Actual Associations between HLA Haplotype and Graves’ Disease Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. GD Group and Control Group
2.2. HLA Typing Procedures
2.3. Statistical Analysis
2.4. Inclusion Criteria
2.5. Biochemical and US Procedures
2.6. Ethics Procedures
3. Results
3.1. Alleles with Higher Frequencies in GD
3.2. Alleles with Lower Frequencies in GD
3.3. Significance of a Single High Risk Allele and of Co-Presence of Alleles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AITD | autoimmune thyroid diseases |
ATA | American Thyroid Association |
CD40 | cluster of differentiation 40 |
CTLA-4 | cytotoxic T lymphocyte-associated factor 4 |
EDTA | ethylenediaminetetraacetic acid (anticoagulant) |
FT3 | free triiodothyronine |
FT4 | free thyroxine |
GD | Graves’ disease |
HLA | human leukocyte antigens |
MHC | major histocompatibility complex |
NGS | next-generation sequencing |
SAT | subacute thyroiditis |
Tg | thyroglobulin |
TRAb | TSH-receptor antibodies |
TSH | thyroid stimulating hormone (thyrotropin) |
US | ultrasound |
References
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Lapa, D.; Trimarchi, F.; Vita, G.; Fallahi, P.; Antonelli, A.; Benvenga, S. Certain HLA alleles are associated with stress-triggered Graves’ disease and influence its course. Endocrine 2017, 55, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Heward, J.M.; Allahabadia, A.; Daykin, J.; Carr-Smith, J.; Daly, A.; Armitage, M.; Dodson, P.M.; Sheppard, M.C.; Barnett, A.H.; Franklyn, J.A.; et al. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: Replication using a population case control and family-based study. J. Clin. Endocrinol. Metab. 1998, 83, 3394–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.H.; Baek, I.C.; Kim, H.J.; Choi, E.J.; Ahn, M.; Jung, M.H.; Suh, B.K.; Cho, W.K.; Kim, T.G. HLA alleles, especially amino-acid signatures of HLA-DPB1, might contribute to the molecular pathogenesis of early-onset autoimmune thyroid disease. PLoS ONE 2019, 14, e0216941. [Google Scholar] [CrossRef]
- Gu, L.Q.; Zhu, W.; Zhao, S.X.; Zhao, L.; Zhang, M.J.; Cui, B.; Song, H.D.; Ning, G.; Zhao, Y.J. Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves’ disease. Clin. Endocrinol. 2010, 72, 248–255. [Google Scholar] [CrossRef]
- Wang, P.W.; Chen, I.Y.; Juo, S.H.; Hsi, E.; Liu, R.T.; Hsieh, C.J. Genotype and phenotype predictors of relapse of graves’ disease after antithyroid drug withdrawal. Eur. Thyroid J. 2013, 1, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yao, Y.; Yang, M.; Shi, L.; Li, X.; Yang, Y.; Zhang, Y.; Xiao, C. Association between HLA-B*46 allele and Graves disease in Asian populations: A meta-analysis. Int. J. Med. Sci. 2013, 10, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, B.R.; Ma, J.T.; Lam, K.S.; Wang, C.C.; Yeung, R.T. Association of HLA antigens with thyrotoxic Graves’ disease and periodic paralysis in Hong Kong Chinese. Clin. Endocrinol. 1985, 23, 245–252. [Google Scholar] [CrossRef]
