ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Tests
2.3. qRT-PCR
2.4. ELISA
2.5. Statistical Analysis
3. Results
3.1. Patient Background
3.2. Clinical Evaluation
3.3. ANGPTL4 Expression in EAT Was Increased in the Patients with CAD
3.4. IL-1β Secretion in Pericardial Fluid Was Increased in the Patients with CAD
3.5. ANGPTL4 and IL-1β Expression in EAT Was Increased in Non-Obese CAD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 2015, 11, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansaldo, A.M.; Montecucco, F.; Sahebkar, A.; Dallegri, F.; Carbone, F. Epicardial adipose tissue and cardiovascular diseases. Int. J. Cardiol. 2019, 278, 254–260. [Google Scholar] [CrossRef]
- McKenney, M.L.; Schultz, K.A.; Boyd, J.H.; Byrd, J.P.; Alloosh, M.; Teague, S.D.; Arce-Esquivel, A.A.; Fain, J.N.; Laughlin, M.H.; Sacks, H.S.; et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J. Cardiothorac. Surg. 2014, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Katanasaka, Y.; Kodera, Y.; Kitamura, Y.; Morimoto, T.; Tamura, T.; Koizumi, F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol. Cancer 2013, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Olshan, D.S.; Rader, D.J. Angiopoietin-like protein 4: A therapeutic target for triglycerides and coronary disease? J. Clin. Lipidol. 2018, 12, 583–587. [Google Scholar] [CrossRef]
- Dijk, W.; Kersten, S. Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol. Metab. 2014, 25, 146–155. [Google Scholar] [CrossRef]
- Koster, A.; Chao, Y.B.; Mosior, M.; Ford, A.; Gonzalez-DeWhitt, P.A.; Hale, J.E.; Li, D.; Qiu, Y.; Fraser, C.C.; Yang, D.D.; et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology 2005, 146, 4943–4950. [Google Scholar] [CrossRef]
- Dewey, F.E.; Gusarova, V.; O’Dushlaine, C.; Gottesman, O.; Trejos, J.; Hunt, C.; Van Hout, C.V.; Habegger, L.; Buckler, D.; Lai, K.M.; et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 2016, 374, 1123–1133. [Google Scholar] [CrossRef]
- Stitziel, N.O.; Stirrups, K.E.; Masca, N.G.; Erdmann, J.; Ferrario, P.G.; König, I.R.; Weeke, P.E.; Webb, T.R.; Auer, P.L.; Schick, U.M.; et al. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease. N. Engl. J. Med. 2016, 374, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matloch, Z.; Cinkajzlova, A.; Mraz, M.; Haluzik, M. The role of inflammation in epicardial adipose tissue in heart diseases. Curr. Pharm. Des. 2018, 24, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Hansson, G.K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 2017, 70, 2278–2289. [Google Scholar] [CrossRef]
- Sano, S.; Oshima, K.; Wang, Y.; Katanasaka, Y.; Sano, M.; Walsh, K. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 2018, 123, 335–341. [Google Scholar] [CrossRef]
- Kikuchi, R.; Nakamura, K.; MacLauchlan, S.; Ngo, D.T.; Shimizu, I.; Fuster, J.J.; Katanasaka, Y.; Yoshida, S.; Qiu, Y.; Yamaguchi, T.P.; et al. An antiangiogenic isoform of VEGF—A contributes to impaired vascularization in peripheral artery disease. Nat. Med. 2014, 20, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. [Google Scholar] [CrossRef]
- Aryal, B.; Price, N.L.; Suarez, Y.; Fernández-Hernando, C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 2019, 25, 723–734. [Google Scholar] [CrossRef]
