used as an indicator of cell wall stability. Helpful in health risk assessment. |
VAT—visceral adipose tissue [l] | Also known as abdominal fat, describes adipose tissue that surrounds the organs in the abdominal cavity. Overdeposition of visceral fat in the abdomen is known as visceral obesity. |
Overall Participants | n = 78 | |
---|---|---|
Male | n = 47 (60.3%) | |
Age [years] | Median: 65; IQR = 21 | |
Dialysis vintage [months] | Median: 28.5; IQR = 42 | |
Patients’ nutrition by BMI [%] | underweight | 2.6% |
normal | 26.9% | |
overweight | 42.3% | |
obese | 28.2% | |
Patients’ nutrition by SECA mBCA body composition chart [%] | increasing sarcopenic obesity: 23.2% increasing obesity: 30.4% increasing thinness: 17.4% increasing muscle mass: 29% | |
ERI [IU/kg/g/dL/week] | Median: 4.9; IQR = 6.8 | |
IL-6 [pg/mL] | Median: 3; IQR = 2.9 | |
Albumin [mg/mL] | Median: 41; IQR = 5 | |
Transferrin [g/L] | Median: 1.7; IQR = 0.26 | |
Transferrin saturation [%] | Mean: 29.2 (SD 12.7) | |
Hepcidin [ng/mL] | Median: 92.55; IQR = 108.8 | |
Ferritin [µg/L] | Median: 475; IQR = 557 | |
Hemoglobin [mmol/L] | Mean: 6.72 (SD 0.86) | |
PTH [pg/mL] | Median: 322; IQR = 290 | |
Kt/V | Mean: 1.14 (SD 0.23) | |
Intradialytic weight gain [% of total body weight] | Median: 2.26; IQR = 2.82 | |
eGFR [mL/min/1.73 m2] | Median: 7; IQR = 4 | |
Total MIS score | Median: 5; IQR = 5 | |
Mortality rate (18-month follow-up) | Overall: n = 23 (29.5%) Cardiovascular reasons: n = 9 (11.5%) |
Comparison of BMI and mBCA as Predictors of ERI Value | |
---|---|
BMI Group | ERI, Median; IQR |
underweight | not included in the statistical analysis due to small sample size (n = 2) |
normal | 6.1; 4 |
overweight | 3.5; 5.8 |
obese | 3.2; 6.7 |
Comparison of BMI groups (U-Mann-Whitney Test) | |
ERI overweight vs. obese | p = 1 |
ERI normal vs. overweight | p = 0.09 |
ERI in normal vs. obese | p = 0.1 |
BCA Group | ERI, Median; IQR |
increasing sarcopenic obesity | 2.8; 4.2 |
increasing obesity | 2.9; 6.7 |
increasing thinness | 6.01; 8.03 |
increasing muscle mass | 6.5; 7.2 |
Comparison of BCA Groups (U-Mann-Whitney Test) | |
ERI sarcopenic obesity vs. obesity | p = 0.8 |
ERI sarcopenic obesity vs. thinness | p = 0.02 |
ERI sarcopenic obesity vs. muscle mass | p = 0.52 |
ERI obesity vs. thinness | p = 0.02 |
KT/V and Nutrition Comparison between Groups (U-Mann-Whitney Test) | |||
---|---|---|---|
In Groups Divided by BMI | In Groups Divided by BCA | ||
Category | KT/V, Mean; SD | Category | KT/V, Mean; SD |
normal | 1.24; 0.24 | increasing sarcopenic obesity | 1.1; 0.23 |
overweight | 1.13; 0.20 | increasing obesity | 1.1; 0.21 |
obese | 1.05; 0.21 | increasing thinness | 1.31; 0.30 |
increasing muscle mass | 1.12; 0.15 | ||
normal vs. overweight | p = 0.10 | sarcopenic obesity vs. obesity | p = 0.72 |
normal vs. obese | p = 0.02 | sarcopenic obesity vs. thinness | p = 0.052 |
