Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives
Abstract
:1. Introduction
2. Risk Stratification in Acute Pulmonary Embolism
2.1. Step 1: Identification of High-Risk Patients
2.2. Step 2: Outpatient Management of Low-Risk Pulmonary Embolism
3. Step 3: Further Classification of Intermediate-Risk Pulmonary Embolism
3.1. Clinical Scores
3.2. Markers of Right Ventricular Dysfunction
- Cardiac troponin
- Brain natriuretic peptides
- Computer tomography pulmonary angiography
- Bedside echocardiography
3.3. Current Stratification of Intermediate-Risk Pulmonary Embolism
4. Reperfusion Therapy for Intermediate–High-Risk Pulmonary Embolism
5. Toward a Better Identification of Thrombolysis Candidates among Intermediate-Risk Pulmonary Embolism
Identifying Patients at Higher Basal Risk: Markers of Circulatory Failure and Alternative Scores
- Plasma lactate
- BOVA score
- TELOS score
- SHIELD score
- Other scores
- Between score comparison
6. Expected Benefits from a Better Identification of Intermediate–High-Risk Patients
7. Improving the Safety Profile: Reduced-Dose Thrombolytic Therapy
8. Evidence to Come: The PEITHO-3 Study
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ISTH Steering Committee for World Thrombosis Day. Thrombosis: A major contributor to the global disease burden. J. Thromb. Haemost. 2014, 12, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.T.; Agnelli, G.; Anderson, F.A.; Arcelus, J.I.; Bergqvist, D.; Brecht, J.G.; Greer, I.A.; Heit, J.A.; Hutchinson, J.L.; Kakkar, A.K. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb. Haemost. 2007, 98, 756–764. [Google Scholar] [PubMed]
- Reilly, B.M.; Evans, A.T. Translating clinical research into clinical practice: Impact of using prediction rules to make decisions. Ann. Intern. Med. 2006, 144, 201–209. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G. The 2019 ESC Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism. Eur. Heart J. 2019, 40, 3453–3455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaff, M.R.; McMurtry, M.S.; Archer, S.L.; Cushman, M.; Goldenberg, N.; Goldhaber, S.Z.; Jenkins, J.S.; Kline, J.A.; Michaels, A.D.; Thistlethwaite, P.; et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: A scientific statement from the American Heart Association. Circulation 2011, 123, 1788–1830. [Google Scholar] [CrossRef] [Green Version]
- Quezada, C.A.; Bikdeli, B.; Barrios, D.; Barbero, E.; Chiluiza, D.; Muriel, A.; Casazza, F.; Monreal, M.; Yusen, R.D.; Jiménez, D. Meta-Analysis of Prevalence and Short-Term Prognosis of Hemodynamically Unstable Patients with Symptomatic Acute Pulmonary Embolism. Am. J. Cardiol. 2019, 123, 684–689. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, D.; Lei, J.; Yang, Y.; Xu, X.; Ji, Y.; Yi, Q.; Chen, H.; Hu, X.; Liu, Z.; et al. Trends in risk stratification, in-hospital management and mortality of patients with acute pulmonary embolism: An analysis from the China pUlmonary thromboembolism REgistry Study (CURES). Eur. Respir. J. 2021, 58, 2002963. [Google Scholar] [CrossRef]
- Jerjes-Sanchez, C.; Ramirez-Rivera, A.; de Lourdes Garcia, M.; Arriaga-Nava, R.; Valencia, S.; Rosado-Buzzo, A.; Pierzo, J.A.; Rosas, E. Streptokinase and heparin versus heparin alone in massive pulmonary embolism: A randomized controlled trial. J. Thromb. Thrombolysis 1995, 2, 227–229. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Geibel, A.; Heusel, G.; Heinrich, F.; Kasper, W. Heparin plus Alteplase Compared with Heparin Alone in Patients with Submassive Pulmonary Embolism. N. Engl. J. Med. 2002, 347, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef]
