Factors Associated with Deterioration of Primary Angle Closure after Lens Extraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foster, P.J. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin. Ophthalmol. 2002, 17, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Lee, C.K.; Kim, W.-S. Long-term therapeutic efficacy of phacoemulsification with intraocular lens implantation in patients with phacomorphic glaucoma. J. Cataract Refract. Surg. 2010, 36, 783–789. [Google Scholar] [CrossRef]
- Pereira, F.A.; Cronemberger, S. Ultrasound biomicroscopic study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation. Ophthalmology 2003, 110, 1799–1806. [Google Scholar] [CrossRef]
- Azuara-Blanco, A.; Burr, J.; Ramsay, C.; Cooper, D.; Foster, P.J.; Friedman, D.S.; Scotland, G.; Javanbakht, M.; Cochrane, C.; Norrie, J.; et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): A randomised controlled trial. Lancet 2016, 388, 1389–1397. [Google Scholar]
- Tarongoy, P.; Ho, C.L.; Walton, D.S. Angle-closure glaucoma: The role of the lens in the pathogenesis, prevention, and treament. Surv. Ophthalmol. 2009, 54, 211–225. [Google Scholar] [CrossRef]
- Tham, C.; Kwong, Y.; Leung, D.; Lam, S.W.; Li, F.C.; Chiu, T.Y.; Chan, J.C. Phacoemulsification vs phacotrabeculectomy in chronic angle-closure glaucoma with cataract. Arch. Ophthalmol. 2010, 128, 303–311. [Google Scholar]
- Hansapinyo, L.; Choy, B.N.K.; Lai, J.S.M.; Tham, C.C. Phacoemulsification Versus Phacotrabeculectomy in Primary Angle-closure Glaucoma With Cataract: Long-Term Clinical Outcomes. J. Glaucoma 2020, 29, 15–23. [Google Scholar] [CrossRef]
- Chen, P.P.; Lin, S.C.; Junk, A.K.; Radhakrishnan, S.; Singh, K.; Chen, T.C. The effect of phacoemulsification on intraocular pressure in glaucoma patients: A report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 1294–1307. [Google Scholar] [CrossRef]
- Gunning, F.P.; Greve, E.L. Lens extraction for uncontrolled angle-closure glaucoma: Long-term follow-up. J. Cataract Refract. Surg. 1998, 24, 1347–1356. [Google Scholar] [CrossRef]
- Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F. Effect of cataract surgery on intraocular pressure control in glaucoma patients. J. Cataract Refract. Surg. 2001, 27, 1779–1786. [Google Scholar] [CrossRef]
- Song, M.K.; Sung, K.R.; Shin, J.W.; Jo, Y.H.; Won, H.J. Glaucomatous Progression after Lens Extraction in Primary Angle Closure Disease Spectrum. J. Glaucoma 2020, 29, 711–717. [Google Scholar] [CrossRef]
- Nongpiur, M.E.; He, M.; Amerasinghe, N.; Friedman, D.S.; Tay, W.T.; Baskaran, M.; Smith, S.D.; Wong, T.Y.; Aung, T. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology 2011, 118, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Drexler, W.; Fujimoto, J.G. State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 2008, 27, 45–88. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Patella, V.M. Automated Static Perimetry, 2nd ed.; Mosby and Co: St. Louis, MO, USA, 1999; pp. 152–153. [Google Scholar]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Bengtsson, B.; Hussein, M. