General Purpose Pharmacokinetic-Pharmacodynamic Models for Target-Controlled Infusion of Anaesthetic Drugs: A Narrative Review
Abstract
:1. Introduction
2. Comparing the Performance of Multiple PKPD Models
3. Limitations of Contemporary TCI Models
4. General Purpose PKPD Models: One Model to Fit Them All?
4.1. The Open TCI Initiative
4.2. The Eleveld PKPD Model for Propofol
4.3. The Eleveld PKPD Model for Remifentanil
4.4. The Kim-Obara-Egan PK Model for Remifentanil
4.5. The Hannivoort-Colin PKPD Model for Dexmedetomidine
4.6. The Morse PK Model for Dexmedetomidine in Children and Adults
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuizenga, M.H.; Vereecke, H.; Struys, M.M. Model-based drug administration. Curr. Opin. Anaesthesiol. 2016, 29, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Absalom, A.R.; Glen, J.B.; Zwart, G.J.C.; Schnider, T.W.; Struys, M.M.R.F. Target-Controlled Infusion. Anesth. Analg. 2016, 122, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Struys, M.M.R.F.; De Smet, T.; Glen, J.B.; Vereecke, H.E.M.; Absalom, A.R.; Schnider, T.W. The History of Target-Controlled Infusion. Anesthesia Analg. 2016, 122, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Marsh, B.; White, M.; Morton, N.; Kenny, G. Pharmacokinetic Model Driven Infusion of Propofol in Children. Br. J. Anaesth. 1991, 67, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Eleveld, D.; Colin, P.; Absalom, A.; Struys, M. Pharmacokinetic–pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br. J. Anaesth. 2018, 120, 942–959. [Google Scholar] [CrossRef] [PubMed]
- Schnider, T.W.; Minto, C.; Shafer, S.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Youngs, E.J. The Influence of Age on Propofol Pharmacodynamics. Anesthesiology 1999, 90, 1502–1516. [Google Scholar] [CrossRef]
- Schnider, T.W.; Minto, C.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Shafer, S.; Youngs, E.J. The Influence of Method of Administration and Covariates on the Pharmacokinetics of Propofol in Adult Volunteers. Anesthesiology 1998, 88, 1170–1182. [Google Scholar] [CrossRef]
- Absalom, A.; Kenny, G. ‘Paedfusor’ pharmacokinetic data set. Br. J. Anaesth. 2005, 95, 110. [Google Scholar] [CrossRef] [Green Version]
- Cortínez, L.; Anderson, B.; Penna, A.; Olivares, L.; Muñoz, H.; Holford, N.; Struys, M.; Sepulveda, P. Influence of obesity on propofol pharmacokinetics: Derivation of a pharmacokinetic model. Br. J. Anaesth. 2010, 105, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, P.; Cortínez, L.; Sáez, C.; Penna, A.; Solari, S.; Guerra, I.; Absalom, A. Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br. J. Anaesth. 2011, 107, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Kataria, B.K.; Ved, S.A.; Nicodemus, H.F.; Hoy, G.R.; Lea, D.; Dubois, M.Y.; Mandema, J.W.; Shafer, S.L. The Pharmacokinetics of Propofol in Children Using Three Different Data Analysis Approaches. Anesthesiology 1994, 80, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Minto, C.F.; Schnider, T.W.; Shafer, S.L. Pharmacokinetics and Pharmacodynamics of Remifentanil. Anesthesiology 1997, 86, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Eleveld, D.J.; Proost, J.H.; Vereecke, H.; Absalom, A.R.; Olofsen, E.; Vuyk, J.; Struys, M.M.R.F. An Allometric Model of Remifentanil Pharmacokinetics and Pharmacodynamics. Anesthesiology 2017, 126, 1005–1018. [Google Scholar] [CrossRef]