- Naito, S.; Sasaki, H.; Arakawa, K. Japanese Graves’ disease: Association with HLA-Bw46. Endocrinol. Jpn. 1987, 34, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Yeo, P.P.; Chan, S.H.; Thai, A.C.; Ng, W.Y.; Lui, K.F.; Wee, G.B.; Tan, S.H.; Lee, B.W.; Wong, H.B.; Cheah, J.S. HLA Bw46 and DR9 associations in Graves’ disease of Chinese patients are age- and sex-related. Tissue Antigens 1989, 34, 179–184. [Google Scholar] [CrossRef]
- Barlow, A.B.; Wheatcroft, N.; Watson, P.; Weetman, A.P. Association of HLA-DQA1*0501 with Graves’ disease in English Caucasian men and women. Clin. Endocrinol. 1996, 44, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Spaepen, M.; Bex, M.; Bouillon, R.; Cassiman, J.J. Primary role of the HLA class II DRB1*0301 allele in Graves disease. Am. J. Med. Genet. 2000, 95, 432–437. [Google Scholar] [CrossRef]
- Inoue, D.; Sato, K.; Enomoto, T.; Sugawa, H.; Maeda, M.; Inoko, H.; Tsuji, K.; Mori, T.; Imura, H. Correlation of HLA types and clinical findings in Japanese patients with hyperthyroid Graves’ disease: Evidence indicating the existence of four subpopulations. Clin. Endocrinol. 1992, 36, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.; Lin, Y.N.; Wee, G.B.; Ren, E.C.; Lui, K.F.; Cheah, J.S. Human leucocyte antigen DNA typing in Singaporean Chinese patients with Graves’ disease. Ann. Acad. Med. Singap. 1993, 22, 576–579. [Google Scholar]
- Cavan, D.A.; Penny, M.A.; Jacobs, K.H.; Kelly, M.A.; Jenkins, D.; Mijovic, C.; Chow, C.; Cockram, C.S.; Hawkins, B.R.; Barnett, A.H. The HLA association with Graves’ disease is sex-specific in Hong Kong Chinese subjects. Clin. Endocrinol. 1994, 40, 63–66. [Google Scholar] [CrossRef]
- Dong, R.P.; Kimura, A.; Okubo, R.; Shinagawa, H.; Tamai, H.; Nishimura, Y.; Sasazuki, T. HLA-A and DPB1 loci confer susceptibility to Graves’ disease. Hum. Immunol. 1992, 35, 165–172. [Google Scholar] [CrossRef]
- Huang, S.M.; Wu, T.J.; Lee, T.D.; Yang, E.K.; Shaw, C.K.; Yeh, C.C. The association of HLA -A, -B, and -DRB1 genotypes with Graves’ disease in Taiwanese people. Tissue Antigens 2003, 61, 154–158. [Google Scholar] [CrossRef]
- Chen, P.L.; Fann, C.S.; Chu, C.C.; Chang, C.C.; Chang, S.W.; Hsieh, H.Y.; Lin, M.; Yang, W.S.; Chang, T.C. Comprehensive genotyping in two homogeneous Graves’ disease samples reveals major and novel HLA association alleles. PLoS ONE 2011, 6, e16635. [Google Scholar] [CrossRef]
- Yanagawa, T.; Mangklabruks, A.; Chang, Y.B.; Okamoto, Y.; Fisfalen, M.E.; Curran, P.G.; DeGroot, L.J. Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J. Clin. Endocrinol. Metab. 1993, 76, 1569–1574. [Google Scholar] [CrossRef]
- Mangklabruks, A.; Cox, N.; DeGroot, L.J. Genetic factors in autoimmune thyroid disease analyzed by restriction fragment length polymorphisms of candidate genes. J. Clin. Endocrinol. Metab. 1991, 73, 236–244. [Google Scholar] [CrossRef]