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol. Scand. 2003, 81, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Tham, C.C.; Chan, J.C. The clinical outcomes of cataract extraction by phacoemulsification in eyes with primary angle-closure glaucoma (PACG) and co-existing cataract: A prospective case series. J. Glaucoma 2006, 15, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gunning, F.; Greve, E. Uncontrolled primary angle closure glaucoma: Results of early intercapsular cataract extraction and posterior chamber lens implantation. Int. Ophthalmol. 1991, 15, 237–247. [Google Scholar] [CrossRef]
- Liu, C.J.-l.; Cheng, C.-Y.; Wu, C.-W.; Lau, L.-I.; Chou, J.C.; Hsu, W.-M. Factors predicting intraocular pressure control after phacoemulsification in angle-closure glaucoma. Arch. Ophthalmol. 2006, 124, 1390–1394. [Google Scholar] [CrossRef] [Green Version]
- Tham, C.C.; Kwong, Y.Y.; Leung, D.Y.; Lam, S.; Li, F.C.; Chiu, T.Y.; Chan, J.C.; Chan, C.H.; Poon, A.S.; Yick, D.W. Phacoemulsification versus combined phacotrabeculectomy in medically controlled chronic angle closure glaucoma with cataract. Ophthalmology 2008, 115, 2167–2173.e2. [Google Scholar] [CrossRef]
- Tham, C.C.; Kwong, Y.Y.; Leung, D.Y.; Lam, S.; Li, F.C.; Chiu, T.Y.; Chan, J.C.; Lam, D.S.; Lai, J.S. Phacoemulsification versus combined phacotrabeculectomy in medically uncontrolled chronic angle closure glaucoma with cataracts. Ophthalmology 2009, 116, 725–731.e3. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Lee, N.E.; Hong, S.; Kang, E.; Rho, S.S.; Seong, G.J.; Hong, Y.J.; Kim, C.Y. Risk factors of disease progression after cataract surgery in chronic angle-closure glaucoma patients. J. Glaucoma 2016, 25, e372–e376. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Cioffi, G.A.; Liebmann, J.R.; Sample, P.A.; Zangwill, L.M.; Weinreb, R.N. The relationship between structural and functional alterations in glaucoma: A review. Semin. Ophthalmol. 2000, 15, 221–233. [Google Scholar] [PubMed]
- Nouri-Mahdavi, K.; Hoffman, D.; Coleman, A.L.; Liu, G.; Li, G.; Gaasterland, D.; Caprioli, J. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004, 111, 1627–1635. [Google Scholar] [CrossRef]
- Rao, H.L.; Addepalli, U.K.; Jonnadula, G.B.; Kumbar, T.; Senthil, S.; Garudadri, C.S. Relationship between intraocular pressure and rate of visual field progression in treated glaucoma. J. Glaucoma 2013, 22, 719–724. [Google Scholar] [CrossRef]
- Baskaran, M.; Kumar, R.S.; Govindasamy, C.V.; Htoon, H.M.; Wong, C.-Y.; Perera, S.A.; Wong, T.T.; Aung, T. Diurnal intraocular pressure fluctuation and associated risk factors in eyes with angle closure. Ophthalmology 2009, 116, 2300–2304. [Google Scholar] [CrossRef]
- Tan, S.; Yu, M.; Baig, N.; Chan, P.P.; Tang, F.Y.; Tham, C.C. Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4994–5005. [Google Scholar]
- Caprioli, J.; Coleman, A.L. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 2008, 115, 1123–1129. [Google Scholar] [CrossRef]
