Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. OCT Imaging
2.3. Microcomputed Tomography (microCT)
2.4. Histological Preparations
3. Results
3.1. Intracochlear Microanatomy
3.2. The Human Organ of Corti
3.3. The Cochlear Partition Bridge and Spiral Limbus
3.4. Deviating Appearance of Intracochlear Structures
3.5. Factors Limiting Imaging through the RWM
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- World Health Organization (WHO). Deafness and Hearing Impairment. Available online: http://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 1 August 2021).
- Ford, A.H.; Hankey, G.J.; Yeap, B.B.; Golledge, J.; Flicker, L.; Almeida, O.P. Hearing loss and the risk of dementia in later life. Maturitas 2018, 112, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, A.; Bianchini, C.; Pelucchi, S.; Pastore, A. The impact of hearing loss on the quality of life of elderly adults. Clin. Interv. Aging 2012, 7, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devare, J.; Gubbels, S.; Raphael, Y. Outlook and future of inner ear therapy. Hear. Res. 2018, 368, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Minoda, R.; Miwa, T.; Ise, M.; Takeda, H. Potential treatments for genetic hearing loss in humans: Current conundrums. Gene Ther. 2015, 22, 603–609. [Google Scholar] [CrossRef]
- Zanzonico, P. Basic Sciences of Nuclear Medicine, 2nd ed.; Khalil, M.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Montgomery, S.C.; Cox, B.C. Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea. J. Vis. Exp. 2016, 2016, e53561. [Google Scholar] [CrossRef] [Green Version]
- Brody, K.M.; Hampson, A.J.; Cho, H.-J.; Johnson, P.; O’Leary, S.J. A new method for three-dimensional immunofluorescence study of the cochlea. Hear. Res. 2020, 392, 107956. [Google Scholar] [CrossRef]
- Matthews, T.J.; Adamson, R. Optical coherence tomography: Current and future clinical applications in otology. Curr. Opin. Otolaryngol. Head Neck Surg. 2020, 28, 296–301. [Google Scholar] [CrossRef]
- Wong, B.J.F.; de Boer, J.F.; Park, B.H.; Chen, Z.; Nelson, J.S. Optical coherence tomography of the rat cochlea. J. Biomed. Opt. 2000, 5, 367–370. [Google Scholar] [CrossRef]
- Iyer, J.S.; Batts, S.A.; Chu, K.K.; Sahin, M.I.; Leung, H.M.; Tearney, G.J.; Stankovic, K.M. Micro-optical coherence tomography of the mammalian cochlea. Sci. Rep. 2016, 6, 33288. [Google Scholar] [CrossRef] [Green Version]
- Mchugh, C.I.; Raufer, S.; Cho, N.H.; Zosuls, A.; Tubelli, A.A.; Ravicz, M.E.; O’connor, K.N.; Guinan, J.J.; Puria, S.; Nakajima, H.H. Human Cochlear Partition Anatomy and Motion Using Optical Coherence Tomography. In Proceedings of the Mechanics of Hearing (MOH) Workshop, Helsingor, Denmark, 24–29 July 2022. [Google Scholar]
- Subhash, H.M.; Davila, V.; Sun, H.; Nguyen-Huynh, A.T.; Nuttall, A.L.; Wang, R.K. Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography. J. Biomed. Opt. 2010, 15, 036024. [Google Scholar] [CrossRef]
- Starovoyt, A.; Putzeys, T.; Wouters, J.; Verhaert, N. High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography. Sci. Rep. 2019, 9, 14271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reif, R.; Zhi, Z.; Dziennis, S.; Nuttall, A.L.; Wang, R.K. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry. Quant. Imaging Med. Surg. 2013, 3, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Dziennis, S.; Reif, R.; Zhi, Z.; Nuttall, A.L.; Wang, R.K. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography. J. Biomed. Opt. 2012, 17, 1060031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burwood, G.W.S.; Dziennis, S.; Wilson, T.; Foster, S.; Zhang, Y.; Liu, G.; Yang, J.; Elkins, S.; Nuttall, A.L. The mechanoelectrical transducer channel is not required for regulation of cochlear blood flow during loud sound exposure in mice. Sci. Rep. 2020, 10, 9229. [Google Scholar] [CrossRef]
- Sun, J.G.; Adie, S.G.; Chaney, E.J.; Boppart, S.A. Segmentation and correlation of optical coherence tomography and X-ray images for breast cancer diagnostics. J. Innov. Opt. Heal. Sci. 2013, 06, 1350015. [Google Scholar] [CrossRef]
- Pierce, M.C.; Strasswimmer, J.; Park, B.H.; Cense, B.; de Boer, J.F. Advances in Optical Coherence Tomography Imaging for Dermatology. J. Investig. Dermatol. 2004, 123, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Vignali, L.; Solinas, E.; Emanuele, E. Research and Clinical Applications of Optical Coherence Tomography in Invasive Cardiology: A Review. Curr. Cardiol. Rev. 2014, 10, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Tearney, G.J.; Brezinski, M.E.; Southern, J.F.; Bouma, B.E.; Hee, M.R.; Fujimoto, J.G. Determination of the Refractive Index of Highly Scattering Human Tissue by Optical Coherence Tomography. Opt. Lett. 1995, 20, 2258–2260. [Google Scholar] [CrossRef]
