Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Therapeutic Hypothermia Protocol at MMH
2.3. Outcome Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiguchi, T.; Okubo, M.; Nishiyama, C.; Maconochie, I.; Ong, M.E.H.; Kern, K.B.; Wyckoff, M.H.; McNally, B.; Christensen, E.F.; Tjelmeland, I.; et al. Out-of-hospital cardiac arrest across the world: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation 2020, 152, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Gan, Y.; Jiang, N.; Wang, R.; Chen, Y.; Luo, Z.; Zong, Q.; Chen, S.; Lv, C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: A systematic review and meta-analysis. Crit. Care 2020, 24, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Coute, R.A.; Nathanson, B.H.; Mader, T.J.; McNally, B.; Kurz, M.C. Trend analysis of disability-adjusted life years following adult out-of-hospital cardiac arrest in the United States: A study from the CARES Surveillance Group. Resuscitation 2021, 163, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef]
- The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef]
- Holzer, M. Targeted temperature management for comatose survivors of cardiac arrest. N. Engl. J. Med. 2010, 363, 1256–1264. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, E.A.; Mlynash, M.; Caulfield, A.F.; Eyngorn, I.; Wijman, C.A. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit. Care 2011, 15, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Hostler, D.; Zhou, J.; Tortorici, M.A.; Bies, R.R.; Rittenberger, J.C.; Empey, P.E.; Kochanek, P.M.; Callaway, C.W.; Poloyac, S.M. Mild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers. Drug Metab. Dispos. 2010, 38, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Sandroni, C.; D’Arrigo, S.; Cacciola, S.; Hoedemaekers, C.W.E.; Kamps, M.J.A.; Oddo, M.; Taccone, F.S.; Di Rocco, A.; Meijer, F.J.A.; Westhall, E.; et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: A systematic review. Intensive Care Med. 2020, 46, 1803–1851. [Google Scholar] [CrossRef]
- Hawkes, M.A.; Rabinstein, A.A. Neurological prognostication after cardiac arrest in the era of target temperature management. Curr. Neurol. Neurosci. Rep. 2019, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.; Gibbs, H.G.; Smith, S.W.; Dhaliwal, R.; Scott, N.L.; Sprenkle, M.D.; Geocadin, R.G. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia. Crit. Care Med. 2014, 42, 2493–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikimi, M.; Matsuda, N.; Matsui, K.; Takahashi, K.; Ejima, T.; Liu, K.; Ogura, T.; Higashi, M.; Umino, H.; Makishi, G.; et al. CAST: A new score for early prediction of neurological outcomes after cardiac arrest before therapeutic hypothermia with high accuracy. Intensive Care Med. 2016, 42, 2106–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikimi, M.; Ogura, T.; Nishida, K.; Takahashi, K.; Nakamura, M.; Matsui, S.; Matsuda, N.; Iwami, T. External validation of a risk classification at the emergency department of post-cardiac arrest syndrome patients undergoing targeted temperature management. Resuscitation 2019, 140, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [Green Version]
- Salter, R.; Bailey, M.; Bellomo, R.; Eastwood, G.; Goodwin, A.; Nielsen, N.; Pilcher, D.; Nichol, A.; Saxena, M.; Shehabi, Y.; et al. Changes in temperature management of cardiac arrest patients following publication of the target temperature management trial. Crit. Care Med. 2018, 46, 1722–1730. [Google Scholar] [CrossRef]