- Marti, C.; John, G.; Konstantinides, S.; Combescure, C.; Sanchez, O.; Lankeit, M.; Meyer, G.; Perrier, A. Systemic thrombolytic therapy for acute pulmonary embolism: A systematic review and meta-analysis. Eur. Heart J. 2014, 36, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotter, C.T.; Seaman, A.J.; Rösch, J.; Porter, J.M. Streptokinase and Heparin in the Treatment of Pulmonary Embolism: A Randomized Comparison. Vasc. Surg. 1979, 13, 42–52. [Google Scholar] [CrossRef]
- Urokinase Pulmonary Embolism Trial Study Group. Urokinase pulmonary embolism trial. Phase 1 results: A cooperative study. JAMA 1970, 214, 2163–2172. [Google Scholar] [CrossRef]
- Stein, P.D.; Matta, F. Thrombolytic therapy in unstable patients with acute pulmonary embolism: Saves lives but underused. Am. J. Med. 2012, 125, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.D.; Matta, F.; Hughes, P.G.; Hughes, M.J. Adjunctive Therapy and Mortality in Patients With Unstable Pulmonary Embolism. Am. J. Cardiol. 2020, 125, 1913–1919. [Google Scholar] [CrossRef]
- Quezada, A.; Jiménez, D.; Bikdeli, B.; Moores, L.; Porres-Aguilar, M.; Aramberri, M.; Lima, J.; Ballaz, A.; Yusen, R.D.; Monreal, M. Systolic blood pressure and mortality in acute symptomatic pulmonary embolism. Int. J. Cardiol. 2019, 302, 157–163. [Google Scholar] [CrossRef]
- Konstantinides, S.V. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014, 35, 3145–3146. [Google Scholar] [CrossRef] [Green Version]
- Aujesky, D.; Obrosky, D.S.; Stone, R.A.; Auble, T.E.; Perrier, A.; Cornuz, J.; Roy, P.-M.; Fine, M.J. Derivation and Validation of a Prognostic Model for Pulmonary Embolism. Am. J. Respir. Crit. Care Med. 2005, 172, 1041–1046. [Google Scholar] [CrossRef]
- Jiménez, D.; Aujesky, D.; Moores, L.; Gómez, V.; Lobo, J.L.; Uresandi, F.; Otero, R.; Monreal, M.; Muriel, A.; Yusen, R.D. Simplification of the Pulmonary Embolism Severity Index for Prognostication in Patients With Acute Symptomatic Pulmonary Embolism. Arch. Intern. Med. 2010, 170, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-Y.; Ben, S.-Q.; Chen, H.-L.; Ni, S.-S. The prognostic value of pulmonary embolism severity index in acute pulmonary embolism: A meta-analysis. Respir. Res. 2012, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Aujesky, D.; Roy, P.-M.; Verschuren, F.; Righini, M.; Osterwalder, J.; Egloff, M.; Renaud, B.; Verhamme, P.; Stone, R.A.; Legall, C.; et al. Outpatient versus inpatient treatment for patients with acute pulmonary embolism: An international, open-label, randomised, non-inferiority trial. Lancet 2011, 378, 41–48. [Google Scholar] [CrossRef]
- Kohn, C.G.; Mearns, E.S.; Parker, M.W.; Hernandez, A.V.; Coleman, C.I. Prognostic accuracy of clinical prediction rules for early post-pulmonary embolism all-cause mortality: A bivariate meta-analysis. Chest 2015, 147, 1043–1062. