Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Clinical Data
2.2. Laboratory Tests
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. CTT Results and 30-Day/All-Cause Mortality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Mickley, H.; Crea, F.; Van De Werf, F.; et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, H.K.; Hang, C.L.; Fang, C.Y.; Hsieh, Y.K.; Yang, C.H.; Hung, W.C.; Wu, C.J. Level of high-sensitivity C-reactive protein is predictive of 30-day outcomes in patients with acute myocardial infarction undergoing primary coronary intervention. Chest 2005, 127, 803–808. [Google Scholar] [CrossRef] [PubMed]
- De Winter, R.J.; Heyde, G.S.; Koch, K.T.; Fischer, J.; Van Straalen, J.P.; Bax, M.; Schotborgh, C.E.; Mulder, K.J.; Sanders, G.T.; Piek, J.J.; et al. The prognostic value of pre-procedural plasma C-reactive protein in patients undergoing elective coronary angioplasty. Eur. Heart J. 2002, 23, 960–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo-Espliguero, R.; Avanzas, P.; Cosín-Sales, J.; Aldama, G.; Pizzi, C.; Kaski, J.C. C-reactive protein elevation and disease activity in patients with coronary artery disease. Eur. Heart J. 2004, 25, 401–408. [Google Scholar] [CrossRef]
- Lawler, P.R.; Bhatt, D.L.; Godoy, L.C.; Lüscher, T.F.; Bonow, R.O.; Verma, S.; Ridker, P.M. Targeting cardiovascular inflammation: Next steps in clinical translation. Eur. Heart J. 2021, 42, 113–131. [Google Scholar] [CrossRef]
- Milwidsky, A.; Ziv-Baran, T.; Letourneau-Shesaf, S.; Keren, G.; Taieb, P.; Berliner, S.; Shacham, Y. CRP velocity and short-term mortality in ST segment elevation myocardial infarction. Biomarkers 2017, 22, 383–386. [Google Scholar] [CrossRef]
- Holzknecht, M.; Tiller, C.; Reindl, M.; Lechner, I.; Fink, P.; Lunger, P.; Mayr, A.; Henninger, B.; Brenner, C.; Klug, G.; et al. Association of C-Reactive Protein Velocity with Early Left Ventricular Dysfunction in Patients with First ST-Elevation Myocardial Infarction. J. Clin. Med. 2021, 10, 5494. [Google Scholar] [CrossRef]
- Banai, A.; Levit, D.; Morgan, S.; Loewenstein, I.; Merdler, I.; Hochstadt, A.; Szekely, Y.; Topilsky, Y.; Banai, S.; Shacham, Y. Association between C-Reactive Protein Velocity and Left Ventricular Function in Patients with ST-Elevated Myocardial Infarction. J. Clin. Med. 2022, 11, 401. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevationThe Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Arbel, Y.; Finkelstein, A.; Halkin, A.; Birati, E.Y.; Revivo, M.; Zuzut, M.; Shevach, A.; Berliner, S.; Herz, I.; Keren, G.; et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis 2012, 225, 456–460. [Google Scholar] [CrossRef]
- Mohr, F.W.; Morice, M.C.; Kappetein, A.P.; Feldman, T.E.; Ståhle, E.; Colombo, A.; MacK, M.J.; Holmes, D.R.; Morel, M.A.; Van Dyck, N.; et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 2013, 381, 629–638. [Google Scholar] [CrossRef]
- Reiner Benaim, A.; Almog, R.; Gorelik, Y.; Hochberg, I.; Nassar, L.; Mashiach, T.; Khamaisi, M.; Lurie, Y.; Azzam, Z.S.; Khoury, J.; et al. Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data Results: Systematic Comparison From Five Observational Studies. JMIR Med. Inform. 2020, 8, e16492. [Google Scholar] [CrossRef]