- Nolan, J.P.; Orzechowska, I.; Harrison, D.A.; Soar, J.; Perkins, G.D.; Shankar-Hari, M. Changes in temperature management and outcome after out-of-hospital cardiac arrest in United Kingdom intensive care units following publication of the targeted temperature management trial. Resuscitation 2021, 162, 304–311. [Google Scholar] [CrossRef]
- Callaway, C.W.; Coppler, P.J.; Faro, J.; Puyana, J.S.; Solanki, P.; Dezfulian, C.; Doshi, A.A.; Elmer, J.; Frisch, A.; Guyette, F.X.; et al. Association of initial illness severity and outcomes after cardiac arrest with targeted temperature management at 36 °C or 33 °C. JAMA network open 2020, 3, e208215. [Google Scholar] [CrossRef]
- Nishikimi, M.; Ogura, T.; Nishida, K.; Hayashida, K.; Emoto, R.; Matsui, S.; Matsuda, N.; Iwami, T. Outcome related to level of targeted temperature management in postcardiac arrest syndrome of low, moderate, and high severities: A nationwide multicenter prospective registry. Crit. Care Med. 2021, 49, E741–E750. [Google Scholar] [CrossRef]
- Wang, C.J.; Yang, S.H.; Lee, C.H.; Lin, R.L.; Peng, M.J.; Wu, C.L. Therapeutic hypothermia application vs standard support care in post resuscitated out-of-hospital cardiac arrest patients. Am. J. Emerg. Med. 2013, 31, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Yang, S.H.; Chen, C.H.; Chung, H.P. Targeted temperature management for in-hospital cardiac arrest: 6 years of experience. Ther. Hypothermia Temp. Manag. 2020, 10, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Nadkarni, V.; Bahr, J.; Berg, R.A.; Billi, J.E.; Bossaert, L.; Cassan, P.; Coovadia, A.; D’Este, K.; Finn, J.; et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: Update and simplification of the Utstein templates for resuscitation registries: A statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 2004, 110, 3385–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, J.P.; Neumar, R.W. The Post-cardiac Arrest Syndrome. In Yearbook of Intensive Care and Emergency Medicine 2009; Springer: Berlin, Germany, 2009; pp. 565–573. [Google Scholar]
- Brain Resuscitation Clinical Trial I Study Group. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N. Engl. J. Med. 1986, 314, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Cummins, R.O.; Chamberlain, D.A.; Abramson, N.S.; Allen, M.; Baskett, P.J.; Becker, L.; Bossaert, L.; Delooz, H.H.; Dick, W.F.; Eisenberg, M.S.; et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: The Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation 1991, 84, 960–975. [Google Scholar] [CrossRef] [Green Version]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef]
- Mell, H.K.; Mumma, S.N.; Hiestand, B.; Carr, B.G.; Holland, T.; Stopyra, J. Emergency Medical Services response times in rural, suburban, and urban areas. JAMA Surg. 2017, 152, 983–984. [Google Scholar] [CrossRef]
- Gräsner, J.T.; Herlitz, J.; Tjelmeland, I.B.M.; Wnent, J.; Masterson, S.; Lilja, G.; Bein, B.; Böttiger, B.W.; Rosell-Ortiz, F.; Nolan, J.P.; et al. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation 2021, 161, 61–79. [Google Scholar] [CrossRef]
- Tjelmeland, I.B.M.; Masterson, S.; Herlitz, J.; Wnent, J.; Bossaert, L.; Rosell-Ortiz, F.; Alm-Kruse, K.; Bein, B.; Lilja, G.; Gräsner, J.T. Description of Emergency Medical Services, treatment of cardiac arrest patients and cardiac arrest registries in Europe. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 103. [Google Scholar] [CrossRef]