- Beltrami, C.; Besnier, M.; Shantikumar, S.; Shearn, A.I.U.; Rajakaruna, C.; Laftah, A.; Sessa, F.; Spinetti, G.; Petretto, E.; Angelini, G.D.; et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed MicroRNAs and promotes therapeutic angiogenesis. Mol. Ther. 2017, 25, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Packer, M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef]
- Nakanishi, K.; Fukuda, S.; Tanaka, A.; Otsuka, K.; Jissho, S.; Taguchi, H.; Yoshikawa, J.; Shimada, K. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis 2014, 237, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Nichols, G.A.; Philip, S.; Reynolds, K.; Granowitz, C.B.; Fazio, S. Increased cardiovascular risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J. Clin. Endocrinol. Metab. 2018, 103, 3019–3027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Helgadottir, A.; Gretarsdottir, S.; Thorleifsson, G.; Hjartarson, E.; Sigurdsson, A.; Magnusdottir, A.; Jonasdottir, A.; Kristjansson, H.; Sulem, P.; Oddsson, A.; et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 2016, 48, 634–639. [Google Scholar] [CrossRef]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef]
- Mandard, S.; Zandbergen, F.; van Straten, E.; Wahli, W.; Kuipers, F.; Muller, M.; Kersten, S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 2006, 281, 934–944. [Google Scholar] [CrossRef] [Green Version]
- Aryal, B.; Singh, A.K.; Zhang, X.; Varela, L.; Rotllan, N.; Goedeke, L.; Chaube, B.; Camporez, J.P.; Vatner, D.F.; Horvath, T.L.; et al. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018, 3, e97918. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, L.; Mattijssen, F.; de Wit, N.J.; Georgiadi, A.; Hooiveld, G.J.; van der Meer, R.; He, Y.; Qi, L.; Köster, A.; Tamsma, J.T.; et al. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 2010, 12, 580–592. [Google Scholar] [CrossRef] [Green Version]
- Georgiadi, A.; Wang, Y.; Stienstra, R.; Tjeerdema, N.; Janssen, A.; Stalenhoef, A.; Vliet, J.A.v.d.; Roos, A.d.; Tamsma, J.T.; Smit, J.W.A.; et al. Overexpression of angiopoietin-like protein 4 protects against atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Aryal, B.; Rotllan, N.; Araldi, E.; Ramírez, C.M.; He, S.; Chousterman, B.G.; Fenn, A.M.; Wanschel, A.; Madrigal-Matute, J.; Warrier, N.; et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat. Commun. 2016, 7, 12313. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.I.; Kang, H.-j.; Jeon, J.H.; Eom, G.H.; Cho, H.H.; Kim, M.R.; Cho, M.; Jeong, H.-y.; Cho, H.C.; Hong, M.H.; et al. Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight 2019, 4, e125437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Fernando, S.; Schwarz, N.; Tan, J.T.; Bursill, C.A.; Psaltis, P.J. Inflammation as a therapeutic target in atherosclerosis. J. Clin. Med. 2019, 8, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, B.M.; MacFadyen, J.G.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J. Am. Coll. Cardiol. 2020, 76, 1660–1670. [Google Scholar] [CrossRef]
- Fuster, J.J.; MacLauchlan, S.; Zuriaga, M.A.; Polackal, M.N.; Ostriker, A.C.; Chakraborty, R.; Wu, C.-L.; Sano, S.; Muralidharan, S.; Rius, C.; et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017, 355, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Sano, S.; Oshima, K.; Wang, Y.; MacLauchlan, S.; Katanasaka, Y.; Sano, M.; Zuriaga, M.A.; Yoshiyama, M.; Goukassian, D.; Cooper, M.A.; et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 2018, 71, 875–886. [Google Scholar] [CrossRef]