- Komori, S.; Ishida, K.; Yamamoto, T. Results of long-term monitoring of normal-tension glaucoma patients receiving medical therapy: Results of an 18-year follow-up. Graefe’s Arch. Clin. Exp. Ophthalmol. Albrecht Graefes Arch. Klin. Exp. Ophthalmol. 2014, 252, 1963–1970. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Li, S.L.; Chan, N.; Wong, M.O.; Chan, P.P.; Lai, I.; Baig, N.; Tan, S.; Man, X.; Tang, F.; et al. Factors Associated With Long-term Intraocular Pressure Fluctuation in Primary Angle Closure Disease: The CUHK PACG Longitudinal (CUPAL) Study. J. Glaucoma 2018, 27, 703–710. [Google Scholar] [CrossRef]
- Sihota, R.; Rao, A.; Gupta, V.; Srinivasan, G.; Sharma, A. Progression in primary angle closure eyes. J. Glaucoma 2010, 19, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.-w.; Qu, J.; Li, L.-p.; Ji, B.-L. Measurement of retinal nerve fiber layer in primary acute angle closure glaucoma by optical coherence tomography. J. Glaucoma 2007, 16, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-C.; Lin, P.-W.; Teng, M.-C.; Lai, C. Longitudinal changes in retinal nerve fiber layer thickness after acute primary angle closure measured with optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1659–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.W.; Lee, S.M. Comparison of longitudinal changes in circumpapillary retinal nerve fiber layer and ganglion cell complex thickness after acute primary angle closure: A 12-month prospective study. Jpn. J. Ophthalmol. 2018, 62, 194–200. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, T.-W.; Lee, K.M.; Lee, S.H.; Kim, H. Factors associated with the retinal nerve fiber layer loss after acute primary angle closure: A prospective EDI-OCT study. PLoS ONE 2017, 12, e168678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Stroux, A.; Velten, I.; Juenemann, A.; Martus, P.; Budde, W.M. Central corneal thickness correlated with glaucoma damage and rate of progression. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Kniestedt, C.; Lin, S.; Choe, J.; Nee, M.; Bostrom, A.; Stürmer, J.; Stamper, R.L. Correlation between intraocular pressure, central corneal thickness, stage of glaucoma, and demographic patient data: Prospective analysis of biophysical parameters in tertiary glaucoma practice populations. J. Glaucoma 2006, 15, 91–97. [Google Scholar] [CrossRef]
- Shah, S.; Chatterjee, A.; Mathai, M.; Kelly, S.P.; Kwartz, J.; Henson, D.; McLeod, D. Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. Ophthalmology 1999, 106, 2154–2160. [Google Scholar] [CrossRef]
- Hong, S.; Kim, C.Y.; Seong, G.J.; Hong, Y.J. Central corneal thickness and visual field progression in patients with chronic primary angle-closure glaucoma with low intraocular pressure. Am. J. Ophthalmol. 2007, 143, 362–363. [Google Scholar] [CrossRef]
- Whitacre, M.M.; Stein, R. Sources of error with use of Goldmann-type tonometers. Surv. Ophthalmol. 1993, 38, 1–30. [Google Scholar] [CrossRef]