- Kim, T.K.; Obara, S.; Egan, T.D.; The Remifentanil Pharmacokinetics in Obesity Investigators; Minto, C.F.; La Colla, L.; Drover, D.R.; Vuyk, J.; Mertens, M. Disposition of Remifentanil in Obesity. Anesthesiology 2017, 126, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Gepts, E.; Shafer, S.L.; Camu, F.; Stanski, D.R.; Woestenborghs, R.; Van Peer, A.; Heykants, J.J. Linearity of Pharmacokinetics and Model Estimation of Sufentanil. Anesthesiology 1995, 83, 1194–1204. [Google Scholar] [CrossRef]
- Colin, P.J.; Hannivoort, L.N.; Eleveld, D.J.; Reyntjens, K.M.E.M.; Absalom, A.; Vereecke, H.; Struys, M.M.R.F. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br. J. Anaesth. 2017, 119, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Morse, J.; Cortinez, L.; Anderson, B. A Universal Pharmacokinetic Model for Dexmedetomidine in Children and Adults. J. Clin. Med. 2020, 9, 3480. [Google Scholar] [CrossRef]
- Schnider, T.W.; Minto, C.F.; Struys, M.M.R.F.; Absalom, A.R. The Safety of Target-Controlled Infusions. Anesthesia Analg. 2016, 122, 79–85. [Google Scholar] [CrossRef]
- Eleveld, D.J.; Koomen, J.V.; Absalom, A.R.; Su, H.; Hannivoort, L.N.; Struys, M.M.R.F. Allometric Scaling in Pharmacokinetic Studies in Anesthesiology. Anesthesiology 2022, 136, 609–617. [Google Scholar] [CrossRef]
- Absalom, A.; Mani, V.; De Smet, T.; Struys, M.F. Pharmacokinetic models for propofol—defining and illuminating the devil in the detail. Br. J. Anaesth. 2009, 103, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Sheiner, L.B.; Beal, S.L. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-menten model: Routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 1980, 8, 553–571. [Google Scholar] [CrossRef] [PubMed]
- Coppens, M.; Van Limmen, J.G.M.; Schnider, T.; Wyler, B.; Bonte, S.; Dewaele, F.; Struys, M.M.R.F.; Vereecke, H.E.M. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: Performance of three pharmacokinetic–dynamic models. Br. J. Anaesth. 2010, 104, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varvel, J.R.; Donoho, D.L.; Shafer, S.L. Measuring the predictive performance of computer-controlled infusion pumps. J. Pharmacokinet. Biopharm. 1992, 20, 63–94. [Google Scholar] [CrossRef] [PubMed]
- James, W.P.T. Research on obesity: A report of the DHSS/MRC Group. Nutr. Bull. 1977, 4, 187–190. [Google Scholar]
- Anderson, B.J.; Merry, A. Data sharing for pharmacokinetic studies. Pediatr. Anesthesia 2009, 19, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Eleveld, D.J.; Proost, J.H.; Cortínez, L.I.; Absalom, A.R.; Struys, M.M.R.F. A General Purpose Pharmacokinetic Model for Propofol. Anesthesia Analg. 2014, 118, 1221–1237. [Google Scholar] [CrossRef]