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Mahmoudpour, S.H.; Planquette, B.; Sanchez, O.; Konstantinides, S.V.; Meyer, G. Prognostic value of right ventricular dysfunction or elevated cardiac biomarkers in patients with low-risk pulmonary embolism: A systematic review and meta-analysis. Eur. Heart J. 2019, 40, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becattini, C.; Maraziti, G.; Vinson, D.R.; Ng, A.C.C.; Exter, P.L.D.; Côté, B.; Vanni, S.; Doukky, R.; Khemasuwan, D.; Weekes, A.J.; et al. Right ventricle assessment in patients with pulmonary embolism at low risk for death based on clinical models: An individual patient data meta-analysis. Eur. Heart J. 2021, 42, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Schmidtmann, I.; Ageno, W.; Bauersachs, R.M.; Becattini, C.; Bernardi, E.; Beyer-Westendorf, J.; Bonacchini, L.; Brachmann, J.; Christ, M.; et al. Early discharge and home treatment of patients with low-risk pulmonary embolism with the oral factor Xa inhibitor rivaroxaban: An international multicentre single-arm clinical trial. Eur. Heart J. 2019, 41, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myc, L.A.; Richardson, E.D.; Barros, A.J.; Watson, J.T.; Sharma, A.M.; Kadl, A. Risk stratification in acute pulmonary embolism: Half of the way there? Ann. Am. Thorac. Soc. 2021, 18, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.-M.; Penaloza, A.; Hugli, O.; Klok, F.A.; Arnoux, A.; Elias, A.; Couturaud, F.; Joly, L.-M.; Lopez, R.; Faber, L.M.; et al. Triaging acute pulmonary embolism for home treatment by Hestia or simplified PESI criteria: The HOME-PE randomized trial. Eur. Heart J. 2021, 42, 3146–3157. [Google Scholar] [CrossRef]
- den Exter, P.L.; Zondag, W.; Klok, F.A.; Brouwer, R.E.; Dolsma, J.; Eijsvogel, M.; Faber, L.M.; van Gerwen, M.; Grootenboers, M.J.; Heller-Baan, R.; et al. Efficacy and Safety of Outpatient Treatment Based on the Hestia Clinical Decision Rule with or without N-Terminal Pro-Brain Natriuretic Peptide Testing in Patients with Acute Pulmonary Embolism. A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 998–1006. [Google Scholar] [CrossRef]
- Zondag, W.; Hiddinga, B.I.; Crobach, M.J.; Labots, G.; Dolsma, A.; Durian, M.; Faber, L.M.; Hofstee, H.M.; Melissant, C.F.; Ullmann, E.F.; et al. Hestia criteria can discriminate high- from low-risk patients with pulmonary embolism. Eur. Respir. J. 2013, 41, 588–592. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.; Mallett, S.; Daoud-Elias, M.; Poggi, J.-N.; Clarke, M. Prognostic models in acute pulmonary embolism: A systematic review and meta-analysis. BMJ Open 2016, 6, e010324. [Google Scholar] [CrossRef]
- Sanchez, D.; De Miguel, J.; Sam, A.; Wagner, C.; Zamarro, C.; Nieto, R.; Garcia, L.; Aujesky, D.; Yusen, R.D.; Jiménez, D. The effects of cause of death classification on prognostic assessment of patients with pulmonary embolism. J. Thromb. Haemost. 2011, 9, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z.; Visani, L.; De Rosa, M. Acute pulmonary embolism: Clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999, 353, 1386–1389. [Google Scholar] [CrossRef]
- Laporte, S.; Mismetti, P.; Décousus, H.; Uresandi, F.; Otero, R.; Lobo, J.L.; Monreal, M.; The RIETE Investigators. Clinical predictors for fatal pulmonary embolism in 15,520 patients with venous thromboembolism: Findings from the Registro Informatizado de la Enfermedad TromboEmbolica venosa (RIETE) Registry. Circulation 2008, 117, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, A.; Saleeb, M.; Rathor, P.; Sehgal, V.; Kabak, B.; Hosur, S. Prognostic value of troponins in acute nonmassive pulmonary embolism: A meta-analysis. Heart Lung 2015, 44, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, O.; Trinquart, L.; Colombet, I.; Durieux, P.; Huisman, M.V.; Chatellier, G.; Meyer, G. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: A systematic review. Eur. Heart J. 2008, 29, 1569–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becattini, C.; Vedovati, M.C.; Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: A meta-analysis. Circulation 2007, 116, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, D.; Uresandi, F.; Otero, R.; Lobo, J.L.; Monreal, M.; Martí, D.; Zamora, J.; Muriel, A.; Aujesky, D.; Yusen, R.D. Troponin-based risk stratification of patients with acute nonmassive pulmonary embolism: Systematic review and metaanalysis. Chest 2009, 136, 974–982. [Google Scholar] [CrossRef]
- Lankeit, M.; Jiménez, D.; Kostrubiec, M.; Dellas, C.; Kuhnert, K.; Hasenfuß, G.; Pruszczyk, P.; Konstantinides, S. Validation of N-terminal pro-brain natriuretic peptide cut-off values for risk stratification of pulmonary embolism. Eur. Respir. J. 2014, 43, 1669–1677. [Google Scholar] [CrossRef] [Green Version]
- Nithianandan, H.; Reilly, A.; Tritschler, T.; Wells, P. Applying rigorous eligibility criteria to studies evaluating prognostic utility of serum biomarkers in pulmonary embolism: A systematic review and meta-analysis. Thromb. Res. 2020, 195, 195–208. [Google Scholar] [CrossRef]
- Jiménez, D.; Kopecna, D.; Tapson, V.; Briese, B.; Schreiber, D.; Lobo, J.L.; Monreal, M.; Aujesky, D.; Sanchez, O.; Meyer, G.; et al. Derivation and validation of multimarker prognostication for normotensive patients with acute symptomatic pulmonary embolism. Am. J. Respir. Crit. Care Med. 2014, 189, 718–726. [Google Scholar] [CrossRef]
- Santos, A.R.; Freitas, P.; Ferreira, J.; Félix-Oliveira, A.; Gonçalves, M.; Faria, D.; Augusto, J.; Simões, J.; Gago, M.; Oliveira, J.; et al. Risk stratification in normotensive acute pulmonary embolism patients: Focus on the intermediate–high risk subgroup. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Hellenkamp, K.; Schwung, J.; Rossmann, H.; Kaeberich, A.; Wachter, R.; Hasenfuß, G.; Konstantinides, S.; Lankeit, M. Risk stratification of normotensive pulmonary embolism: Prognostic impact of copeptin. Eur. Respir. J. 2015, 46, 1701–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrubiec, M.; Pływaczewska, M.; Jiménez, D.; Lankeit, M.; Ciurzynski, M.; Konstantinides, S.; Pruszczyk, P. The Prognostic Value of Renal Function in Acute Pulmonary Embolism—A Multi-Centre Cohort Study. Thromb. Haemost. 2019, 119, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Chopard, R.; Jimenez, D.; Serzian, G.; Ecarnot, F.; Falvo, N.; Kalbacher, E.; Bonnet, B.; Capellier, G.; Schiele, F.; Bertoletti, L.; et al. Renal dysfunction improves risk stratification and may call for a change in the management of intermediate- and high-risk acute pulmonary embolism: Results from a multicenter cohort study with external validation. Crit. Care 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Dellas, C.; Puls, M.; Lankeit, M.; Schäfer, K.; Cuny, M.; Berner, M.; Hasenfuss, G.; Konstantinides, S. Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. J. Am. Coll. Cardiol. 2010, 55, 2150–2157. [Google Scholar] [CrossRef] [Green Version]
- John, G.; Marti, C.; Poletti, P.-A.; Perrier, A. Hemodynamic Indexes Derived from Computed Tomography Angiography to Predict Pulmonary Embolism Related Mortality. BioMed Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chornenki, N.L.J.; Poorzargar, K.; Shanjer, M.; Mbuagbaw, L.; Delluc, A.; Crowther, M.; Siegal, D.M. Detection of right ventricular dysfunction in acute pulmonary embolism by computed tomography or echocardiography: A systematic review and meta-analysis. J. Thromb. Haemost. 2021, 19, 2504–2513. [Google Scholar] [CrossRef]
