Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Ablation
3.2. LASIK and FS-LASIK
3.3. SMILE
4. Discussion
4.1. Corneal Biomechanics after PRK/LASEK versus FS- LASIK or SMILE
4.2. Corneal Biomechanics after SMILE versus FS-LASIK or FLEX
4.3. Cap or Flap Thickness and Corneal Biomechanics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolle, M.A.; Randleman, J.B.; Woodward, M.A. Complications of refractive surgery: Ectasia after refractive surgery. Int. Ophthalmol. Clin. 2016, 56, 127–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, G.; Lawless, M.; Hodge, C. Laser in situ keratomileusis in 2012: A review. Clin. Exp. Optom. 2014, 97, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hosseini-Moghaddam, S.M.; Hodge, W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: A systematic review and meta-analysis. BMC Ophthalmol. 2019, 19, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damgaard, I.B.; Reffat, M.; Hjortdal, J. Review of Corneal Biomechanical Properties Following LASIK and SMILE for Myopia and Myopic Astigmatism. Open Ophthalmol. J. 2018, 12, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.Z.; Lam, K.C. Influence of corneal astigmatism, corneal curvature and meridional differences on corneal hysteresis and corneal resistance factor. Clin. Exp. Opt. 2011, 94, 418–424. [Google Scholar] [CrossRef]
- Laiquzzaman, M.; Bhojwani, R.; Cunliffe, I.; Shah, S. Diurnal variation of ocular hysteresis in normal subjects: Relevance in clinical context. Clin. Exp. Ophthalmol. 2006, 34, 114–118. [Google Scholar] [CrossRef]
- Esporcatte, L.P.G.; Salomão, M.Q.; Lopes, B.T.; Vinciguerra, P.; Vinciguerra, R.; Roberts, C.; Elsheikh, A.; Dawson, D.G.; Ambrósio, R., Jr. Biomechanical diagnostics of the cornea. Eye Vis. 2020, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Herber, R.; Pillunat, L.; Raiskup, F. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Eye Vis. 2021, 8, 21. [Google Scholar] [CrossRef]
- Shang, J.; Shen, Y.; Jhanji, V.; Zhou, X.; Zhao, J.; Zhao, Y.; Zhou, X. Comparison of Corneal Biomechanics in Post-SMILE, Post-LASEK, and Keratoconic Eyes. Front. Med. 2021, 8, 695–697. [Google Scholar] [CrossRef]
- Ryan, D.S.; Coe, C.D.; Howard, R.S.; Edwards, J.D.; Bower, K.S. Corneal biomechanics following epi-LASIK. J. Refract. Surg. 2011, 27, 458–464. [Google Scholar] [CrossRef]
- Xin, Y.; Lopes, B.T.; Wang, J.; Wu, J.; Zhu, M.; Jiang, M.; Miao, Y.; Lin, H.; Cao, S.; Zheng, X.; et al. Biomechanical Effects of tPRK, FS-LASIK, and SMILE on the Cornea. Front. Bioeng. Biotechnol. 2022, 10, 834270. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Stagg, B.C.; Swan, R.; Fenzl, C.R.; McFadden, M.; Muthappan, V.; Santiago-Caban, L.; Mifflin, M.D.; Moshirfar, M. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy. Clin. Ophthalmol. 2017, 11, 1785–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qazi, M.A.; Sanderson, J.P.; Mahmoud, A.M.; Yoon, E.Y.; Roberts, C.J.; Pepose, J.S. Postoperative changes in intraocular pressure and corneal biomechanical metrics Laser in situ keratomileusis versus laser-assisted subepithelial keratectomy. J. Cataract Refract. Surg. 2009, 35, 1774–1788. [Google Scholar] [CrossRef]