- Ornato, J.P.; Gonzalez, E.R.; Coyne, M.R.; Beck, C.L.; Collins, M.S. Arterial pH in out-of-hospital cardiac arrest: Response time as a determinant of acidosis. Am. J. Emerg. Med. 1985, 3, 498–502. [Google Scholar] [CrossRef]
- Dell’Anna, A.M.; Sandroni, C.; Lamanna, I.; Belloni, I.; Donadello, K.; Creteur, J.; Vincent, J.L.; Taccone, F.S. Prognostic implications of blood lactate concentrations after cardiac arrest: A retrospective study. Ann. Intensive Care 2017, 7, 101. [Google Scholar] [CrossRef]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Lee, S.J.; Jo, S.J.; Park, K.N. Implementation of the guidelines for targeted temperature management after cardiac arrest: A longitudinal qualitative study of barriers and facilitators perceived by hospital resuscitation champions. BMJ Open 2016, 6, e009261. [Google Scholar] [CrossRef]
- Carr, C.T.; Mills, M.R.; Sutchu, S.S.; Becker, T.K.; The Florida Cardiac Arrest Research Team; Cohen, S.A.; Maciel, C.B.; Adrian Tyndall, J.; Patel, S.V.; Ticas, D.; et al. Physician perception of targeted temperature management after cardiac arrest: An underappreciated barrier? Resuscitation 2020, 157, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Lascarrou, J.B.; Merdji, H.; Le Gouge, A.; Colin, G.; Grillet, G.; Girardie, P.; Coupez, E.; Dequin, P.F.; Cariou, A.; Boulain, T.; et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N. Engl. J. Med. 2019, 381, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A.; et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef]
- Liao, X.; Zhou, Z.; Zhou, M.; Tang, H.; Feng, M.; Kou, B.; Zhu, N.; Liao, F.; Wu, L. Effects of endovascular and surface cooling on resuscitation in patients with cardiac arrest and a comparison of effectiveness, stability, and safety: A systematic review and meta-analysis. Crit. Care 2020, 24, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadanov, N.; Arrich, J.; Klein, R.; Herkner, H.; Behringer, W. Intravascular Versus Surface Cooling in Patients Resuscitated From Cardiac Arrest: A Systematic Review and Network Meta-Analysis With Focus on Temperature Feedback. Crit. Care Med. 2022, 50, 999–1009. [Google Scholar] [CrossRef]
- Bernard, S.A.; Smith, K.; Finn, J.; Hein, C.; Grantham, H.; Bray, J.E.; Deasy, C.; Stephenson, M.; Williams, T.A.; Straney, L.D.; et al. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: The RINSE trial (Rapid Infusion of Cold Normal Saline). Circulation 2016, 134, 797–805. [Google Scholar] [CrossRef]
- Granja, C.; Ferreira, P.; Ribeiro, O.; Pina, J. Improved survival with therapeutic hypothermia after cardiac arrest with cold saline and surfacing cooling: Keep it simple. Emerg. Med. Int. 2011, 2011, 395813. [Google Scholar] [CrossRef] [Green Version]
- Badjatia, N.; Bodock, M.; Guanci, M.; Rordorf, G.A. Rapid infusion of cold saline (4 degrees C) as adjunctive treatment of fever in patients with brain injury. Neurology 2006, 66, 1739–1741. [Google Scholar] [CrossRef]
- Fink, E.L.; Kochanek, P.M.; Clark, R.S.; Bell, M.J. Fever control and application of hypothermia using intravenous cold saline. Pediatr. Crit. Care Med. 2012, 13, 80–84. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 108) | Good Neurologic Outcome (n = 16) | Poor Neurologic Outcome (n = 92) | p Value | Survival (n = 49) | Mortality (n = 59) | p Value | |
---|---|---|---|---|---|---|---|
Age, years | 66.0 (55.5–77.5) | 54.0 (49.3–63.4) | 66.0 (64.1–70.0) | 0.0039 | 64.0 (52.8–75.0) | 67.0 (59.5–80.0) | 0.1133 |