- Vromman, A.; Ruvkun, V.; Shvartz, E.; Wojtkiewicz, G.; Santos Masson, G.; Tesmenitsky, Y.; Folco, E.; Gram, H.; Nahrendorf, M.; Swirski, F.K.; et al. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur. Heart J. 2019, 40, 2482–2491. [Google Scholar] [CrossRef]
- Guo, L.; Li, S.; Zhao, Y.; Qian, P.; Ji, F.; Qian, L.; Wu, X.; Qian, G. Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung injury via regulating SIRT1/NF-kB pathway. J. Cell. Physiol. 2015, 230, 2390–2402. [Google Scholar] [CrossRef]
- Kasikara, C.; Doran, A.C.; Cai, B.; Tabas, I. The role of non-resolving inflammation in atherosclerosis. J. Clin. Investig. 2018, 128, 2713–2723. [Google Scholar] [CrossRef] [Green Version]
- Konishi, M.; Sugiyama, S.; Sato, Y.; Oshima, S.; Sugamura, K.; Nozaki, T.; Ohba, K.; Matsubara, J.; Sumida, H.; Nagayoshi, Y.; et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 2010, 213, 649–655. [Google Scholar] [CrossRef]
- Parisi, V.; Rengo, G.; Pagano, G.; D’Esposito, V.; Passaretti, F.; Caruso, A.; Grimaldi, M.G.; Lonobile, T.; Baldascino, F.; De Bellis, A.; et al. Epicardial adipose tissue has an increased thickness and is a source of inflammatory mediators in patients with calcific aortic stenosis. Int. J. Cardiol. 2015, 186, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Ding, J.; McClelland, R.L.; Cheung, B.M.; Criqui, M.H.; Barter, P.J.; Rye, K.A.; Allison, M.A. Relationship of pericardial fat with biomarkers of inflammation and hemostasis, and cardiovascular disease: The multi-ethnic study of atherosclerosis. Atherosclerosis 2015, 239, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.B.; Mori, J.; McLean, B.A.; Basu, R.; Das, S.K.; Ramprasath, T.; Parajuli, N.; Penninger, J.M.; Grant, M.B.; Lopaschuk, G.D.; et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes 2016, 65, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, G.A.; Kohr, M.C.; Tune, J.D. Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease. Br. J. Pharmacol. Chemother. 2012, 165, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Shah, S.; Verma, S.; Oudit, G.Y. Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease. Heart Fail. Rev. 2017, 22, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Gorter, P.M.; de Vos, A.M.; van der Graaf, Y.; Stella, P.R.; Doevendans, P.A.; Meijs, M.F.; Prokop, M.; Visseren, F.L. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am. J. Cardiol. 2008, 102, 380–385. [Google Scholar] [CrossRef]
- Bettencourt, N.; Toschke, A.M.; Leite, D.; Rocha, J.; Carvalho, M.; Sampaio, F.; Xara, S.; Leite-Moreira, A.; Nagel, E.; Gama, V. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int. J. Cardiol. 2012, 158, 26–32. [Google Scholar] [CrossRef]
Target | Forward | Reverse |
---|---|---|
ANGPTL2 | 5′-ACGTACAAGCAAGGGTTTGG-3′ | 5′-ACGTACAAGCAAGGGTTTGG-3′ |
ANGPTL3 | 5′-ATTTTAGCCAATGGCCTCCT-3′ | 5′-ATTTTAGCCAATGGCCTCCT-3′ |
ANGPTL4 | 5′-TCCAGCAACTCTTCCACAAG-3′ | 5′-TCCAGCAACTCTTCCACAAG-3′ |
TNF-α | 5′-CCTGTGAGGAGGACGAACAT-3′ | 5′-CCTGTGAGGAGGACGAACAT-3′ |
IL-1β | 5′-TGAGCACCTTCTTTCCCTTC-3′ | 5′-TGAGCACCTTCTTTCCCTTC-3′ |
IL-6 | 5′-AGGCACTGGCAGAAAACAAC-3′ | 5′-AGGCACTGGCAGAAAACAAC-3′ |
18S rRNA | 5′-CTTAGAGGGACAAGTGGCG-3′ | 5′-GGACATCTAAGGGCATCACA-3′ |
Non-CAD | CAD | p-Value | |
---|---|---|---|
Number | 21 | 13 | |