- Qanadli, S.D.; El Hajjam, M.; Vieillard-Baron, A.; Joseph, T.; Mesurolle, B.; Oliva, V.L.; Barré, O.; Bruckert, F.; Dubourg, O.; Lacombe, P. New CT index to quantify arterial obstruction in pulmonary embolism: Comparison with angiographic index and echocardiography. AJR Am. J. Roentgenol. 2001, 176, 1415–1420. [Google Scholar] [CrossRef]
- Kay, F.U.; Abbara, S. Refining Risk Stratification in Nonmassive Acute Pulmonary Embolism. Radiol. Cardiothorac. Imaging 2020, 2, e200458. [Google Scholar] [CrossRef]
- Lyhne, M.D.; Kabrhel, C.; Giordano, N.; Andersen, A.; Nielsen-Kudsk, J.E.; Zheng, H.; Dudzinski, D.M. The echocardiographic ratio tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure predicts short-term adverse outcomes in acute pulmonary embolism. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 285–294. [Google Scholar] [CrossRef]
- Brailovsky, Y.; Lakhter, V.; Weinberg, I.; Porcaro, K.; Haines, J.; Morris, S.; Masic, D.; Mancl, E.; Bashir, R.; Alkhouli, M.; et al. Right Ventricular Outflow Doppler Predicts Low Cardiac Index in Intermediate Risk Pulmonary Embolism. Clin. Appl. Thromb. 2019, 25, 1076029619886062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuriditsky, E.; Mitchell, O.J.; Sibley, R.A.; Xia, Y.; Sista, A.; Zhong, J.; Moore, W.H.; Amoroso, N.E.; Goldenberg, R.; Smith, D.E.; et al. Low left ventricular outflow tract velocity time integral is associated with poor outcomes in acute pulmonary embolism. Vasc. Med. 2020, 25, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Yuriditsky, E.; Mitchell, O.J.; Sista, A.; Xia, Y.; Sibley, R.A.; Zhong, J.; Moore, W.H.; Amoroso, N.E.; Goldenberg, R.; Smith, D.E.; et al. Right ventricular stroke distance predicts death and clinical deterioration in patients with pulmonary embolism. Thromb. Res. 2020, 195, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Prosperi-Porta, G.; Solverson, K.; Fine, N.; Humphreys, C.J.; Ferland, A.; Weatherald, J. Echocardiography-Derived Stroke Volume Index Is Associated with Adverse In-Hospital Outcomes in Intermediate-Risk Acute Pulmonary Embolism: A Retrospective Cohort Study. Chest 2020, 158, 1132–1142. [Google Scholar] [CrossRef]
- Mirambeaux, R.; León, F.; Bikdeli, B.; Morillo, R.; Barrios, D.; Mercedes, E.; Moores, L.; Tapson, V.; Yusen, R.D.; Jiménez, D. Intermediate-High Risk Pulmonary Embolism. TH Open 2019, 03, e356–e363. [Google Scholar] [CrossRef] [Green Version]
- Guillermin, A.; Yan, D.J.; Perrier, A.; Marti, C. Safety and efficacy of tenecteplase versus alteplase in acute coronary syndrome: A systematic review and meta-analysis of randomized trials. Arch. Med Sci. 2016, 12, 1181–1187. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.E.; Shapiro, N.I.; Trzeciak, S.; Arnold, R.C.; Claremont, H.A.; Kline, J.A.; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: A randomized clinical trial. JAMA 2010, 303, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Vanni, S.; Socci, F.; Pepe, G.; Nazerian, P.; Viviani, G.; Baioni, M.; Conti, A.; Grifoni, S. High Plasma Lactate Levels Are Associated with Increased Risk of In-hospital Mortality in Patients With Pulmonary Embolism. Acad. Emerg. Med. 2011, 18, 830–835. [Google Scholar] [CrossRef]
- Vanni, S.; Viviani, G.; Baioni, M.; Pepe, G.; Nazerian, P.; Socci, F.; Bartolucci, M.; Bartolini, M.; Grifoni, S. Prognostic Value of Plasma Lactate Levels Among Patients with Acute Pulmonary Embolism: The Thrombo-Embolism Lactate Outcome Study. Ann. Emerg. Med. 2013, 61, 330–338. [Google Scholar] [CrossRef]