- Yu, M.; Chen, M.; Dai, J. Comparison of the posterior corneal elevation and biomechanics after SMILE and LASEK for myopia: A short- and long-term observation. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, H.; Asgari, S.; Mortazavi, M.; Ghaffari, R. Evaluation of Corneal Biomechanics After Excimer Laser Corneal Refractive Surgery in High Myopic Patients Using Dynamic Scheimpflug Technology. Eye Contact Lens 2017, 43, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xu, L.; Fan, Q.; Gu, Y.; Song, P.; Zhang, B.; Zhao, D.; Pang, C.; Ren, S. Evaluation of new Corvis ST parameters in normal, Post-LASIK, Post-LASIK keratectasia and keratoconus eyes. Sci. Rep. 2020, 10, 5676. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wang, Y.; Zhang, L.; Wei, S.; Tang, X. Corneal biomechanical effects: Small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis. J. Cataract Refract. Surg. 2014, 40, 954–962. [Google Scholar] [CrossRef]
- Elmohamady, M.N.; Abdelghaffar, W.; Daifalla, A.; Salem, T. Evaluation of femtosecond laser in flap and cap creation in corneal refractive surgery for myopia: A 3-year follow-up. Clin. Ophthalmol. 2018, 12, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Vanathi, M.; Azimeera, S.; Gupta, N.; Tandon, R. Study on change in corneal biomechanics and effect of percent tissue altered in myopic laser-assisted in situ keratomileusis. Indian J. Ophthalmol. 2020, 68, 2964–2974. [Google Scholar] [CrossRef]
- Agca, A.; Ozgurhan, E.B.; Demirok, A.; Bozkurt, E.; Celik, U.; Ozkaya, A.; Cankaya, I.; Yilmaz, O.F. Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: A prospective fellow eye study. Cont. Lens Anterior Eye 2014, 37, 77–80. [Google Scholar] [CrossRef]
- Kamiya, K.; Shimizu, K.; Ohmoto, F. Time course of corneal biomechanical parameters after laser in situ keratomileusis. Ophthalmic Res. 2009, 42, 167–171. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Luo, Y.; Ye, Y.; Chen, P.; Liu, C.; Lei, L.; Zhuang, J.; Yu, K. A comparative and prospective study of corneal biomechanics after SMILE and FS-LASIK performed on the contralateral eyes of high myopia patients. Ann. Transl. Med. 2022, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, C.; Li, B.; Wang, D.; Fang, X. Influence of Cap Thickness on Corneal Curvature and Corneal Biomechanics After SMILE: A Prospective, Contralateral Eye Study. J. Refract. Surg. 2020, 36, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Zhang, J.; Chan, T.C.Y.; Ng, A.L.K.; Cheng, G.P.M.; Jhanji, V. Comparison of corneal biomechanics after microincision lenticule extraction and small incision lenticule extraction. Br. J. Ophthalmol. 2017, 101, 650–654. [Google Scholar] [CrossRef]
- Jun, I.; Kang, D.S.Y.; Roberts, C.J.; Lee, H.; Jean, S.K.; Kim, E.K.; Seo, K.Y.; Kim, T.I. Comparison of Clinical and Biomechanical Outcomes of Small Incision Lenticule Extraction With 120- and 140-µm Cap Thickness. Transl. Vis. Sci. Technol. 2021, 10, 15. [Google Scholar] [CrossRef]