- Arbel, Y.; Eros, Y.; Rogowski, O.; Berliner, S.; Shapira, I.; Keren, G.; Vered, Y.; Banai, S. Comparison of Values of Wide-Range C-Reactive Protein to High-Sensitivity C-Reactive Protein in Patients Undergoing Coronary Angiography. Am. J. Cardiol. 2007, 99, 1504–1506. [Google Scholar] [CrossRef]
- Magidson, J.; SPPS, Inc. SPSS for Windows, CHAID, Release 6.0; SPSS: Chicago, IL, USA, 1993; ISBN 0131788493 9780131788497. [Google Scholar]
- Townsend, M.J.; Monroe, J.G.; Chan, A.C. B-cell targeted therapies in human autoimmune diseases: An updated perspective. Immunol. Rev. 2010, 237, 264–283. [Google Scholar] [CrossRef]
- Ortolani, P.; Marzocchi, A.; Marrozzini, C.; Palmerini, T.; Saia, F.; Taglieri, N.; Baldazzi, F.; Silenzi, S.; Bacchi-Reggiani, M.L.; Guastaroba, P.; et al. Predictive value of high sensitivity C-reactive protein in patients with ST-elevation myocardial infarction treated with percutaneous coronary intervention. Eur. Heart J. 2008, 29, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Théroux, P.; Armstrong, P.W.; Mahaffey, K.W.; Hochman, J.S.; Malloy, K.J.; Rollins, S.; Nicolau, J.C.; Lavoie, J.; The, M.L.; Burchenal, J.; et al. Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: A substudy of the COMMA trial. Eur. Heart J. 2005, 26, 1964–1970. [Google Scholar] [CrossRef] [Green Version]
- Kalkman, D.N.; Aquino, M.; Claessen, B.E.; Baber, U.; Guedeney, P.; Sorrentino, S.; Vogel, B.; De Winter, R.J.; Sweeny, J.; Kovacic, J.C.; et al. Residual inflammatory risk and the impact on clinical outcomes in patients after percutaneous coronary interventions. Eur. Heart J. 2018, 39, 4101–4108. [Google Scholar] [CrossRef]
- Tiller, C.; Reindl, M.; Holzknecht, M.; Lechner, I.; Simma, F.; Schwaiger, J.; Mayr, A.; Klug, G.; Bauer, A.; Reinstadler, S.J.; et al. High sensitivity C-reactive protein is associated with worse infarct healing after revascularized ST-elevation myocardial infarction. Int. J. Cardiol. 2021, 328, 191–196. [Google Scholar] [CrossRef]
- Feistritzer, H.-J.; Reinstadler, S.J.; Klug, G.; Reindl, M.; Wöhrer, S.; Brenner, C.; Mayr, A.; Mair, J.; Metzler, B. Multimarker approach for the prediction of microvascular obstruction after acute ST-segment elevation myocardial infarction: A prospective, observational study. BMC Cardiovasc. Disord. 2016, 16, 239. [Google Scholar] [CrossRef] [Green Version]
- Reinstadler, S.J.; Feistritzer, H.J.; Reindl, M.; Klug, G.; Mayr, A.; Mair, J.; Jaschke, W.; Metzler, B. Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction. Open Hear. 2016, 3, e000485. [Google Scholar] [CrossRef]
- Ries, W.; Torzewski, J.; Heigl, F.; Pfluecke, C.; Kelle, S.; Darius, H.; Ince, H.; Mitzner, S.; Nordbeck, P.; Butter, C.; et al. C-Reactive Protein Apheresis as Anti-inflammatory Therapy in Acute Myocardial Infarction: Results of the CAMI-1 Study. Front. Cardiovasc. Med. 2021, 8, 591714. [Google Scholar] [CrossRef]