- Obara, S.; Imaizumi, T.; Hakozaki, T.; Hosono, A.; Iseki, Y.; Sanbe, N.; Murakawa, M. Evaluation of pharmacokinetic models of intravenous dexmedetomidine in sedated patients under spinal anesthesia. J. Anesth. 2018, 32, 33–40. [Google Scholar] [CrossRef]
- Kleiber, M. Body Size and Metabolic Rate. Physiol. Rev. 1947, 27, 511–541. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A General Model for the Origin of Allometric Scaling Laws in Biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef]
- Vellinga, R.; Hannivoort, L.N.; Introna, M.; Touw, D.J.; Absalom, A.R.; Eleveld, D.J.; Struys, M.M.F. Prospective clinical validation of the Eleveld propofol pharmacokinetic-pharmacodynamic model in general anaesthesia. Br. J. Anaesth. 2021, 126, 386–394. [Google Scholar] [CrossRef]
- Ross, A.K.; Davis, P.J.; Dear, G.D.; Ginsberg, B.; McGowan, F.X.; Stiller, R.D.; Henson, L.G.; Huffman, C.; Muir, K.T. Pharmacokinetics of Remifentanil in Anesthetized Pediatric Patients Undergoing Elective Surgery or Diagnostic Procedures. Anesthesia Analg. 2001, 93, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Eleveld, D.J.; Colin, P.; Absalom, A.R.; Struys, M.M. Target-controlled-infusion models for remifentanil dosing consistent with approved recommendations. Br. J. Anaesth. 2020, 125, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Lal, R.; Karol, M.D.; Cohen, T.; Ebert, T. Influence of Cardiac Output on Dexmedetomidine Pharmacokinetics. J. Pharm. Sci. 2000, 89, 519–527. [Google Scholar] [CrossRef]
- Talke, P.; Anderson, B.J. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br. J. Clin. Pharmacol. 2018, 84, 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Jimenez, R.; Weerink, M.A.S.; Hannivoort, L.N.; Su, H.; Struys, M.M.R.F.; Loer, S.A.; Colin, P.J. Dexmedetomidine Clearance Decreases with Increasing Drug Exposure: Implications for Current Dosing Regimens and Target-controlled Infusion Models Assuming Linear Pharmacokinetics. Anesthesiology 2021, 136, 279–292. [Google Scholar] [CrossRef]
- Weerink, M.A.S.; Barends, C.R.M.; Muskiet, E.R.R.; Reyntjens, K.M.E.M.; Knotnerus, F.H.; Oostra, M.; van Bocxlaer, J.F.P.; Struys, M.M.R.F.; Colin, P.J. Pharmacodynamic Interaction of Remifentanil and Dexmedetomidine on Depth of Sedation and Tolerance of Laryngoscopy. Anesthesiology 2019, 131, 1004–1017. [Google Scholar] [CrossRef] [Green Version]
- Hannivoort, L.N.; Eleveld, D.J.; Proost, J.H.; Reyntjens, K.M.E.M.; Absalom, A.R.; Vereecke, H.E.M.; Struys, M.M.R.F. Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers. Anesthesiology 2015, 123, 357–367. [Google Scholar] [CrossRef]
- Potts, A.L.; Warman, G.R.; Anderson, B.J. Dexmedetomidine disposition in children: A population analysis. Pediatr. Anesthesia 2008, 18, 722–730. [Google Scholar] [CrossRef]
- Cortínez, L.I.; Anderson, B.J.; Holford, N.H.G.; Puga, V.; De La Fuente, N.; Auad, H.; Solari, S.; Allende, F.A.; Ibacache, M.E. Dexmedetomidine pharmacokinetics in the obese. Eur. J. Clin. Pharmacol. 2015, 71, 1501–1508. [Google Scholar] [CrossRef]