- Vestergaard, A.H.; Grauslund, J.; Ivarsen, A.R.; Hjortdal, J.Ø.J. Central corneal sublayer pachymetry and biomechanical properties after refractive femtosecond lenticule extraction. Refract. Surg. 2014, 30, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.; Pinero, D.; Shabayek, M.H.; Arnalich-Montiel, F.; Alió, J.L. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. Cataract Refract. Surg. 2007, 33, 1371–1375. [Google Scholar] [CrossRef]
- Huang, G.; Melki, S. Small Incision Lenticule Extraction (SMILE): Myths and Realities. Semin. Ophthalmol. 2021, 36, 140–148. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Comparison of corneal biomechanics after myopic small-incision lenticule extraction compared to LASIK: An ex vivo study. Clin. Ophthalmol. 2018, 12, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, S.; Patel, U.; Brar, S. Posterior corneal curvature changes following Refractive Small Incision Lenticule Extraction. Clin. Ophthalmol. 2015, 9, 1359–1364. [Google Scholar] [CrossRef]
- Gatinel, D.; Chaabouni, S.; Adam, P.A.; Munck, J.; Puech, M.; Hoang-Xuan, T. Corneal Hysteresis, Resistance Factor, Topography, and Pachymetry After Corneal Lamellar Flap. J. Refract. Surg. 2007, 23, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.C.; Lee, N.; Bourla, N.; Hamilton, D.R. Corneal biomechanical measurements before and after laser in situ keratomileusis. J. Cataract Refract. Surg. 2008, 34, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Roberts, C.J.; Kim, T.I.; Ambrósio, R., Jr.; Elsheikh, A.; Yong Kang, D.S. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J. Cataract Refract. Surg. 2017, 43, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shi, W.; Liu, X.; Li, N.; Chen, T.; Gao, H. Postoperative corneal biomechanics and influencing factors during femtosecond-assisted laser in situ keratomileusis (FS-LASIK) and laser-assisted subepithelial keratomileusis (LASEK) for high myopia. Lasers Med. Sci. 2021, 36, 1709–1717. [Google Scholar] [CrossRef]
- Santiago, M.R.; Wilson, S.E.; Hallahan, K.M.; Smadja, D.; Lin, M.; Ambrosio, R., Jr.; Singh, V.; Sinha Roy, A.; Dupps, W.J., Jr. Changes in custom biomechanical variables after femtosecond laser in situ keratomileusis and photorefractive keratectomy for myopia. J. Cataract Refract. Surg. 2014, 40, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chen, Z.; Knorz, M.C.; Li, M.; Zhao, J.; Zhou, X. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J. Refract. Surg. 2014, 30, 310–318. [Google Scholar] [CrossRef]
- Yan, H.; Gong, L.-Y.; Huang, W.; Peng, Y.-L. Clinical outcomes of small incision lenticule extraction versus femtosecond laser-assisted LASIK for myopia: A Meta-analysis. Int. J. Ophthalmol. 2017, 10, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Z.; Naidu, R.K.; Chu, R.; Dai, J.; Qu, X.; Yu, Z.; Zhou, H. Comparison of the change in posterior corneal elevation and corneal biomechanical parameters after small incision lenticule extraction and femtosecond laser-assisted LASIK for high myopia correction. Contact Lens Anterior Eye 2016, 39, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Petsche, S.J.; Chernyak, D.; Martiz, J.; Levenston, M.E.; Pinsky, P.M. Depth-dependent transverse shear properties of the human corneal stroma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Raevdal, P.; Grauslund, J.; Vestergaard, A.H. Comparison of corneal biomechanical changes after refractive surgery by noncontact tonometry: Small-incision lenticule extraction versus flap-based refractive surgery—A systematic review. Acta Ophthalmol. 2019, 97, 127–136. [Google Scholar] [CrossRef]