- Kerckhofs, G.; Stegen, S.; van Gastel, N.; Sap, A.; Falgayrac, G.; Penel, G.; Durand, M.; Luyten, F.P.; Geris, L.; Vandamme, K.; et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 2018, 159, 1–12. [Google Scholar] [CrossRef]
- De Bournonville, S.; Vangrunderbeeck, S.; Ly, H.G.T.; Geeroms, C.; De Borggraeve, W.M.; Parac-Vogt, T.N.; Kerckhofs, G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater. 2020, 105, 253–262. [Google Scholar] [CrossRef]
- De Clercq, K.; Persoons, E.; Napso, T.; Luyten, C.; Parac-Vogt, T.N.; Sferruzzi-Perri, A.N.; Kerckhofs, G.; Vriens, J. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc. Natl. Acad. Sci. USA 2019, 116, 13927–13936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raufer, S.; Guinan, J.J.; Nakajima, H.H. Cochlear partition anatomy and motion in humans differ from the classic view of mammals. Proc. Natl. Acad. Sci. USA 2019, 116, 13977–13982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rask-Andersen, H.; Liu, W.; Erixon, E.; Kinnefors, A.; Pfaller, K.; Schrott-Fischer, A.; Glueckert, R. Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation. Anat. Rec. 2012, 295, 1791–1811. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Schart-Morén, N.; Liu, W.; Ladak, H.M.; Rask-Andersen, H.; Li, H. The secondary spiral lamina and its relevance in cochlear implant surgery. Upsala J. Med Sci. 2018, 123, 9–18. [Google Scholar] [CrossRef]
- Bas, E.; Dinh, C.T.; Garnham, C.; Polak, M.; Van de Water, T.R. Conservation of hearing and protection of hair cells in cochlear implant patients’ with residual hearing. Anat. Rec. 2012, 295, 1909–1927. [Google Scholar] [CrossRef]
- Cooper, N.P.; Vavakou, A.; Van Der Heijden, M. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat. Commun. 2018, 9, 3054. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Xia, A.; Raphael, P.D.; Puria, S.; Applegate, B.E.; Oghalai, J.S. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry. J. Neurophysiol. 2018, 120, 2847–2857. [Google Scholar] [CrossRef] [Green Version]
- Jawadi, Z.; Applegate, B.E.; Oghalai, J.S. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1427, pp. 449–462. [Google Scholar]
- Iyer, J.S.; Yin, B.; Stankovic, K.M.; Tearney, G.J. Endomicroscopy of the human cochlea using a micro-optical coherence tomography catheter. Sci. Rep. 2021, 11, 17932. [Google Scholar] [CrossRef]
- He, L.; Guo, J.-Y.; Liu, K.; Wang, G.-P.; Gong, S.-S. Research Progress on Flat Epithelium of the Inner Ear. Physiol. Res. 2020, 69, 775–785. [Google Scholar] [CrossRef]
- Lukashkin, A.N.; Richardson, G.P.; Russell, I.J. Multiple roles for the tectorial membrane in the active cochlea. Hear. Res. 2010, 266, 26–35. [Google Scholar] [CrossRef]
- Bullen, A.; Forge, A.; Wright, A.; Richardson, G.P.; Goodyear, R.J.; Taylor, R. Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. J. Neurosci. Res. 2020, 98, 1745–1763. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, R.J.; Cheatham, M.A.; Naskar, S.; Zhou, Y.; Osgood, R.T.; Zheng, J.; Richardson, G.P. Accelerated Age-Related Degradation of the Tectorial Membrane in the Ceacam16βgal/βgal Null Mutant Mouse, a Model for Late-Onset Human Hereditary Deafness DFNB. Front. Mol. Neurosci. 2019, 12, 147. [Google Scholar] [CrossRef]
- Salt, A.N.; Plontke, S.K. Endolymphatic Hydrops: Pathophysiology and Experimental Models. Otolaryngol. Clin. North Am. 2010, 43, 971–983. [Google Scholar] [CrossRef] [Green Version]
- AlZamil, K.S.; Linthicum, F.H. Extraneous round window membranes and plugs: Possible effect on intratympanic therapy. Ann. Otol. Rhinol. Laryngol. 2000, 109, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Luers, J.C.; Hüttenbrink, K.B.; Beutner, D. Surgical anatomy of the round window-Implications for cochlear implantation. Clin. Otolaryngol. 2018, 43, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Alicandri-Ciufelli, M.; Pothier, D.; Rubini, A.; Presutti, L. The round window region and contiguous areas: Endoscopic anatomy and surgical implications. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Şahin, B.; Orhan, K.S.; Aslıyüksek, H.; Kara, E.; Büyük, Y.; Güldiken, Y. Endoscopic evaluation of middle ear anatomic variations in autopsy series: Analyses of 204 ears. Braz. J. Otorhinolaryngol. 2020, 86, 74–82. [Google Scholar] [CrossRef]