- Ebner, M.; Pagel, C.F.; Sentler, C.; Harjola, V.-P.; Bueno, H.; Lerchbaumer, M.H.; Stangl, K.; Pieske, B.; Hasenfuß, G.; Konstantinides, S.V.; et al. Venous lactate improves the prediction of in-hospital adverse outcomes in normotensive pulmonary embolism. Eur. J. Intern. Med. 2021, 86, 25–31. [Google Scholar] [CrossRef]
- Bova, C.; Sanchez, O.; Prandoni, P.; Lankeit, M.; Konstantinides, S.; Vanni, S.; Jiménez, D. Identification of intermediate-risk patients with acute symptomatic pulmonary embolism. Eur. Respir. J. 2014, 44, 694–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Shao, X.; Zhang, Y.; Zhang, Z.; Tao, X.; Zhai, Z.; Wang, C. Assessment of the Bova score for risk stratification of acute normotensive pulmonary embolism: A systematic review and meta-analysis. Thromb. Res. 2020, 193, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; Bova, C.; Sanchez, O.; Prandoni, P.; Lankeit, M.; Konstantinides, S.; Vanni, S.; Fernández-Golfín, C.; Yusen, R.D.; Jiménez, D. Validation of a Model for Identification of Patients at Intermediate to High Risk for Complications Associated With Acute Symptomatic Pulmonary Embolism. Chest 2015, 148, 211–218. [Google Scholar] [CrossRef]
- Vanni, S.; Nazerian, P.; Bova, C.; Bondi, E.; Morello, F.; Pepe, G.; Paladini, B.; Liedl, G.; Cangioli, E.; Grifoni, S.; et al. Comparison of clinical scores for identification of patients with pulmonary embolism at intermediate–high risk of adverse clinical outcome: The prognostic role of plasma lactate. Intern. Emerg. Med. 2016, 12, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Vanni, S.; Jiménez, D.; Nazerian, P.; Morello, F.; Parisi, M.; Daghini, E.; Pratesi, M.; López, R.; Bedate, P.; Lobo, J.L.; et al. Short-term clinical outcome of normotensive patients with acute PE and high plasma lactate. Thorax 2015, 70, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobohm, L.; Hellenkamp, K.; Hasenfuß, G.; Münzel, T.; Konstantinides, S.; Lankeit, M. Comparison of risk assessment strategies for not-high-risk pulmonary embolism. Eur. Respir. J. 2016, 47, 1170–1178. [Google Scholar] [CrossRef]
- Hobohm, L.; Becattini, C.; Konstantinides, S.V.; Casazza, F.; Lankeit, M. Validation of a fast prognostic score for risk stratification of normotensive patients with acute pulmonary embolism. Clin. Res. Cardiol. 2020, 109, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.; Santos, A.R.; Ferreira, A.M.; Oliveira, A.; Gonçalves, M.; Corte-Real, A.; Lameiras, C.; Maurício, J.; Ornelas, E.; Matos, C.; et al. Derivation and external validation of the SHIeLD score for predicting outcome in normotensive pulmonary embolism. Int. J. Cardiol. 2019, 281, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lankeit, M.; Friesen, D.; Schäfer, K.; Hasenfuß, G.; Konstantinides, S.; Dellas, C. A simple score for rapid risk assessment of non-high-risk pulmonary embolism. Clin. Res. Cardiol. 2013, 102, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Skowrońska, M.; Skrzyńska, M.; Machowski, M.; Bartoszewicz, Z.; Paczyńska, M.; Ou-Pokrzewińska, A.; Kurnicka, K.; Ciurzyński, M.; Roik, M.; Wiśniewska, M.; et al. Plasma growth differentiation factor 15 levels for predicting serious adverse events and bleeding in acute pulmonary embolism: A prospective observational study. Pol. Arch. Intern. Med. 2020, 130, 757–765. [Google Scholar]