- Kamiya, K.; Shimizu, K.; Igarashi, A.; Kobashi, H.; Sato, N.; Ishii, R. Intraindividual comparison of changes in corneal biomechanical parameters after femtosecond lenticule extraction and small-incision lenticule extraction. J. Cataract Refract. Surg. 2014, 40, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, L.; Calienno, R.; Lanzini, M.; Colasante, M.; Mastropasqua, A.; Mattei, P.A.; Nubile, M. Evaluation of corneal biomechanical properties modification after small incision lenticule extraction using Scheimpflug-based noncontact tonometer. Biomed. Res. Int. 2014, 2014, 290619. [Google Scholar] [CrossRef] [PubMed]
- Sefat, S.M.; Wiltfang, R.; Bechmann, M.; Mayer, W.J.; Kampik, A.; Kook, D. Evaluation of Changes in Human Corneas After Femtosecond Laser-Assisted LASIK and Small-Incision Lenticule Extraction (SMILE) Using Non-Contact Tonometry and Ultra-High-Speed Camera (Corvis ST). Curr. Eye Res. 2016, 41, 917–922. [Google Scholar] [CrossRef]
- Osman, I.M.; Helaly, H.A.; Abdalla, M.; Shousha, M.A. Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis. BMC Ophthalmol. 2016, 16, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, P.; Cheng, G.P.; Zhang, J.; Ng, A.L.; Chan, T.C.; Jhanji, V.; Wang, Y. Changes in Corneal Volume at Different Areas and Its Correlation with Corneal Biomechanics after SMILE and FS-LASIK Surgery. J. Ophthalmol. 2020, 2020, 1713979. [Google Scholar] [CrossRef] [PubMed]
- El-Massry, A.A.; Goweida, M.B.; Shama Ael, S.; Elkhawaga, M.H.; Abdalla, M.F. Contralateral eye comparison between femtosecond small incision intrastromal lenticule extraction at depths of 100 and 160 mum. Cornea 2015, 34, 1272–1275. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Gobbe, M. The Key Characteristics of Corneal Refractive Surgery: Biomechanics, Spherical Aberration, and Corneal Sensitivity After SMILE. In Small Incision Lenticule Extraction (SMILE); Sekundo, W., Ed.; Springer: Cham, Switzerland, 2015; pp. 123–142. [Google Scholar] [CrossRef]
- Randleman, J.B.; Dawson, D.G.; Grossniklaus, H.E.; McCarey, B.E.; Edelhauser, H.F. Depth dependent cohesive tensile strength in human donor corneas: Implications for refractive surgery. J. Refract. Surg. 2008, 24, 85–89. [Google Scholar]
- Damgaard, I.B.; Ivarsen, A.; Hjortdal, J. Refractive correction and biomechanical strength following SMILE with a 110- or 160-mum cap thickness, evaluated ex vivo by inflation test. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1836–1843. [Google Scholar] [CrossRef] [Green Version]
- Reinstein, D.Z.; Archer, T.J.; Randleman, J.B. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J. Refract. Surg. 2013, 29, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Yang, X. Ablation depth and its effects on corneal biomechanical changes in laser in situ keratomileusis and epipolis laser in situ keratomileusis. Int. Ophthalmol. 2014, 34, 157–164. [Google Scholar] [CrossRef]