- Plontke, S.K.; Salt, A.N. Local drug delivery to the inner ear: Principles, practice, and future challenges. Hear. Res. 2018, 368, 18. [Google Scholar] [CrossRef]
- Koch, R.W.; Elfarnawany, M.; Zhu, N.; Ladak, H.M.; Agrawal, S.K. Evaluation of Cochlear Duct Length Computations Using Synchrotron Radiation Phase-Contrast Imaging. Otol. Neurotol. 2017, 38, e92–e99. [Google Scholar] [CrossRef]
- Erixon, E.; Rask-Andersen, H. How to predict cochlear length before cochlear implantation surgery. Acta Oto-Laryngol. 2013, 133, 1258–1265. [Google Scholar] [CrossRef]
- Atturo, F.; Barbara, M.; Rask-Andersen, H. On the Anatomy of the ‘Hook’ Region of the Human Cochlea and How It Relates to Cochlear Implantation. Audiol. Neurotol. 2014, 19, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Jwair, S.; Prins, A.; Wegner, I.; Stokroos, R.J.; Versnel, H.; Thomeer, H.G.X.M. Scalar Translocation Comparison Between Lateral Wall and Perimodiolar Cochlear Implant Arrays-A Meta-Analysis. Laryngoscope 2021, 131, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Géléoc, G.S.G.; Holt, J.R. Sound Strategies for Hearing Restoration. Science 2014, 344, 1241062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landegger, L.D.; Psaltis, D.; Stankovic, K.M. Human audiometric thresholds do not predict specific cellular damage in the inner ear. Hear. Res. 2016, 335, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawa, S.G.; Liberman, M.C. Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear. Res. 2019, 377, 44–52. [Google Scholar] [CrossRef]
- Starovoyt, A.; Quirk, B.C.; Putzeys, T.; Kerckhofs, G.; Nuyts, J.; Wouters, J.; McLaughlin, R.A.; Verhaert, N. An Optically-Guided Cochlear Implant Sheath for Real-Time Monitoring of Electrode Insertion into the Human Cochlea. Sci Rep. 2022, 12, 19234. [Google Scholar] [CrossRef]
- Lin, J.; Staecker, H.; Samir Jafri, M.S. Optical Coherence Tomography Imaging of the Inner Ear: A Feasibility Study With Implications for Cochlear Implantation. Ann. Otol. Rhinol. Laryngol. 2008, 117, 341–346. [Google Scholar] [CrossRef]
- Schachern, P.A.; Paparella, M.M.; Duvall, A.J.; Choo, Y.B. The Human Round Window Membrane: An Electron Microscopic Study. Arch. Otolaryngol. Head Neck Surg. 1984, 110, 15–21. [Google Scholar] [CrossRef]
- Sahni, R.S.; Paparella, M.M.; Schachern, P.A.; Goycoolea, M.V.; Le, C.T. Thickness of the Human Round Window Membrane in Different Forms of Otitis Media. Arch. Otolaryngol. Head Neck Surg. 1987, 113, 630–634. [Google Scholar] [CrossRef]
- Yoda, S.; Cureoglu, S.; Shimizu, S.; Morita, N.; Fukushima, H.; Sato, T.; Harada, T.; Paparella, M.M. Round Window Membrane in Ménière’s Disease: A Human Temporal Bone Study. Otol. Neurotology. 2011, 32, 147–151. [Google Scholar] [CrossRef]
- Cho, N.H.; Wang, H.; Puria, S. Cochlear Fluid Spaces and Structures of the Gerbil High-Frequency Region Measured Using Optical Coherence Tomography (OCT). J. Assoc. Res. Otolaryngol. 2022, 23, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, S.; Oghalai, J.S.; Applegate, B.E. Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window. Opt. Lett. 2018, 43, 1966. [Google Scholar] [CrossRef] [PubMed]
- Burwood, G.W.S.; Fridberger, A.; Wang, R.K.; Nuttall, A.L. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant. Imaging Med. Surg. 2019, 9, 858–881. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerkhofs, L.; Starovoyt, A.; Wouters, J.; Putzeys, T.; Verhaert, N. Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. J. Clin. Med. 2023, 12, 238. https://doi.org/10.3390/jcm12010238
Kerkhofs L, Starovoyt A, Wouters J, Putzeys T, Verhaert N. Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. Journal of Clinical Medicine. 2023; 12(1):238. https://doi.org/10.3390/jcm12010238
Chicago/Turabian StyleKerkhofs, Lore, Anastasiya Starovoyt, Jan Wouters, Tristan Putzeys, and Nicolas Verhaert. 2023. "Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region" Journal of Clinical Medicine 12, no. 1: 238. https://doi.org/10.3390/jcm12010238
APA StyleKerkhofs, L., Starovoyt, A., Wouters, J., Putzeys, T., & Verhaert, N. (2023). Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. Journal of Clinical Medicine, 12(1), 238. https://doi.org/10.3390/jcm12010238