- Rolle, A.; Paredes, S.; Cortínez, L.; Anderson, B.; Quezada, N.; Solari, S.; Allende, F.; Torres, J.; Cabrera, D.; Contreras, V.; et al. Dexmedetomidine metabolic clearance is not affected by fat mass in obese patients. Br. J. Anaesth. 2018, 120, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.W.; Cortinez, L.I.; Robertson, K.M.; Keifer, J.C.; Sum-Ping, S.T.; Moretti, E.W.; Young, C.C.; Wright, D.R.; Macleod, D.B.; Somma, J. Dexmedetomidine Pharmacodynamics: Part I. Anesthesiology 2004, 101, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J.B.; Maze, M.; Haack, C.; Azarnoff, D.L.; Vuorilehto, L.; Shafer, S.L. Computer-controlled Infusion of Intravenous Dexmedetomidine Hydrochloride in Adult Human Volunteers. Anesthesiology 1993, 78, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.J.; Krejcie, T.C. Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology 2003, 99, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Eleveld, D.; Colin, P.; Hannivoort, L.; Absalom, A.; Struys, M. Comment on Morse et al. A Universal Pharmacokinetic Model for Dexmedetomidine in Children and Adults. J. Clin. Med. 2020, 9, 3480. J. Clin. Med. 2021, 10, 3003. [Google Scholar] [CrossRef]
- Morse, J.D.; Cortinez, L.I.; Anderson, B.J. Estimation of the Loading Dose for Target-Controlled Infusion of Dexmedetomidine. Reply to Eleveld et al. Comment on “Morse et al. A Universal Pharmacokinetic Model for Dexmedetomidine in Children and Adults. J. Clin. Med. 2020, 9, 3480”. J. Clin. Med. 2021, 10, 3004. [Google Scholar] [CrossRef]
Population Specific Models | Age-Range (Years) | Weight-Range (kg) | Height-Range (cm) | Number of Subjects | General Purpose Models | Age-Range (Years) | Weight-Range (kg) | Height-Range (cm) | Number of Subjects | |
---|---|---|---|---|---|---|---|---|---|---|
PROPOFOL | ||||||||||
Marsh [4] | 2–17 | 12–54 | NR | 37 | Eleveld [5] | 0–88 | 0.68–160 | 1033 | ||
Schnider [6,7] | 26–81 | 44–123 | 155–196 | 24 | ||||||
Paedfusor [8] | 2–13 | NR | NR | NR | ||||||
Cortinez (Obese) [9] | 21–53 | 85–141 | 148–178 | 19 | ||||||
Cortinez (Children) [10] | 0–3 | 5.2–11.4 | 57–79 | 41 | ||||||
Kataria [11] | 3–11 | 15–61 | NR | 53 | ||||||
REMIFENTANIL | ||||||||||
Minto [12] | 20–85 | 48–108 ~ | 156–192 ~ | 65 | Eleveld [13] | 0–85 | 2.5–106 | 49 -193 | 131 | |
Kim-Obara-Egan [14] | 20–85 | 45–215 | 150–196 | 229 | ||||||
SUFENTANIL | ||||||||||
Gepts [15] | 14–68 | 47–94 | 154–182 | 23 | NR | |||||
DEX-MEDETOMIDINE | ||||||||||
Hannivoort [16] | 18–72 | 51–110 | NR | 18 | Morse [17] | 0–71 | 3.1–152 | 55–180 * | 202 |
Male | Female | |
---|---|---|
Lean body mass (LBM) as proposed by James [24] (Size descriptor in the Schnider model for propofol [7] and the Minto model for remifentanil [12] | LBM = 1.1 × w − 128 × w2/h2 | LBM = 1.07 × w − 148 × wt/h2 |
Fat free mass (FFM) as proposed by Janmahastian et al. (Size descriptor in the Kim-Obara-Egan model for remifentanil [14]. Applicable for adults only) | ||
Fat free mass (FFM) as proposed by Al Sallami et al. (Size descriptor in the Eleveld models for propofol [5] and remifentanil [13]. Applicable for adults and children) | ||
Normal fat mass (NFM) as proposed by Morse et al. [17] |
Propofol: Eleveld PK-PD model [5] |
Fsize = weight/70 |