- Kamiya, K.; Shimizu, K.; Ohmoto, F. Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. Cornea 2009, 28, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, F.W.; Sinha-Roy, A.; Alves, M.R.; Dupps, W.J., Jr. Biomechanical corneal changes induced by different flap thickness created by femtosecond laser. Clinics 2011, 66, 1067–1071. [Google Scholar] [CrossRef] [Green Version]
- Goussous, I.A.; El-Agha, M.S.; Awadein, A.; Hosny, M.H.; Ghaith, A.A.; Khattab, A.L. The effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis using the M-2 microkeratome. Clin. Ophthalmol. 2017, 11, 2065–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox Cartwright, N.E.; Tyrer, J.R.; Jaycock, P.D.; Marshall, J. Effects of variation in depth and side cut angulations in LASIK and thin-flap LASIK using a femtosecond laser: A biomechanical study. J. Refract. Surg. 2012, 28, 419–425. [Google Scholar] [CrossRef] [PubMed]
First Author, Year of Publication | Sample Size (Eyes) | Follow-Up Time (Months) | Mean Spherical Equivalent (SE) | Type of Refractive Surgery Procedure | Corneal Biomechanics Assessment Device | Corneal Biomechanics or IOP Parameters Assessed |
---|---|---|---|---|---|---|
Ryan et al., 2011 [10] | 51 | 12 | −2.68 ± 1.08 D | epi-LASIK | ORA | CH and CRF |
Xin et al., 2022 [11] | 74 t-PRK 81 FS-LASIK 72 SMILE | 6 | t-PRK −4.69 ± 1.57 D FS-LASIK −5.04 ± 1.58 D SMILE −4.72 ± 1.57 D | t-PRK, FS-LASIK, SMILE | Corvis ST | SP-A1, AdjAP1, bIOP, A1DeflAmp, IIR, DA, DAR-2 |
Hwang et al., 2017 [12] | 194 | 12 | −3.5 ± 2.1 LASIK −3.1 ± 1.4 PRK −5.9 ± 2.3 PRK-MMC | PRK, PRK-MMC, LASIK | ORA | CH, CRF |
Qazi et al., 2009 [13] | 14 LASIK 15 LASEK 29 total | 6 | −5.32 ± 2.70 LASIK −4.55 ± 3.03 LASEK | LASIK, LASEK | ORA | CH, CRF, IOPg, IOPcc |
Yu et al., 2019 [14] | 32 | 3 Y | −4.1 ± 0.8 SMILE −3.7 ± 1.0 LASEK | SMILE LASEK | ORA | CH, CRF, IOPg, IOPcc |
Hashemi et al., 2017 [15] | 60 | 6 | −8.65 ± 1.51 D FS-LASIK −8.04 ±1.70 D PRK-MMC | FS-LASIK, PRK + MMC | Corvis ST | IOP, bIOP, A1T, A2T, A1L, A2L, A1V, A2V, HCT, DA, HC PD, HCR |
Yang et al., 2020 [16] | 23 | 12 | N/S | LASIK | CORVIS- ST | IR, DAR-2, Pachyslope, DAR-1, ARTh, IIR, SP-A1, CBI |
Wu Di et al., 2014 [17] | 40 | 6 | −5.71 ± 1.19 SMILE −5.80 ± 1.14 FS-LASIK | SMILE, FS-LASIK | ORA | CH, CRF, 37 biomechanical waveform parameters |
Elmohamady et al., 2018 [18] | 103 | 3 Y | −7.49 ± 2.05 LASIK −7.14 ± 1.97 FS-LASIK −8.05 ± 2.06 SMILE | LASIK, FS-LASIK, SMILE | ORA | CH, CRF |
Vanathi et al., 2020 [19] | 80 group 1: PTA 23 to <27%; group 2: 27 to <33%; group 3: 33 to <40% | 6 | −1.4 ± 0.4 group 1 −3.1 ± 1.0 group 2 −4.9 ± 1.1 group 3 −3.5 ± 1.6 total | FS-LASIK | ORA | CH, CRF, IOPg, IOPcc |
Agca et al., 2014 [20] | 60 | 6 | −3.62 ± 1.79 SMILE −3.71 ± 1.83 FS-LASIK | SMILE, FS-LASIK | ORA | CH, CRF |
Kamiya et al., 2009 [21] | 36 | 6 | –4.39 ± 1.43 D | LASIK | ORA | CH, CRF |
He et al., 2022 [22] | 50 | 6 | −8.46 ± 1.04 SMILE −8.52 ± 1.12 FS-LASIK | SMILE, FS-LASIK | Corvis ST | A1T, A1L, A1V, A2T, A2L, A2V, HCT, HC PD, DAR-2, IR, ARTh, SP-A1 |
Wu De et al., 2020 [23] | 100 | 6 | 4.91 ± 0.96 110 cap −4.88 ± 0.97 140 cap | SMILE 110 μm cap thickness SMILE 140 μm cap thickness | Corvis ST | Km-ant at 2-mm zone (D) Km-ant at 4-mm zone (D) Km-ant at 6-mm zone (D) |