- Mohamed-Noor, J.; Bochmann, F.; Siddiqui, M.A.R.; Atta, H.R.; Leslie, T.; Maharajan, P.; Wong, Y.M.; Azuara-Blanco, A. Correlation between corneal and scleral thickness in glaucoma. J. Glaucoma 2009, 18, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-Y.; Zheng, Y.-F.; Wong, T.-Y.; Cheung, C.Y.-L.; Loon, S.-C.; Chauhan, B.C.; Aung, T. Relationship of central corneal thickness with optic disc parameters: The Singapore Malay Eye Study. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
Total (n = 77) | PACS/PAC (n = 41) | PACG (n = 36) | p Value | |
---|---|---|---|---|
Age (year) | 66.0 ± 7.6 | 65.1 ± 8.8 | 67.1 ± 5.7 | 0.222 |
Sex (M/F) | 16/61 | 9/32 | 7/29 | 0.787 * |
Baseline VA (logMAR) | 0.14 ± 0.2 | 0.12 ± 0.3 | 0.15 ± 0.1 | 0.714 |
SE (diopter) | 0.64 ± 1.6 | 0.57 ± 1.9 | 0.71 ± 1.2 | 0.708 |
Axial length (mm) | 22.5 ± 0.8 | 22.5 ± 0.9 | 22.6 ± 0.7 | 0.498 |
CCT (μm) | 544.0 ± 37.1 | 551.0 ± 32.4 | 536.1 ± 40.9 | 0.079 |
IOP (mmHg) | 23.1 ± 14.4 | 23.6 ± 16.0 | 22.5 ± 12.5 | 0.763 |
ACD (mm) | 1.9 ± 0.4 | 1.8 ± 0.4 | 2.0 ± 0.3 | 0.069 |
Lens vault (μm) | 1154.0 ± 323.6 | 1209.0 ± 350.4 | 1091.4 ± 281.9 | 0.107 |
AOD500 (mm) | 0.135 ± 0.09 | 0.126 ± 0.07 | 0.146 ± 0.09 | 0.344 |
Preoperative average RNFL thickness (μm) | 88.4 ± 18.9 | 97.2 ± 15.5 | 78.3 ± 17.5 | <0.001 † |
Preoperative VF MD (dB) | −4.88 ± 6.6 | −2.13 ± 2.6 | −8.01 ± 8.2 | <0.001 |
Preoperative VF VFI (%) | 88.5 ± 20.1 | 96.9 ± 6.2 | 78.9 ± 25.6 | <0.001 |
Preoperative acute attack | 23/77 (29.9%) | 13/41 (31.7%) | 10/36 (27.8%) | 0.707 |
Time from diagnosis to surgery (year) | 2.5 ± 2.8 | 2.5 ± 2.5 | 2.5 ± 3.2 | 0.996 |
Follow-up time after surgery (year) | 3.5 ± 1.4 | 3.6 ± 1.4 | 3.5 ± 1.4 | 0.678 |
Postoperative mean follow-up IOP (mmHg) | 13.4 ± 2.1 | 13.4 ± 1.8 | 13.5 ± 2.4 | 0.876 |
Glaucoma medication number | 0.48 ± 0.6 | 0.15 ± 0.4 | 0.86 ± 0.7 | <0.001 |
Last average RNFL thickness (μm) | 82.60 ± 18.2 | 93.22 ± 11.2 | 70.50 ± 17.0 | <0.001 † |
Last VF MD (dB) | −5.17 ± 7.3 | −2.02 ± 2.1 | −8.75 ± 9.2 | <0.001 † |
Last VF VFI (%) | 86.1 ± 23.3 | 96.6 ± 4.1 | 74.2 ± 29.8 | <0.001 † |
Structure progression (%) | 31/77 (40.3%) | 7/41 (17.0%) | 24/36 (66.7%) | <0.001 * |
VF progression (%) | 12/77 (15.6%) | 0/41 (0%) | 12/36 (33.3%) | <0.001 * |
Non-Progressor (n = 34) | Progressor (n = 7) | p Value | |
---|---|---|---|
Age (year) | 64.6 ± 8.8 | 67.1 ± 9.0 | 0.747 |
Sex (M/F) | 8/26 | 1/6 | 0.591 * |
Base VA (logMAR) | 0.14 ± 0.3 | 0.07 ± 0.1 | 0.879 |
Axial length (mm) | 22.5 ± 0.9 | 22.5 ± 0.9 | 0.986 |
CCT (μm) | 555.6 ± 32.6 | 528.6 ± 21.2 | 0.049 † |
IOP (mmHg) | 24.3 ± 17.0 | 19.7 ± 10.1 | 0.722 |
ACD (mm) | 1.8 ± 0.5 | 1.9 ± 0.2 | 0.282 |
Lens Vault (μm) | 1227.9 ± 372.1 | 1117.1 ± 213.4 | 0.486 |
AOD500 (mm) | 0.131 ± 0.08 | 0.105 ± 0.03 | 0.623 |
Preoperative average RNFL thickness (μm) | 99.82 ± 15.1 | 84.57 ± 11.0 | 0.001 † |
Preoperative VF MD (dB) | −2.16 ± 2.6 | −1.99 ± 2.4 | 0.808 |
Preoperative VF VFI (%) | 96.6 ± 6.7 | 98.1 ± 2.0 | 0.663 |
Preoperative mean IOP (mmHg) | 16.5 ± 3.5 | 16.1 ± 1.6 | 0.722 |
Preoperative peak IOP (mmHg) | 27.0 ± 16.8 | 24.7 ± 9.8 | 0.623 |
Preoperative trough IOP (mmHg) | 12.3 ± 2.7 | 12.4 ± 1.8 | 0.623 |
Preoperative IOP range (mmHg) | 14.7 ± 17.8 | 12.2 ± 10.2 | 0.552 |