Male | 13 (62%) | 10 (77%) | 0.465 |
Ages (years) | 72 ± 12 | 66 ± 10 | 0.170 |
BMI (kg/m2) | 22.5 ± 3.3 | 23.7 ± 5.1 | 0.422 |
Complications | |||
Hypertension | 11 (52%) | 8 (62%) | 0.728 |
Dyslipidemia | 8 (38%) | 9 (69%) | 0.157 |
Diabetes | 7 (33%) | 8 (62%) | 0.160 |
Chronic kidney disease | 8 (38%) | 7 (54%) | 0.484 |
Cerebral ischemia | 5 (24%) | 4 (31%) | 0.704 |
Atrial fibrillation | 4 (19%) | 1 (8%) | 0.627 |
Medications | |||
ACE inhibitors | 3 (14%) | 4 (31%) | 0.387 |
ARBs | 12 (57%) | 1 (8%) | 0.005 |
Statins | 5 (24%) | 10 (77%) | 0.004 |
Oral hypoglycemic agent | 5 (24%) | 4 (31%) | 0.704 |
Insulin | 1 (5%) | 1 (8%) | 1.000 |
Smoking history | 12 (57%) | 6 (46%) | 0.725 |
Drinking history | 7 (33%) | 2 (15%) | 0.427 |
Non-CAD | CAD | p Value | |
---|---|---|---|
SBP (mmHg) | 122 ± 18 | 126 ± 24 | 0.581 |
DBP (mmHg) | 70 ± 14 | 72 ± 17 | 0.804 |
EF (%) | 63 ± 6 | 56 ± 15 | 0.054 |
E/A | 0.83 ± 0.46 | 1.18 ± 0.76 | 0.148 |
E/E’ | 17.49 ± 9.71 | 14.17 ± 8.60 | 0.387 |
BNP (pg/mL) | 289 ± 732 | 648 ± 1381 | 0.328 |
WBC (102/µL) | 50 ± 17 | 61 ± 15 | 0.057 |
RBC (104/µL) | 333 ± 42 | 377 ± 50 | 0.011 |
Plt (104/µL) | 17.7 ± 12.3 | 21.2 ± 4.8 | 0.332 |
Hb (g/dL) | 10.2 ± 1.7 | 11.3 ± 1.8 | 0.079 |
Ht (%) | 30.6 ± 4.6 | 33.7 ± 4.7 | 0.073 |
TG (mg/dL) | 114 ± 86 | 108 ± 37 | 0.807 |
LDL-C (mg/dL) | 88 ± 30 | 72 ± 20 | 0.111 |
HDL-C (mg/dL) | 47 ± 14 | 41 ± 10 | 0.153 |
PPG (mg/dL) | 120 ± 25 | 139 ± 26 | 0.041 |
HbA1c (NGSP %) | 5.6 ± 0.7 | 6.6 ± 1.4 | 0.010 |
Insulin (µU/mL) | 12.1 ± 11.5 | 10.9 ± 5.4 | 0.728 |
TP (g/dL) | 6 ± 0.9 | 6.5 ± 0.8 | 0.092 |
Alb (g/dL) | 3.2 ± 0.5 | 3.3 ± 0.6 | 0.413 |
AST (U/L) | 20 ± 13 | 17 ± 8 | 0.447 |
ALT (U/L) | 21 ± 35 | 17 ± 14 | 0.715 |
eGFR (mL/min) | 53 ± 24 | 60 ± 25 | 0.425 |
CRP (mg/dL) | 0.37 ± 0.86 | 1.53 ± 4.48 | 0.253 |
R2 | 0.3367 | ||
---|---|---|---|
Corrected R2 | 0.2183 | ||
p-Value | 0.0337 | ||
Estimate | SE | p value | |
Gender (male/female) | 0.336 | 0.171 | 0.0588 |
Age, y | 0.010 | 0.015 | 0.4942 |
Diabetes mellitus (yes/no) | 0.156 | 0.165 | 0.3506 |
Hyperlipidemia (yes/no) | −0.200 | 0.166 | 0.2391 |
CAD (yes/no) | −0.473 | 0.183 | 0.0151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katanasaka, Y.; Saito, A.; Sunagawa, Y.; Sari, N.; Funamoto, M.; Shimizu, S.; Shimizu, K.; Akimoto, T.; Ueki, C.; Kitano, M.; et al. ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. J. Clin. Med. 2022, 11, 2449. https://doi.org/10.3390/jcm11092449
Katanasaka Y, Saito A, Sunagawa Y, Sari N, Funamoto M, Shimizu S, Shimizu K, Akimoto T, Ueki C, Kitano M, et al. ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Journal of Clinical Medicine. 2022; 11(9):2449. https://doi.org/10.3390/jcm11092449
Chicago/Turabian StyleKatanasaka, Yasufumi, Ayumi Saito, Yoichi Sunagawa, Nurmila Sari, Masafumi Funamoto, Satoshi Shimizu, Kana Shimizu, Takehide Akimoto, Chikara Ueki, Mitsuru Kitano, and et al. 2022. "ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease" Journal of Clinical Medicine 11, no. 9: 2449. https://doi.org/10.3390/jcm11092449
APA StyleKatanasaka, Y., Saito, A., Sunagawa, Y., Sari, N., Funamoto, M., Shimizu, S., Shimizu, K., Akimoto, T., Ueki, C., Kitano, M., Hasegawa, K., Sakaguchi, G., & Morimoto, T. (2022). ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Journal of Clinical Medicine, 11(9), 2449. https://doi.org/10.3390/jcm11092449