Wu Z et al., 2017 [24] | 60 MILE, 64 SMILE | 6 | −5.54 ± 1.11 MILE −5.77 ± 1.55 SMILE | MILE 2 mm side cut SMILE 5 mm side cut | ORA | CH, CRF |
Jun et al., 2021 [25] | 91 120-μm cap group 59 140-μm cap group | 6 | −3.65 ± 1.42 120 μm cap −3.74 ± 1.58 140 μm cap | SMILE 120 μm cap thickness SMILE 140 μm cap thickness | Corvis ST | DA ratio, SP-A1 IIR, ARTh, SSI, bIOP |
Vestergaard et al., 2014 [26] | 70 | 6 | −7.59 ± 0.97 FLEX, −7.56 ± 1.11 SMILE | FLEX, SMILE | ORA | CH, CRF |
First Author | Refractive Procedure | Number of Eyes | Follow-Up Points/Study Groups | Preoperative CH (mmHg) Mean ± SD | Postoperative CH (mmHg) Mean ± SD | Difference in CH (mmHg) | Preoperative CRF (mmHg) Mean ± SD | Postoperative CRF (mmHg) Mean ± SD | Difference in CRF (mmHg) |
---|---|---|---|---|---|---|---|---|---|
Ryan et al., 2011 [10] | EPI-LASIK | 51 | 6 M 12 M | 10.22 ± 1.65 | 8.63 ± 1.31 8.53 ± 1.49 | 1.56 ± 0.86 1.62 ± 0.88 | 10.01 ± 1.80 | 7.77 ± 1.50 7.80 ± 1.66 | 2.18 ± 0.91 2.08 ± 1.03 |
Hwang et al., 2017 [12] | PRK, PRK-MMC, LASIK | 194 | 12 M PRK PRK-MMC LASIK | N/S | 9.7 ± 1.7 9.1 ± 1.7 10.1 ± 1.6 | N/S N/S N/S | N/S | 9.4 ± 1.9 9.2 ± 1.8 10.0 ± 1.8 | N/S N/S N/S |
Qazi et al., 2009 [13] | LASIK, LASEK | 29 | LASIK 6 M LASEK 6 M | 10.00 ± 1.77 9.06 ± 1.56 | 8.57 ± 2.25 7.16 ± 1.99 | 1.71 ± 1.47 1.54 ± 1.38 | 9.87 ± 1.97 8.61 ± 1.76 | 7.35 ± 2.49 5.95 ± 2.41 | 3.05 ± 1.70 2.32 ± 1.93 |
Yu et al., 2019 [14] | SMILE LASEK | 32 | SMILE 3 Y LASEK 3 Y | 10.5 ± 2.1 10.1 ± 1.3 | 8.7 ± 1.4 8.8 ± 1.5 | N/S N/S N/S | 11.1 ± 1.7 10.2 ± 1.6 | 7.4 ± 1.1 7.2 ± 1.7 | N/S N/S N/S |
Wu Di et al., 2014 [17] | SMILE, FS-LASIK | 40 | SMILE 6 M FS-LASIK 6 M | N/S | 8.59 ± 1.00 8.11 ± 0.66 | 1.94± 0.82 2.34 ± 1.08 | N/S | 7.78 ± 1.03 6.94 ± 0.66 | 3.59 ± 0.91 4.29 ± 1.60 |
Elmohamady et al., 2018 [18] | LASIK, FS-LASIK, SMILE | 103 | LASIK 6 M 12 M 3Y FS-LASIK 6 M 12 M 3Y SMILE 6 M 12 M 3Y | 10.82 ± 0.53 10.71 ± 0.47 10.58 ± 0.39 | 7.47 ± 0.54 7.45 ± 0.65 7.58 ± 0.71 7.58 ± 0.60 7.56 ± 0.44 7.60 ± 0.61 8.40 ± 0.37 8.37 ± 0.40 8.51 ± 0.51 | N/S N/S N/S N/S N/S N/S N/S N/S N/S | 10.19 ± 0.22 10.22 ± 0.20 10.21 ± 0.19 | 7.12 ± 0.76 7.11 ± 0.57 7.17 ± 0.68 7.21 ± 0.65 7.18 ± 0.59 7.25 ± 0.69 8.30 ± 0.48 8.29 ± 0.32 8.38 ± 0.59 | N/S N/S N/S N/S N/S N/S N/S N/S N/S |
Vanathi et al., 2020 [19] | FS-LASIK | 80 group 1: PTA 23 to <27%; group 2: 27 to <33%; group 3: 33 to <40% | group 1 6 M group 2 6 M group 3 6 M | 11.06 ± 1.36 10.54 ± 2.33 10.15 ± 1.47 | 9.08 ± 0.91 8.39 ± 1.11 7.42 ± 0.86 | 18% 20% 26% | 11.85 ± 1.99 10.23 ± 1.42 10.23 ± 1.35 | 8.63 ± 0.99 7.83 ± 1.14 6.81 ± 1.33 | 27% 23% 33% |
Agca et al., 2014 [20] | SMILE, FS-LASIK | 60 | SMILE 6 M FS-LASIK 6 M | 10.89 ± 1.79 11.00 ± 1.53 | 8.95 ± 1.47 9.02 ± 1.27 | 1.94 ± 1.52 1.98 ± 1.50 | 10.73 ± 1.71 10.76 ± 1.45 | 7.77 ± 1.37 8.07 ± 1.26 | 2.96 ± 1.69 2.69 ± 1.44 |
Kamiya et al., 2009 [21] | LASIK | 36 | LASIK 6 M | 10.68 ± 1.7 | 8.9 ± 1.5 | N/S | 10.0 ± 1.7 | 7.7 ± 1.6 | N/S |
Wu Z et al., 2017 [24] | MILE (2 mm side cut), SMILE (5 mm side cut) | 124 | MILE 6 M SMILE 6 M | 10.03 ± 1.31 10.11 ± 0.96 | 8.30 ± 0.77 8.15 ± 0.77 | N/S N/S | 10.13 ± 1.38 10.50 ± 0.97 | 6.93 ± 1.05 6.95 ± 0.96 | N/S N/S |