- Kaeberich, A.; Seeber, V.; Jiménez, D.; Kostrubiec, M.; Dellas, C.; Hasenfuß, G.; Giannitsis, A.; Pruszczyk, P.; Konstantinides, S.; Lankeit, M. Age-adjusted high-sensitivity troponin T cut-off value for risk stratification of pulmonary embolism. Eur. Respir. J. 2015, 45, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, M.; Bay, C.; Skrocki, L.; Rahimi, F.; Mehdipour, M. Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am. J. Cardiol. 2013, 111, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhai, Z.-G.; Liang, L.-R.; Liu, F.-F.; Yang, Y.-H.; Wang, C. Lower dosage of recombinant tissue-type plasminogen activator (rt-PA) in the treatment of acute pulmonary embolism: A systematic review and meta-analysis. Thromb. Res. 2014, 133, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, E.D.; Jaber, W.; Lacomis, J.; Markel, K.; McDaniel, M.; Rivera-Lebron, B.N.; Ross, C.B.; Sechrist, J.; Toma, C.; Chaer, R. Randomized Trial Comparing Standard Versus Ultrasound-Assisted Thrombolysis for Submassive Pulmonary Embolism: The SUNSET sPE Trial. JACC Cardiovasc. Interv. 2021, 14, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Sista, A.K.; Horowitz, J.M.; Tapson, V.F.; Rosenberg, M.; Elder, M.D.; Schiro, B.J.; Dohad, S.; Amoroso, N.E.; Dexter, D.J.; Loh, C.T.; et al. Indigo Aspiration System for Treatment of Pulmonary Embolism: Results of the EXTRACT-PE Trial. JACC Cardiovasc. Interv. 2021, 14, 319–329. [Google Scholar] [CrossRef]
- Tu, T.; Toma, C.; Tapson, V.F.; Adams, C.; Jaber, W.A.; Silver, M.; Khandhar, S.; Amin, R.; Weinberg, M.; Engelhardt, T.; et al. A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism: The FLARE Study. JACC Cardiovasc. Interv. 2019, 12, 859–869. [Google Scholar] [CrossRef]
- Pei, D.T.; Liu, J.; Yaqoob, M.; Ahmad, W.; Bandeali, S.S.; Hamzeh, I.R.; Virani, S.S.; Hira, R.S.; Lakkis, N.M.; Alam, M. Meta-Analysis of Catheter Directed Ultrasound-Assisted Thrombolysis in Pulmonary Embolism. Am. J. Cardiol. 2019, 124, 1470–1477. [Google Scholar] [CrossRef]
- Pasrija, C.; Kronfli, A.; Rouse, M.; Raithel, M.; Bittle, G.J.; Pousatis, S.; Ghoreishi, M.; Gammie, J.S.; Griffith, B.P.; Sanchez, P.G.; et al. Outcomes after surgical pulmonary embolectomy for acute submassive and massive pulmonary embolism: A single-center experience. J. Thorac. Cardiovasc. Surg. 2018, 155, 1095–1106.e2. [Google Scholar] [CrossRef] [Green Version]
- Barco, S.; Vicaut, E.; Klok, F.A.; Lankeit, M.; Meyer, G.; Konstantinides, S.V. Improved identification of thrombolysis candidates amongst intermediate-risk pulmonary embolism patients: Implications for future trials. Eur. Respir. J. 2018, 51, 1701775. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, O.; Charles-Nelson, A.; Ageno, W.; Barco, S.; Binder, H.; Chatellier, G.; Duerschmied, D.; Empen, K.; Ferreira, M.; Girard, P.; et al. Reduced-Dose Intravenous Thrombolysis for Acute Intermediate-High-risk Pulmonary Embolism: Rationale and Design of the Pulmonary Embolism International THrOmbolysis (PEITHO)-3 trial. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Kurzyna, M.; Kopeć, G.; Sławek-Szmyt, S.; Wrona, K.; Stępniewski, J.; Jankiewicz, S.; Pietrasik, A.; Machowski, M.; Darocha, S.; et al. Pulmonary embolism response team: A multidisciplinary approach to pulmonary embolism treatment. Polish PERT Initiative Report. Kardiologia Polska 2021, 79, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Dudzinski, D.M.; Piazza, G. Jd Multidisciplinary Pulmonary Embolism Response Teams. Circulation 2016, 133, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nomenclature | Hemodynamic Instability | RVD | Elevated Troponin | PESI > Class II or sPESI > 0 |