- Stasiak, M.; Tymoniuk, B.; Michalak, R.; Stasiak, B.; Kowalski, M.L.; Lewinski, A. Subacute Thyroiditis is Associated with HLA-B*18:01, -DRB1*01 and -C*04:01-The Significance of the New Molecular Background. J. Clin. Med. 2020, 9, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiak, M.; Tymoniuk, B.; Adamczewski, Z.; Stasiak, B.; Lewinski, A. Sonographic Pattern of Subacute Thyroiditis Is HLA-Dependent. Front. Endocrinol. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiak, M.; Tymoniuk, B.; Stasiak, B.; Lewinski, A. The Risk of Recurrence of Subacute Thyroiditis Is HLA-Dependent. Int. J. Mol. Sci. 2019, 20, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiak, M.; Lewinski, A. Strong Correlation between HLA and Clinical Course of Subacute Thyroiditis—A Report of the Three Siblings. Genes 2020, 11, 1282. [Google Scholar] [CrossRef]
- Stasiak, M.; Zawadzka-Starczewska, K.; Lewinski, A. Clinical Manifestation of Subacute Thyroiditis Triggered by SARS-CoV-2 Infection Can Be HLA-Dependent. Viruses 2021, 13, 2447. [Google Scholar] [CrossRef]
- Mayor, N.P.; Hayhurst, J.D.; Turner, T.R.; Szydlo, R.M.; Shaw, B.E.; Bultitude, W.P.; Sayno, J.R.; Tavarozzi, F.; Latham, K.; Anthias, C.; et al. Recipients Receiving Better HLA-Matched Hematopoietic Cell Transplantation Grafts, Uncovered by a Novel HLA Typing Method, Have Superior Survival: A Retrospective Study. Biol. Blood Marrow Transplant. 2019, 25, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A. Polymorphism of HLA-B27: 105 subtypes currently known. Curr. Rheumatol. Rep. 2013, 15, 362. [Google Scholar] [CrossRef]
- Ahmad, T.; Neville, M.; Marshall, S.E.; Armuzzi, A.; Mulcahy-Hawes, K.; Crawshaw, J.; Sato, H.; Ling, K.L.; Barnardo, M.; Goldthorpe, S. Haplotype-specific linkage disequilibrium patterns define the genetic topography of the human MHC. Hum. Mol. Genet. 2003, 12, 647–656. [Google Scholar] [CrossRef]
- DR/DQ Associations. Available online: http://www.ctht.info/Table%2013%20DRB1%20DQA1%20DQB1%20associations%20in%20various%20populations.pdf (accessed on 14 March 2022).
- Płoski, R.; Szymański, K.; Bednarczuk, T. The genetic basis of graves’ disease. Curr Genom. 2011, 12, 542–563. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Dutescu, M.I.; Sirbu, A.; Barbu, C.; Albu, A.; Florea, S.; Fica, S. The clinical value of human leukocyte antigen HLA-DRB1 subtypes associated to Graves’ disease in Romanian population. Immunol Investig. 2014, 43, 479–490. [Google Scholar] [CrossRef]
- Common Associations of HLA-C Alleles with Alleles of HLA-B. Available online: http://www.ctht.info/Table%209%20CB%20ASSOCIATIONS.pdf (accessed on 14 March 2022).
- Common Associations of HLA-B Alleles with Alleles of HLA-C. Available online: http://www.ctht.info/Table%208%20BC%20ASSOCIATIONS.pdf (accessed on 14 March 2022).