Sex, male/female | 66/42 (61.1%/38.9%) | 11/5 (68.7%/31.2%) | 55/37 (59.8%/40.2%) | 0.4991 | 29/20 (59.2%/40.8%) | 37/22 (62.7%/37.3%) | 0.7094 |
Witnessed | 104 (96.3%) | 15 (93.7%) | 89 (96.7%) | 0.4786 | 46 (93.9%) | 58 (98.3%) | 0.3273 |
Bystander chest compression | 47 (43.5%) | 8 (50.0%) | 39 (42.4%) | 0.5728 | 20 (40.8%) | 27 (45.8%) | 0.6074 |
Bystander defibrillation | 14 (13.0%) | 6 (37.5%) | 8 (8.7%) | 0.0016 | 10 (20.4%) | 4 (6.8%) | 0.0457 |
Initial rhythm, shockable | 30 (27.8%) | 12 (75.0%) | 18 (19.6%) | <0.0001 | 21 (42.9%) | 9 (15.3%) | 0.0015 |
Duration of resuscitation effort, minutes | 28.0 (15.0–40.5) | 14.0 (4.5–30.5) | 30.0 (16.0–43.0) | 0.0027 | 25.0 (11.0–33.0) | 33.5 (17.0–46.0) | 0.0033 |
Motor GCS score < 2 | 50 (46.3%) | 0 (0.0%) | 50 (54.3%) | <0.0001 | 9 (18.4%) | 41 (69.5%) | <0.0001 |
Serum pH | 7.36 (7.26–7.43) | 7.35 (7.27–7.41) | 7.36 (7.26–7.43) | 0.9173 | 7.37 (7.29–7.44) | 7.33 (7.19–7.41) | 0.0144 |
Serum lactate, mg/dL | 56.2 (38.8–86.7) | 46.0 (37.5–85.6) | 56.6 (39.9–87.3) | 0.4262 | 53.5 (37.9–79.4) | 63.0 (40.9–98.6) | 0.1479 |
rCAST score | 6.0 (2.5–8.5) | 2.5 (1.5–3.8) | 7.0 (3.0–9.5) | 0.0001 | 3.0 (2.0–5.5) | 8.0 (5.6–11.0) | <0.0001 |
Co-morbility | |||||||
Heart failure | 24 (22.2%) | 5 (31.2%) | 19 (20.7%) | 0.3489 | 10 (20.4%/0) | 14 (23.7%) | 0.6808 |
Old stroke | 12 (11.1%) | 2 (12.5%) | 10 (10.9%) | >0.9999 | 8 (16.3%) | 4 (6.8%) | 0.1351 |
Diabetes | 38 (35.2%) | 3 (18.8%) | 35 (38.0%) | 0.1652 | 11 (22.4%) | 27 (45.8%) | 0.0119 |
CAD | 29 (26.9%) | 5 (31.2%) | 24 (26.1%) | 0.6686 | 12 (24.5%) | 17 (28.8%) | 0.6154 |
COPD/Asthma | 15 (13.9%) | 2 (12.5%) | 13 (14.1%) | >0.9999 | 6 (12.2%) | 9 (15.3%) | 0.6541 |
Malignancy | 8 (7.4%) | 0 (0.0%) | 8 (8.7%) | 0.1097 | 4 (8.2%) | 4 (6.8%) | >0.9999 |
ESRD on hemodialysis | 12 (11.1%) | 0 (0.0%) | 12 (13.0%) | 0.2068 | 4 (8.2%) | 8 (13.6%) | 0.5408 |
Cirrhosis | 2 (1.9%) | 0 (0.0%) | 2 (2.2%) | >0.9999 | 0 (0.0%) | 2 (3.4%) | 0.4997 |
PCI | 19 (17.6%) | 5 (31.2%) | 14 (15.2%) | 0.1218 | 13 (26.5%) | 6 (10.2%) | 0.0269 |
IABP | 8 (7.4%) | 4 (15.0%) | 1 (4.3%) | 0.0161 | 6 (12.2%) | 2 (3.4%) | 0.1374 |
APACHEII | 31.5 ± 6.3 | 25.3 ± 5.8 | 32.6 ± 5.8 | <0.0001 | 29.8 ± 6.8 | 32.9 ± 5.6 | 0.0096 |
(n = 108) | Number of Patients | Probability of Poor Neurologic Outcome | Probability of Hospital Mortality |
---|---|---|---|
Low severity category | 53 | 69.8% (55.7%–81.7%) | 28.3% (16.8%–42.4%) |
Moderate severity category | 54 | 100.0% (93.4%–100.0%) | 79.6% (66.5%–89.4%) |
High severity category | 1 | 100.0% (2.5%–100.0%) | 100.0% (2.5%–100.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Wang, C.-J.; Wang, I.-T.; Yang, S.-H.; Wang, Y.-H.; Lin, C.-Y. Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management. J. Clin. Med. 2023, 12, 242. https://doi.org/10.3390/jcm12010242
Chen C-H, Wang C-J, Wang I-T, Yang S-H, Wang Y-H, Lin C-Y. Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management. Journal of Clinical Medicine. 2023; 12(1):242. https://doi.org/10.3390/jcm12010242
Chicago/Turabian StyleChen, Chao-Hsien, Chieh-Jen Wang, I-Ting Wang, Sheng-Hsiung Yang, Ya-Hui Wang, and Chang-Yi Lin. 2023. "Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management" Journal of Clinical Medicine 12, no. 1: 242. https://doi.org/10.3390/jcm12010242
APA StyleChen, C. -H., Wang, C. -J., Wang, I. -T., Yang, S. -H., Wang, Y. -H., & Lin, C. -Y. (2023). Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management. Journal of Clinical Medicine, 12(1), 242. https://doi.org/10.3390/jcm12010242