---|---|---|---|---|
European Society of Cardiology (ESC) 2019 | ||||
High risk | + | (+) | (+) | + |
Intermediate–high risk | − | + | + | + * |
Intermediate–low risk | − | One or none | + * | |
Low risk | − | − | (−) | − |
American Heart Association (AHA) 2011 | ||||
Massive | + | (+) | (+) | NA |
Submassive | − | One or both | NA | |
Low risk | − | − | − | NA |
Prediction Index | Validation Cohorts (Patients) | Sensitivity (95% CI) | Specificity (95% CI) | PLR (95% CI) | NLR (95% CI) |
---|---|---|---|---|---|
PESI | 19 (23,997) | 0.89 (0.87–0.90) | 0.49 (0.44–0.53) | 1.72 (1.57–1.89) | 0.22 (0.18–0.25) |
sPESI | 9 (26,610) | 0.92 (0.89–0.94) | 0.38 (0.32–0.44) | 1.47 (1.28–1.68) | 0.20 (0.13–0.31) |
Marker | Sensitivity (95% CI) | Specificity (95% CI) | PLR (95% CI) | NLR (95% CI) |
---|---|---|---|---|
Troponin [34] | 0.66 (0.61 to 0.70) | 0.66 (0.65 to 0.67) | 2.13 (1.84 to 2.47) | 0.51 (0.40 to 0.60) |
BNP [35] | 0.88 (0.65 to 0.96) | 0.70 (0.64 to 0.75) | 2.13 (1.84 to 2.47) | 0.51 (0.40 to 0.60) |
NT-proBNP [35] | 0.93 (0.14 to 1.00) | 0.58 (0.14 to 0.92) | 2.93 (2.28 to 3.77) | 0.17 (0.05 to 0.58) |
RVD US [35] | 0.70 (0.46 to 0.86) | 0.57 (0.47 to 0.66) | 1.48 (1.05 to 2.08) | 0.82 (0.65 to 1.03) |
RVD CT [35] | 0.65 (0.35 to 0.85) | 0.56 (0.39 to 0.71) | 1.63 (1.27 to 2.08) | 0.53 (0.31 to 0.89) |
Predictor | Points |
---|---|
SBP 90–100 mmHg | 2 |
Elevated troponin | 2 |
RV dysfunction | 2 |
Heart rate > 100/min | 1 |
Score | Sensitivity | Specificity | PLR | PPV | Outcome |
---|---|---|---|---|---|
Scores including Plasma Lactate | |||||
ESC 2019 + lactate [60] | 0.33 (0.16 to 0.55) | 0.95 (0.92 to 0.97) | 6.27 (3.11 to 12.66) | 0.27 | In-hospital adverse outcome |
Bova + lactate [64] | 0.46 (0.34 to 0.58) | 0.91 (0.90 to 0.92) | 5.16 (3.55 to 7.13) | 0.26 | Adverse 7-day outcome |
TELOS [64] | 0.19 (0.11 to 0.30) | 0.95 (0.95 to 0.96) | 3.94 (2.04 to 7.15) | 0.21 | Adverse 7-day outcome |
Scores without plasma lactate | |||||
Bova [66] | 0.48 (0.30 to 0.67) | 0.86 (0.82 to 0.90) | 3.41 (2.11 to 5.52) | 0.19 | Adverse 30-day outcome |
ESC 2014 [66] | 0.80 (0.61 to 0.91) | 0.69 (0.64 to 0.73) | 2.60 (2.00 to 3.30) | 0.15 | Adverse 30-day outcome |
ESC 2019 [67] | 0.52 (0.34 to 0.70) | 0.79 (0.77 to 0.82) | 2.5 (1.7 to 3.7) | 0.07 | In-hospital adverse outcome |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leidi, A.; Bex, S.; Righini, M.; Berner, A.; Grosgurin, O.; Marti, C. Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives. J. Clin. Med. 2022, 11, 2533. https://doi.org/10.3390/jcm11092533
Leidi A, Bex S, Righini M, Berner A, Grosgurin O, Marti C. Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives. Journal of Clinical Medicine. 2022; 11(9):2533. https://doi.org/10.3390/jcm11092533
Chicago/Turabian StyleLeidi, Antonio, Stijn Bex, Marc Righini, Amandine Berner, Olivier Grosgurin, and Christophe Marti. 2022. "Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives" Journal of Clinical Medicine 11, no. 9: 2533. https://doi.org/10.3390/jcm11092533
APA StyleLeidi, A., Bex, S., Righini, M., Berner, A., Grosgurin, O., & Marti, C. (2022). Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives. Journal of Clinical Medicine, 11(9), 2533. https://doi.org/10.3390/jcm11092533