- Reinstadler, S.J.; Kronbichler, A.; Reindl, M.; Feistritzer, H.J.; Innerhofer, V.; Mayr, A.; Klug, G.; Tiefenthaler, M.; Mayer, G.; Metzler, B. Acute kidney injury is associated with microvascular myocardial damage following myocardial infarction. Kidney Int. 2017, 92, 743–750. [Google Scholar] [CrossRef]
- Reindl, M.; Reinstadler, S.J.; Feistritzer, H.J.; Klug, G.; Tiller, C.; Mair, J.; Mayr, A.; Jaschke, W.; Metzler, B. Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. Eur. Hear. J. Acute Cardiovasc. Care 2017, 6, 640–649. [Google Scholar] [CrossRef]
- Reindl, M.; Tiller, C.; Holzknecht, M.; Lechner, I.; Henninger, B.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; Metzler, B.; et al. Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Netw. Open 2020, 3, e207030. [Google Scholar] [CrossRef] [PubMed]
- Vanhaverbeke, M.; Veltman, D.; Pattyn, N.; De Crem, N.; Gillijns, H.; Cornelissen, V.; Janssens, S.; Sinnaeve, P.R. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin. Cardiol. 2018, 41, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; Kastelein, J.; Koenig, W.; Genest, J.; Lorenzatti, A.; et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: A secondary analysis from the CANTOS randomised controlled trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef]
- Candreva, A.; Matter, C.M. Is the amount of glow predicting the fire? Residual inflammatory risk after percutaneous coronary intervention. Eur. Heart J. 2022, 43, e10–e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reindl, M.; Reinstadler, S.J.; Feistritzer, H.J.; Mueller, L.; Koch, C.; Mayr, A.; Theurl, M.; Kirchmair, R.; Klug, G.; Metzler, B. Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart 2017, 103, 856–862. [Google Scholar] [CrossRef]
- Holzknecht, M.; Tiller, C.; Reindl, M.; Lechner, I.; Troger, F.; Hosp, M.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; et al. C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. Int. J. Cardiol. 2021, 338, 30–36. [Google Scholar] [CrossRef]
- Zahler, D.; Rozenfeld, K.L.; Stein, M.; Milwidsky, A.; Berliner, S.; Banai, S.; Arbel, Y.; Shacham, Y. C-reactive protein velocity and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention. J. Nephrol. 2019, 32, 437–443. [Google Scholar] [CrossRef]
- Lee, K.K.; Ferry, A.V.; Lee, K.K.; Chapman, A.R.; Sandeman, D.; Adamson, P.D.; Stables, C.L.; Berry, C.; Tsanasis, A.; Marshall, L.; et al. Sex-Specific Thresholds of High-Sensitivity Troponin in Patients With Suspected Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2019, 74, 2032–2043. [Google Scholar] [CrossRef]
CRP < 90th Percentile (<33 mg/L) | CRP > 90th Percentile (>33 mg/L) | p-Value | |||
---|---|---|---|---|---|
Trop < 90th %ile (<118,000 ng/L) | Trop > 90th %ile (>118,000 ng/L) | Trop < 90th %ile (<118,000 ng/L) | Trop > 90th %ile (>118,000 ng/L) | ||
n | 964 | 104 | 104 | 14 | |
Age, years (±SD) | 62.6 (12.9) | 62.9 (13.9) | 67.9 (14.5) | 68.0 (15.4) | <0.01 |
Women, n (%) | 176 (18) | 8 (8) | 22 (21) | 1 (7) | 0.03 |
Ejection fraction, % (±SD) | 38.3 (19.6) | 32.9 (16.6) | 33.8 (19.6) | 27.9 (16.5) | <0.01 |
Diabetes, n (%) | 243 (25) | 18 (17) | 43 (41) | 7 (50) | <0.01 |
History of HF, n (%) | 95 (10) | 22 (21) | 25 (24) | 8 (57) | <0.01 |