Fage(x) = exp(x *(age − 35)) |
Fsigmoid(x, e50, gamma) = x **gamma/(x **gamma + e50 **gamma) |
Fcentral = Fsigmoid(weight, 33.6, 1) |
Fopiates(x) = absence: 1, presence: exp(x *age) |
FmatCL = Fsigmoid(post-menstrual age, 42.3 weeks, 9.06) |
FsexCL = male: 1.79, female: 2.10 |
FmatQ3 = Fsigmoid(age + 40 weeks, 68.3 weeks, 1) |
V1 = 6.28 *(Fcentral(weight)/Fcentralref) |
V2 = 25.5 *Fsize *Fage(−0.0156) |
V3 = 273 *(FFM (Al-Sallami)/FFMref) *Fopiates(−0.0138) |
CL1 = Fsex *Fsize **0.75 *(FmatCL/FmatCLref) *Fopiates(−0.00286) |
CL2 = 1.75 *(V2/V2ref) **0.75 *(1 + 1.3 *(1 – FmatQ3)) |
CL3 = 1.11 *(V3/V3ref) **0.75 *(FmatQ3/FmatQ3ref) |
ke0 = 0.146 *Fsize **−0.25 |
E50 = 3.08 *Fage(−0.00635) |
Remifentanil: Eleveld PK-PD model [13] |
Fsize = FFM(Al-Sallami)/FFMref |
Fage(x) = exp(x *(age − 35)) |
Fsigmoid(x, e50, gamma) = x **gamma/(x **gamma + e50 **gamma) |
Fmat(weight) = Fsigmoid(weight, 2.88, 2) |
Fsex = male: 1, female: 1 + 0.47 *Fsigmoid(age, 12, 6) *(1 − Fsigmoid(age, 45, 6)) |
V1 = 5.81 *Fsize *Fage(−0.00554) |
V2 = 8.82 *Fsize *Fage(−0.00327) *Fsex |
V3 = 5.03 *Fsize *Fage(−0.0315) *exp(−0.0260 *(weight − 70)) |
CL1 = 2.58 *Fsize **0.75 *(Fmat/Fmatref) *Fsex *Fage(−0.00327) |
CL2 = 1.72 *(V2/8.82) **0.75 *Fage(−0.00554) *Fsex |
CL3 = 0.124 *(V3/5.03) **0.75 *Fage(−0.00554) |
ke0 = 1.09 *Fage(−0.0289) |
Remifentanil: Kim-Obara-Egan model [27] |
V1 = 4.76 *(weight/74.5) **0.658 |
V2 = 8.4 *(FFM (Janmahasatian)/52.3) **0.573 – 0.0936 *(age − 37) |
V3 = 4 – 0.0477 *(age − 37) |
CL1 = 2.77 *(weight/74.5) **0.336 – 0.0149 *(age − 37) |
CL2 = 1.94 – 0.0280 *(age − 37) |
CL3 = 0.197 |
Dexmedetomidine: Morse model [17] |
V1 = 25.2 L/70 kg NFM |
V2 = 34.4 L/70 Kg NFM |
V3 = 65.4 L/70 kg NFM |
CL1 = 0.897 L/min/70 kg FFM(Al-Sallami) |
CL2 = 1.68 L/min/70 kg FFMCL3 = 0.62 L/min/70 kg FFM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandemoortele, O.; Hannivoort, L.N.; Vanhoorebeeck, F.; Struys, M.M.R.F.; Vereecke, H.E.M. General Purpose Pharmacokinetic-Pharmacodynamic Models for Target-Controlled Infusion of Anaesthetic Drugs: A Narrative Review. J. Clin. Med. 2022, 11, 2487. https://doi.org/10.3390/jcm11092487
Vandemoortele O, Hannivoort LN, Vanhoorebeeck F, Struys MMRF, Vereecke HEM. General Purpose Pharmacokinetic-Pharmacodynamic Models for Target-Controlled Infusion of Anaesthetic Drugs: A Narrative Review. Journal of Clinical Medicine. 2022; 11(9):2487. https://doi.org/10.3390/jcm11092487
Chicago/Turabian StyleVandemoortele, Ophélie, Laura N. Hannivoort, Florian Vanhoorebeeck, Michel M. R. F. Struys, and Hugo E. M. Vereecke. 2022. "General Purpose Pharmacokinetic-Pharmacodynamic Models for Target-Controlled Infusion of Anaesthetic Drugs: A Narrative Review" Journal of Clinical Medicine 11, no. 9: 2487. https://doi.org/10.3390/jcm11092487
APA StyleVandemoortele, O., Hannivoort, L. N., Vanhoorebeeck, F., Struys, M. M. R. F., & Vereecke, H. E. M. (2022). General Purpose Pharmacokinetic-Pharmacodynamic Models for Target-Controlled Infusion of Anaesthetic Drugs: A Narrative Review. Journal of Clinical Medicine, 11(9), 2487. https://doi.org/10.3390/jcm11092487