Vestergaard et al., 2014 [26] | FLEX, SMILE | 70 | 6 M FLEX SMILE | 10.8 ± 1.7 11.0 ± 1.7 | 8.0 ± 1.1 7.8 ± 1.3 | 2.7 ± 1.3 3.3 ± 1.2 | 10.9 ± 1.8 10.9 ± 1.9 | 6.4 ± 1.4 6.4 ± 1.4 | 4.5 ± 1.2 4.6 ± 1.2 |
First Author | Refractive Procedure | Number of Eyes | Follow-Up Points (Months) | Parameter | Preoperative | Postoperative | Difference |
---|---|---|---|---|---|---|---|
Xin et al., 2022 [11] | t-PRK, FS-LASIK, SMILE | 227 | 6 t-PRK, LM group/ HM group | Pre vs post | |||
SP-A1 | 96.8 ± 16.6/99.2 ± 17.0 | 74.5 ± 19.4/68.0 ± 17.1 | −27.40 ± 16.91/N/S | ||||
IIR (mm−1) | 8.69 ± 1.04/8.49 ± 0.78 | 10.64 ± 0.95/11.29 ± 0.94 | 2.40 ± 0.94/N/S | ||||
DA (mm) | 1.06 ± 0.09/1.06 ± 0.07 | 1.15 ± 0.11/1.17 ± 0.10 | 0.101 ± 0.086/N/S | ||||
DAR-2 (mm) | 4.85 ± 0.54/4.75 ± 0.41 | 5.44 ± 0.58/5.72 ± 0.46 | 0.79 ±0.55/N/S | ||||
FS-LASIK LM group/ HM group | SP-A1 | 96.3 ± 12.6/103.4 ± 16.4 | 68.3 ± 13.5/64.8 ± 14.8 | −34.15 ± 13.17/N/S | |||
IIR (mm−1) | 8.68 ± 1.08/8.16 ± 1.07 | 11.03 ± 1.00/11.38 ± 0.97 | 2.85 ± 0.96/N/S | ||||
DA (mm) | 1.04 ± 0.08/1.04 ± 0.09 | 1.16 ± 0.08/1.19 ± 0.07 | 0.134 ± 0.057/N/S | ||||
DAR-2 (mm) | 4.79 ± 0.45/4.48 ± 0.47 | 5.92 ± 0.64/5.86 ± 0.51 | 1.28 ± 0.53/N/S | ||||
SMILE LM group/ HM group | SP-A1 | 99.1 ± 13.9/99.1 ± 13.9 | 70.0 ± 12.4/70.0 ± 12.4 | −32.40 ± 10.42/N/S | |||
IIR (mm−1) | 8.72 ± 0.90/8.52 ± 0.85 | 11.16 ± 1.01/11.72 ± 0.83 | 2.84 ± 1.03/N/S | ||||
DA (mm) | 1.06 ± 0.09/1.08 ± 0.08 | 1.18 ± 0.07/1.19 ± 0.06 | 0.118 ± 0.063/N/S | ||||
DAR-2 (mm) | 4.83 ± 1.03/4.63 ± 0.37 | 5.77 ± 0.49/5.97 ± 0.46 | 1.15 ± 0.83/N/S | ||||
Hashemi et al., 2017 [15] | FS-LASIK PRK + MMC | 60 | 6 FS-LASIK/ PRK-MMC | IOP (mm Hg) | N/S | 13.42 ± 1.39/11.41 ± 1.25 | N/S |
bIOP (mm Hg) | N/S | 18.65 ± 1.77/17.97 ± 1.46 | N/S | ||||
A1T (ms) | N/S | 6.86 ± 0.22/6.55 ± 0.21 | N/S | ||||
A2T (ms) | N/S | 21.13 ± 0.24/21.38 ± 0.19 | N/S | ||||
A1L (mm) | N/S | 1.76 ± 0.41/1.75 ± 0.33 | N/S | ||||
A2L (mm) | N/S | 1.59 ± 0.51/1.42 ± 0.50 | N/S | ||||
A1V (m/s) | N/S | 0.11 ± 0.04/0.12 ± 0.04 | N/S | ||||
A2V (m/s) | N/S | −0.49 ± 0.10/−0.41 ± 0.16 | N/S | ||||
HCT (ms) | N/S | 16.31 ± 0.13/16.36 ± 0.29 | N/S | ||||
DA | N/S | 0.95 ± 0.34/1.07 ± 0.10 | N/S | ||||
PD | N/S | 4.33 ± 1.30/4.59 ± 1.20 | N/S | ||||
HCR (mm) | N/S | 5.71 ± 0.25/5.47 ± 0.46 | N/S | ||||
Yang et al., 2020 [16] | LASIK | 23 | 12 | IR (mm−1) | N/S | 0.036 | N/S |
DAR-2 (mm) | N/S | 1.123 | N/S | ||||
Pachy Slope | N/S | 72.917 | N/S | ||||
DAR-1 (mm) | N/S | 0.110 | N/S | ||||
ARTh | N/S | −382.214 | N/S | ||||
IR (mm−1) | N/S | 2.212 | N/S | ||||
SP-A1 | N/S | −27.459 | N/S | ||||
CBI | N/S | 0.948 | N/S | ||||
He et al., 2022 [22] | SMILE, FS-LASIK | 50 | 6 SMILE/FS-LASIK | A1T (ms) | 7.65 ± 0.36/7.63 ± 0.36 | 7.09 ± 0.19/7.12 ± 0.20 | −0.03 (−0.08, 0.02) |
A1L (mm) | 2.14 ± 0.34/2.14 ± 0.36 | 1.94 ± 0.19/1.90 ± 0.21 | 0.03 (−0.05, 0.11) | ||||
A1V (m/s) | 0.15 ± 0.02/0.15 ± 0.02 | 0.15 ± 0.01/0.16 ± 0.02 | −0.005(−0.009, −0.001) | ||||
A2T (ms) | 22.23 ± 0.35/22.30 ± 0.38 | 22.82 ± 0.32/22.82 ± 0.35 | −0.003 (−0.09, 0.09) | ||||
A2L (mm) | 2.09 ± 0.50/2.03 ± 0.40 | 1.35 ± 0.36/1.40 ± 0.37 | −0.05 (−0.20, 0.11) | ||||
A2V (m/s) | −0.26 ± 0.04/−0.26 ± 0.03 | −0.28 ± 0.02/−0.28 ± 0.03 | −0.004 (−0.013, 0.004) | ||||