Preoperative LPI (N/Y) | 12/22 | 3/4 | 0.705 * |
Time from diagnosis to surgery (year) | 2.6 ± 2.5 | 2.5 ± 2.8 | 0.933 |
Glaucoma medication number | 0.12 ± 0.3 | 0.29 ± 0.5 | 0.258 |
Postoperative mean IOP (mmHg) | 13.4 ± 1.7 | 13.4 ± 2.3 | 0.959 |
Postoperative peak IOP (mmHg) | 16.0 ± 3.2 | 15.1 ± 2.7 | 0.599 |
Postoperative trough IOP (mmHg) | 11.2 ± 1.6 | 11.4 ± 2.1 | 0.722 |
Postoperative IOP range (mmHg) | 4.7 ± 2.8 | 3.7 ± 1.5 | 0.444 |
Criteria | Structural Progression | Visual Field Progression | ||||
---|---|---|---|---|---|---|
Non-Progressor (n = 12) | Progressor (n = 24) | p Value | Non-Progressor (n = 24) | Progressor (n = 12) | p Value | |
Age (year) | 67.4 ± 7.8 | 67.0 ± 4.5 | 0.608 | 66.2 ± 6.6 | 68.9 ± 2.7 | 0.099 * |
Sex (M/F) | 3/9 | 4/20 | 0.551 † | 4/20 | 3/9 | 0.664 † |
Base VA (LogMAR) | 0.18 ± 0.1 | 0.13 ± 1.3 | 0.166 | 0.16 ± 0.1 | 0.13 ± 0.1 | 0.934 |
Axial length (mm) | 22.3 ± 0.7 | 22.7 ± 0.6 | 0.067 * | 22.4 ± 0.5 | 22.8 ± 0.9 | 0.164 * |
CCT (μm) | 551.7 ± 40.0 | 528.3 ± 39.9 | 0.041 ‡ | 545.4 ± 41.5 | 517.5 ± 33.9 | 0.026 ‡ |
IOP (mmHg) | 21.3 ± 11.0 | 23.2 ± 13.4 | 0.810 | 22.0 ± 12.7 | 23.6 ± 12.7 | 0.804 |
ACD (mm) | 2.0 ± 0.2 | 2.0 ± 0.3 | 0.474 * | 2.0 ± 0.3 | 2.1 ± 0.4 | 0.227 * |
Lens vault (μm) | 1159.2 ± 211.9 | 1057.5 ± 309.6 | 0.631 | 1145.8 ± 276.3 | 982.5 ± 271.4 | 0.102 * |
AOD500 (mm) | 0.121 ± 0.05 | 0.158 ± 0.11 | 0.398 | 0.142 ± 0.09 | 0.153 ± 0.13 | 0.934 |
Preoperative avg RNFL thickness (μm) | 80.9 ± 16.3 | 77.0 ± 18.3 | 0.536 * | 87.8 ± 17.7 | 69.9 ± 16.0 | 0.028 * |
Preoperative VF MD (dB) | −10.09 ± 10.0 | −6.97 ± 7.11 | 0.349 * | −6.6 ± 7.7 | −10.9 ± 8.7 | 0.072 |
Preoperative VF VFI (%) | 71.3 ± 29.9 | 83.7 ± 22.1 | 0.267 | 84.2 ± 23.4 | 68.5 ± 27.7 | 0.024 ‡ |
Preoperative mean IOP (mmHg) | 16.7 ± 3.9 | 16.5 ± 5.4 | 0.608 | 15.7 ± 2.6 | 18.4 ± 7.6 | 0.585 |
Preoperative peak IOP (mmHg) | 22.0 ± 10.5 | 24.9 ± 12.7 | 0.497 | 23.3 ± 12.3 | 25.4 ± 11.8 | 0.456 |
Preoperative trough IOP (mmHg) | 12.9 ± 2.6 | 12.6 ± 6.2 | 0.273 | 12.0 ± 2.8 | 14.1 ± 8.3 | 0.753 |
Preoperative IOP range (mmHg) | 9.1 ± 10.6 | 12.2 ± 13.5 | 0.297 | 11.3 ± 13.5 | 11.3 ± 11.1 | 0.704 |
Preoperative LPI (N/Y) | 8/4 | 10/14 | 0.157 † | 11/13 | 7/5 | 0.480 † |
Time from diagnosis to surgery (year) | 2.7 ± 4.5 | 2.4 ± 2.4 | 0.420 | 3.1 ± 3.8 | 1.4 ± 1.3 | 0.251 |
Glaucoma medication number | 1.17 ± 0.8 | 0.71 ± 0.6 | 0.078 | 0.91 ± 0.7 | 0.75 ± 0.6 | 0.517 |
Postoperative mean IOP (mmHg) | 12.9 ± 1.6 | 13.7 ± 2.7 | 0.608 | 13.3 ± 2.3 | 13.8 ± 2.8 | 0.753 |
Postoperative peak IOP (mmHg) | 15.0 ± 1.8 | 16.5 ± 3.9 | 0.133 * | 15.1 ± 2.4 | 17.8 ± 4.6 | 0.097 ‡ |
Postoperative trough IOP (mmHg) | 10.2 ± 1.9 | 11.3 ± 3.0 | 0.270 | 11.1 ± 2.9 | 10.8 ± 2.6 | 0.631 |
Postoperative IOP range (mmHg) | 4.7 ± 2.3 | 5.2 ± 3.5 | 0.905 | 4.0 ± 2.1 | 7.0 ± 4.0 | 0.013 ‡ |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | 1.029 | 0.94–1.13 | 0.548 | |||
Group (PACS as control) | 0.552 | 0.12–2.47 | 0.437 | |||
Axial length | 0.965 | 0.40–2.30 | 0.936 | |||
CCT | 0.971 | 0.94–1.00 | 0.066 | 0.980 | 0.95–1.01 | 0.216 |