overweight vs. obese | p = 0.41 | sarcopenic obesity vs. muscle mass | p = 0.77 |
obesity vs. thinness | p = 0.02 | ||
obesity vs. muscle mass | p = 0.55 | ||
thinness vs. muscle mass | p = 0.07 |
GLM MODEL 1 (p = 0.0069) | ||||
Beta (ß) | −95%CI Beta | +95%CI Beta | p | |
SEX | −0.037 | −0.26 | 0.18 | 0.73 |
AGE | −0.038 | −0.26 | 0.19 | 0.74 |
BMI | −0.34 | −0.56 | −0.12 | 0.003 |
Log IL-6 | 0.25 | 0.026 | 0.47 | 0.03 |
GLM MODEL 2 (p = 0.016) | ||||
Beta (ß) | −95%CI Beta | +95%CI Beta | p | |
SEX | 0.11 | −0.14 | 0.35 | 0.4 |
AGE | −0.04 | −0.28 | 0.21 | 0.76 |
Log VFT | −0.35 | −0.6 | −0.093 | 0.0083 |
Log IL-6 | 0.27 | 0.034 | 0.5 | 0.025 |
Death of Any Cause | |||
Deceased (n = 23) | Survivors (n = 55) | p-Value | |
ERI value (median; IQR) | 4.98 (7.02) | 4.88 (7.71) | p = 0.92 |
Age, years (mean) | 69.7 | 59.6 | p = 0.0069 |
MIS total score (median; IQR) | 9 (6.5) | 5 (3) | p = 0.00087 |
TBW, % (median; IQR) | 49.3 (8) | 55.9 (14.5) | p = 0.029 |
Serum albumin (median; IQR) | 38.5 (4) | 42 (5) | p = 0.00034 |
Dialysis vintage in months (median, IQR) | 32 (37) | 25 (45) | p = 0.81 |
Death Due to Cardiovascular Disease | |||
Deceased (n = 9) | Survivors (n = 55) | p-Value | |
ERI value (median; IQR) | 1.35 (4.53) | 4.96 (7.2) | p = 0.1 |
BMI, [kg/m2] (median; IQR) | 29.77 (11.44) | 26.16 (7.35) | p = 0.04 |
FFM, % (median; IQR) | 63.2 (14.1) | 74.3 (18.7) | p = 0.047 |
FM, % (median; IQR) | 36.8 (14.1) | 25.7 (18.7) | p = 0.047 |
TBW, % (median; IQR) | 47 (6.75) | 55.4 (12.2) | p = 0.0051 |
Dialysis vintage in months (median, IQR) | 28 (56) | 29 (36) | p = 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feret, W.; Safranow, K.; Ciechanowski, K.; Kwiatkowska, E. How Is Body Composition and Nutrition Status Associated with Erythropoietin Response in Hemodialyzed Patients? A Single-Center Prospective Cohort Study. J. Clin. Med. 2022, 11, 2426. https://doi.org/10.3390/jcm11092426
Feret W, Safranow K, Ciechanowski K, Kwiatkowska E. How Is Body Composition and Nutrition Status Associated with Erythropoietin Response in Hemodialyzed Patients? A Single-Center Prospective Cohort Study. Journal of Clinical Medicine. 2022; 11(9):2426. https://doi.org/10.3390/jcm11092426
Chicago/Turabian StyleFeret, Wiktoria, Krzysztof Safranow, Kazimierz Ciechanowski, and Ewa Kwiatkowska. 2022. "How Is Body Composition and Nutrition Status Associated with Erythropoietin Response in Hemodialyzed Patients? A Single-Center Prospective Cohort Study" Journal of Clinical Medicine 11, no. 9: 2426. https://doi.org/10.3390/jcm11092426
APA StyleFeret, W., Safranow, K., Ciechanowski, K., & Kwiatkowska, E. (2022). How Is Body Composition and Nutrition Status Associated with Erythropoietin Response in Hemodialyzed Patients? A Single-Center Prospective Cohort Study. Journal of Clinical Medicine, 11(9), 2426. https://doi.org/10.3390/jcm11092426