HCT (ms) | 17.36 ± 0.48/17.43 ± 0.48 | 17.38 ± 0.43/17.38 ± 0.96 | −0.005 (−0.29, 0.28) | ||||
HCR | 7.59 ± 0.92/7.71 ± 1.12 | 6.13 ± 0.38/6.05 ± 0.39 | 0.08 (−0.02, 0.18) | ||||
HCPD | 5.05 ± 0.30/5.09 ± 0.30 | 5.46 ± 0.16/5.43 ± 0.21 | 0.03 (−0.01, 0.08) | ||||
DAR | 4.19 ± 0.41/4.29 ± 0.54 | 5.57 ± 0.82/5.49 ± 0.48 | 0.93 (−2.96, 1.11) | ||||
IR (mm−1) | 7.89 ± 1.05/7.87 ± 1.02 | 11.14 ± 0.65/11.28 ± 0.86 | 0.14 (−0.12, 0.30) | ||||
ARTh | 538.49 ± 94.68/525.63 ± 99.28 | 128.95 ± 13.38/118.18 ± 14.94 | 9.78 (6.27, 13.29) | ||||
SP-A1 | 117.67 ± 22.31/114.62 ± 17.16 | 81.27 ± 15.56/76.64 ± 16.48 | 4.62 (1.76, 7.49) | ||||
CBI | 0.10 ± 0.19/0.11 ± 0.19 | 0.03 ± 0.12/0.05 ± 0.18 | −0.02 (−0.08, 0.04) | ||||
SSI | 0.89 ± 0.11/0.89 ± 0.13 | 0.83 ± 0.09/0.90 ± 0.28 | −0.08 (−0.16, −0.008) | ||||
Wu De et al., 2020 [23] | SMILE 110-μm cap SMILE 140-μm cap | 100 | 6 110-μm cap/140-μm cap | A1L (mm) | N/S | N/S | 0.347 ± 0.462/0.224 ± 0.39 |
A1V (m/s) | N/S | N/S | −0.01/−0.01 | ||||
A1T (ms) | N/S | N/S | 0.415/0.53 | ||||
A2L (mm) | N/S | N/S | 0.357 ± 0.403/0.35 ± 0.492 | ||||
A2V (m/s) | N/S | N/S | 0.010/0.005 | ||||
A2T (ms) | N/S | N/S | −0.283 ± 0.339/−0.411 ± 0.402 | ||||
DPD (mm) | N/S | N/S | −0.297 ± 0.208/−0.323 ± 0.248 | ||||
HCR (mm) | N/S | N/S | 0.885/1.080 | ||||
DA (mm) | N/S | N/S | −0.078 ± 0.072/−0.104 ± 0.084 | ||||
bIOP (mm Hg) | N/S | N/S | 1.426 ± 1.519/1.912 ± 1.558 | ||||
IR (mm−1) | N/S | N/S | −2.220 ± 0.71/−2.754 ± 0.728 | ||||
SP-A1 | N/S | N/S | 28.188 ± 12.012/29.836 ± 10.959 | ||||
DAR | N/S | N/S | −1.12 ± 0.36/−1.24 ± 0.389 | ||||
Jun et al., 2021 [25] | SMILE 120-μm cap SMILE 140-μm cap | 150 | 6 120-μm cap/140-μm cap | DAR | 4.30 ± 0.37/4.24 ± 0.33 | 4.8 ± 0.51/5.57 ± 0.45 | 1.18 ± 0.40/1.33 ± 0.36 |
SP-A1 | 115.17 ± 10.95/117.99 ± 11.14 | 93.02 ± 10.74/93.67 ± 10.87 | −22.35 ± 9.60/−24.32 ± 11.08 | ||||
IIR (mm−1) | 8.17 ± 0.79/8.11 ± 0.90 | 10.53 ± 1.02/10.81 ± 1.18 | 2.35 ± 0.75/2.71 ± 0.93 | ||||
ARTh | 462.00 ± 93.82/487.12 ± 107.85 | 209.98 ± 54.87/208.16 ± 64.01 | −252.32 ± 86.54/−278.97 ± 92.77 | ||||
SSI | 1.02 ± 0.13/1.03 ± 0.15 | 0.88 ± 0.14/0.86 ± 0.13 | −0.14 ± 0.15/−0.17 ± 0.10 | ||||
bIOP (mm Hg) | 15.89 ± 1.19/16.25 ± 1.33 | 15.77 ± 1.17/16.06 ± 1.20 | −0.13 ± 0.85/−0.19 ± 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pniakowska, Z.; Jurowski, P.; Wierzbowska, J. Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature. J. Clin. Med. 2023, 12, 243. https://doi.org/10.3390/jcm12010243
Pniakowska Z, Jurowski P, Wierzbowska J. Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature. Journal of Clinical Medicine. 2023; 12(1):243. https://doi.org/10.3390/jcm12010243
Chicago/Turabian StylePniakowska, Zofia, Piotr Jurowski, and Joanna Wierzbowska. 2023. "Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature" Journal of Clinical Medicine 12, no. 1: 243. https://doi.org/10.3390/jcm12010243
APA StylePniakowska, Z., Jurowski, P., & Wierzbowska, J. (2023). Clinical Evaluation of Corneal Biomechanics following Laser Refractive Surgery in Myopic Eyes: A Review of the Literature. Journal of Clinical Medicine, 12(1), 243. https://doi.org/10.3390/jcm12010243