Baseline IOP | 0.980 | 0.92–1.04 | 0.502 | |||
RNFL thickness (preoperative) | 0.928 | 0.88–0.97 | 0.002 | 0.928 | 0.88–0.97 | 0.002 |
VF MD (preoperative) | 0.866 | 0.62–1.21 | 0.400 | |||
VFI (preoperative) | 0.914 | 0.81–1.03 | 0.130 | |||
ACD | 1.134 | 0.25–5.15 | 0.870 | |||
Lens vault | 1.000 | 0.99–1.00 | 0.843 | |||
AOD500 | 0.001 | 0.00–233.0 | 0.275 | |||
Preoperative LPI (not performed as control) | 0.562 | 0.12–2.59 | 0.459 | |||
Preoperative acute attack (did not happen as control) | 0.913 | 0.18–4.72 | 0.913 | |||
Mean IOP (preoperative) | 0.995 | 0.76–1.30 | 0.974 | |||
Mean IOP (postoperative) | 0.967 | 0.63–1.48 | 0.878 |
Univariate Analysis | |||
---|---|---|---|
HR | 95% CI | p Value | |
Age | 1.023 | 0.95–1.10 | 0.531 |
Axial length | 1.283 | 0.76–2.15 | 0.346 |
CCT | 0.992 | 0.98–1.00 | 0.102 |
Baseline IOP | 1.023 | 0.99–1.05 | 0.133 |
RNFL thickness (preoperative) | 0.994 | 0.97–1.02 | 0.611 |
VF MD (preoperative) | 1.023 | 0.96–1.09 | 0.475 |
VFI (preoperative) | 1.007 | 0.99–1.03 | 0.486 |
ACD | 1.671 | 0.42–6.58 | 0.463 |
Lens vault | 0.999 | 0.99–1.00 | 0.515 |
AOD 500 | 8.330 | 0.08–924.2 | 0.378 |
Preoperative LPI (not performed as control) | 0.968 | 0.43–2.20 | 0.939 |
Preoperative acute attack (did not happen as control) | 1.280 | 0.54–3.00 | 0.571 |
Mean IOP (preoperative) | 1.080 | 0.99–1.18 | 0.098 |
Mean IOP (postoperative) | 1.101 | 0.94–1.29 | 0.237 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | 1.105 | 0.98–1.25 | 0.117 | |||
Axial length | 1.669 | 0.78–3.55 | 0.184 | |||
CCT | 0.998 | 0.98–1.00 | 0.094 | |||
Baseline IOP | 1.014 | 0.98–1.06 | 0.478 | |||
RNFL thickness (preoperative) | 0.950 | 0.92–0.99 | 0.006 | 0.964 | 0.93–0.99 | 0.043 |
VF MD (preoperative) | 0.945 | 0.89–1.01 | 0.079 | |||
ACD | 2.963 | 0.45–19.41 | 0.257 | |||
Lens vault | 0.998 | 0.99–1.00 | 0.104 | |||
AOD500 | 2.803 | 0.01–1674.5 | 0.752 | |||
Preoperative LPI (not performed as control) | 0.494 | 0.16–1.58 | 0.233 | |||
Preoperative acute attack (did not happen as control) | 0.817 | 0.22–3.03 | 0.763 | |||
Postoperative mean IOP | 1.111 | 0.89–1.39 | 0.353 | |||
Postoperative IOP range | 1.353 | 1.13–1.62 | 0.001 | 1.296 | 1.06–1.58 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.K.; Shin, J.W.; Sung, K.R. Factors Associated with Deterioration of Primary Angle Closure after Lens Extraction. J. Clin. Med. 2022, 11, 2557. https://doi.org/10.3390/jcm11092557
Song MK, Shin JW, Sung KR. Factors Associated with Deterioration of Primary Angle Closure after Lens Extraction. Journal of Clinical Medicine. 2022; 11(9):2557. https://doi.org/10.3390/jcm11092557
Chicago/Turabian StyleSong, Min Kyung, Joong Won Shin, and Kyung Rim Sung. 2022. "Factors Associated with Deterioration of Primary Angle Closure after Lens Extraction" Journal of Clinical Medicine 11, no. 9: 2557. https://doi.org/10.3390/jcm11092557
APA StyleSong, M. K., Shin, J. W., & Sung, K. R. (2022). Factors Associated with Deterioration of Primary Angle Closure after Lens Extraction. Journal of Clinical Medicine, 11(9), 2557. https://doi.org/10.3390/jcm11092557