Past MI, n (%) | 174 18.1) | 19 (18.3) | 28 (27) | 1 (7.1) | 0.11 |
Hyperlipidemia, n (%) | 499 (52) | 46 (44) | 59 (57) | 10 (71) | 0.13 |
Current smoker, n (%) | 466 (49) | 55 (54) | 44 (44) | 3 (23) | 0.13 |
Hypertension, n (%) | 449 (47) | 39 (38) | 61 (59) | 7 (50) | 0.02 |
CAD severity | 0.11 | ||||
0 diseased vessels, n (%) | 6 (1) | 0 (0) | 1 (1) | 0 (0) | |
1 diseased vessel, n (%) | 378 (40) | 46 (44) | 32 (33) | 2 (15) | |
2 diseased vessels, n (%) | 313 (33) | 31 (30) | 24 (25) | 7 (54) | |
3 diseased vessels, n (%) | 255 (27) | 27 (26) | 39 (41) | 4 (31) | |
Glucose, mg/dL (±SD) | 150.3 (60.8) | 154.5 (67.0) | 170.7 (89.5) | 220.7 (109.3) | <0.01 |
HbA1C, % (±SD) | 5.9 [5.6, 6.5] | 5.8 [5.5, 6.3] | 6.0 [5.7, 7.1] | 5.8 [5.7, 6.5] | 0.15 |
WBC, 109/L (±SD) | 11.8 (4.2) | 13.4 (3.8) | 12.6 (4.3) | 14.9 (5.2) | <0.01 |
1st CRP, mg/L [IQR] | 3.5 [1.3, 8.2] | 4.2 [1.4, 7.8] | 58.0 [43.1, 109.8] | 66.6 [25.5, 119.9] | <0.01 |
2nd CRP, mg/L [IQR] | 3.9 [1.4, 8.8] | 5.8 [2.9, 12.6] | 72.7 [45.3, 108.7] | 68.8 [44.3, 112.3] | <0.01 |
1st Troponin, ng/L [IQR]) | 299.5 [48.0, 2618.8] | 6021.5 [137.0, 54,233.2] | 8127.5 [1770.0, 23,908.5] | 33,484.0 [7278.2, 125,331.0] | <0.01 |
2nd Troponin, ng/L [IQR]) | 6689.0 [1192.0, 23,949.8] | 222,112.0 [174,063.8, 307,510.2] | 18,453.5 [6795.0, 42,399.5] | 202,177.0 [154,482.0, 236,586.5] | <0.01 |
Odds Ratio | 95.0% CI | p Value | ||
---|---|---|---|---|
Lower | Upper | |||
Age (years) | 1.092 | 1.053 | 1.132 | <0.01 |
Sex (women) | 1.825 | 0.787 | 4.233 | 0.16 |
Diabetes mellitus | 1.993 | 0.935 | 4.246 | 0.07 |
History of HF | 10.914 | 5.201 | 22.903 | <0.01 |
Past MI | 0.896 | 0.387 | 2.078 | 0.79 |
Hyperlipidemia | 1.320 | 0.584 | 2.984 | 0.5 |
Hypertension | 1.451 | 0.578 | 3.642 | 0.43 |
2nd CTT result (normal CRP and troponin as indicator) | ||||
High troponin-normal CRP | 6.896 | 2.531 | 18.788 | <0.01 |
Normal troponin-high CRP | 4.756 | 1.960 | 11.543 | <0.01 |
High troponin-high CRP | 6.974 | 1.372 | 35.457 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezinski, R.Y.; Melloul, A.; Berliner, S.; Goldiner, I.; Stark, M.; Rogowski, O.; Banai, S.; Shenhar-Tsarfaty, S.; Shacham, Y. Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). J. Clin. Med. 2022, 11, 2453. https://doi.org/10.3390/jcm11092453
Brzezinski RY, Melloul A, Berliner S, Goldiner I, Stark M, Rogowski O, Banai S, Shenhar-Tsarfaty S, Shacham Y. Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). Journal of Clinical Medicine. 2022; 11(9):2453. https://doi.org/10.3390/jcm11092453
Chicago/Turabian StyleBrzezinski, Rafael Y., Ariel Melloul, Shlomo Berliner, Ilana Goldiner, Moshe Stark, Ori Rogowski, Shmuel Banai, Shani Shenhar-Tsarfaty, and Yacov Shacham. 2022. "Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT)" Journal of Clinical Medicine 11, no. 9: 2453. https://doi.org/10.3390/jcm11092453
APA StyleBrzezinski, R. Y., Melloul, A., Berliner, S., Goldiner, I., Stark, M., Rogowski, O., Banai, S., Shenhar-Tsarfaty, S., & Shacham, Y. (2022). Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). Journal of Clinical Medicine, 11(9), 2453. https://doi.org/10.3390/jcm11092453