- Simmonds, M.J.; Howson, J.M.; Heward, J.M.; Carr-Smith, J.; Franklyn, J.A.; Todd, J.A.; Gough, S.C. A novel and major association of HLA-C in Graves’ disease that eclipses the classical HLA-DRB1 effect. Hum. Mol. Genet. 2007, 16, 2149–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.Y.; Huang, W.; She, J.X.; Baxter, F.; Volpe, R.; Maclaren, N.K. HLA-DRB1*08, DRB1*03/DRB3*0101, and DRB3*0202 are susceptibility genes for Graves’ disease in North American Caucasians, whereas DRB1*07 is protective. J. Clin. Endocrinol. Metab. 1999, 84, 3182–3186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.P.; Karandikar, S. Autoimmune thyroid disease in childhood: A study of children and their families. Indian Pediatr. 1999, 36, 659–668. [Google Scholar] [PubMed]
- Ludgate, M.; Emerson, C.H. Metamorphic thyroid autoimmunity. Thyroid 2008, 18, 1035–1037. [Google Scholar] [CrossRef]
- Aversa, T.; Lombardo, F.; Corrias, A.; Salerno, M.; De Luca, F.; Wasniewska, M. In young patients with Turner or Down syndrome, Graves’ disease presentation is often preceded by Hashimoto’s thyroiditis. Thyroid 2014, 24, 744–747. [Google Scholar] [CrossRef]
- Wasniewska, M.; Corrias, A.; Arrigo, T.; Lombardo, F.; Salerno, M.; Mussa, A.; Vigone, M.C.; De Luca, F. Frequency of Hashimoto’s thyroiditis antecedents in the history of children and adolescents with graves’ disease. Horm. Res. Paediatr. 2010, 73, 473–476. [Google Scholar] [CrossRef]
- Yin, X.; Latif, R.; Bahn, R.; Davies, T.F. Genetic profiling in Graves’ disease: Further evidence for lack of a distinct genetic contribution to Graves’ ophthalmopathy. Thyroid 2012, 22, 730–736. [Google Scholar] [CrossRef]
- Mehraji, Z.; Farazmand, A.; Esteghamati, A.; Noshad, S.; Sadr, M.; Amirzargar, S.; Yekaninejad, M.S.; Amirzargar, A. Association of Human Leukocyte Antigens Class I and II with Graves’ Disease in Iranian Population. Iran. J. Immunol. 2017, 14, 223–230. [Google Scholar]
- Park, M.H.; Park, Y.J.; Song, E.Y.; Park, H.; Kim, T.Y.; Park, D.J.; Park, K.S.; Cho, B.Y. Association of HLA-DR and -DQ genes with Graves disease in Koreans. Hum. Immunol. 2005, 66, 741–747. [Google Scholar] [CrossRef]
- Wongsurawat, T.; Nakkuntod, J.; Charoenwongse, P.; Snabboon, T.; Sridama, V.; Hirankarn, N. The association between HLA class II haplotype with Graves’ disease in Thai population. Tissue Antigens 2006, 67, 79–83. [Google Scholar] [CrossRef]
Parameter (Reference Range and Units) | Mean ± SD | Median |
---|---|---|
TSH (0.27–4.2 µIU/mL) | 0.14 ± 0.43 | 0.05 |
FT4 (0.9–1.7 ng/dL) | 3.35 ± 2.39 | 2.33 |
FT3 (2.0–4.4 pg/mL) | 11.07 ± 8.38 | 7.86 |
TRAb (<1.7 IU/L) | 15.04 ± 13.62 | 10.12 |
HLA Haplotype | Haplotype Frequency |
---|---|
B*08:01- DRB1*03:01- DQB1*02:01 | 22% [n = 36] |
B*XX:XX- DRB1*03:01- DQB1*02:01 | 6.6% [n = 11] |
B*08:01- DRB1*XX:XX- DQB1*XX:XX | 1.9% [n = 3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A.; Stasiak, M. Actual Associations between HLA Haplotype and Graves’ Disease Development. J. Clin. Med. 2022, 11, 2492. https://doi.org/10.3390/jcm11092492
Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A, Stasiak M. Actual Associations between HLA Haplotype and Graves’ Disease Development. Journal of Clinical Medicine. 2022; 11(9):2492. https://doi.org/10.3390/jcm11092492
Chicago/Turabian StyleZawadzka-Starczewska, Katarzyna, Bogusław Tymoniuk, Bartłomiej Stasiak, Andrzej Lewiński, and Magdalena Stasiak. 2022. "Actual Associations between HLA Haplotype and Graves’ Disease Development" Journal of Clinical Medicine 11, no. 9: 2492. https://doi.org/10.3390/jcm11092492
APA StyleZawadzka-Starczewska, K., Tymoniuk, B., Stasiak, B., Lewiński, A., & Stasiak, M. (2022). Actual Associations between HLA Haplotype and Graves’ Disease Development. Journal of Clinical Medicine, 11(9), 2492. https://doi.org/10.3390/jcm11092492