Effects of Posterior Spinal Correction and Fusion on Postural Stability in Patients with Adolescent Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgical Technique
2.3. Postural Stability Parameters
2.4. Radiographic Parameters
2.5. Statistical Analysis
3. Results
3.1. Postural Stability Parameters
3.2. Radiographic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, W.C.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Prim. 2015, 1, 15030. [Google Scholar] [CrossRef] [Green Version]
- Dufvenberg, M.; Adeyemi, F.; Rajendran, I.; Öberg, B.; Abbott, A. Does postural stability differ between adolescents with idiopathic scoliosis and typically developed? A systematic literature review and meta-analysis. Scoliosis Spinal Disord. 2018, 13, 19. [Google Scholar] [CrossRef]
- Chen, P.Q.; Wang, J.L.; Tsuang, Y.H.; Liao, T.L.; Huang, P.I.; Hang, Y.S. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin. Biomech. 1998, 13, S52–S58. [Google Scholar] [CrossRef]
- Nault, M.L.; Allard, P.; Hinse, S.; Le Blanc, R.; Caron, O.; Labelle, H.; Sadeghi, H. Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine 2002, 27, 1911–1917. [Google Scholar] [CrossRef]
- de Abreu, D.C.; Gomes, M.M.; de Santiago, H.A.; Herrero, C.F.; Porto, M.A.; Defino, H.L. What is the influence of surgical treatment of adolescent idiopathic scoliosis on postural control? Gait Posture 2012, 36, 586–590. [Google Scholar] [CrossRef]
- Newton, P.O.; Yaszay, B.; Upasani, V.V.; Pawelek, J.B.; Bastrom, T.P.; Lenke, L.G.; Lowe, T.; Crawford, A.; Betz, R.; Lonner, B.; et al. Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine 2010, 35, 1365–1370. [Google Scholar] [CrossRef]
- Lonner, B.S.; Lazar-Antman, M.A.; Sponseller, P.D.; Shah, S.A.; Newton, P.O.; Betz, R.; Shufflebarger, H.S. Multivariate analysis of factors associated with kyphosis maintenance in adolescent idiopathic scoliosis. Spine 2012, 37, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H. Four-Dimensional Anatomical Spinal Reconstruction in Thoracic Adolescent Idiopathic Scoliosis. JBJS Essent. Surg. Tech. 2022, 12, 00038.e21. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H.; Tachi, H.; Kokabu, T.; Yamada, K.; Iwata, A.; Endo, T.; Takahata, M.; Abe, Y.; Iwasaki, N. In vivo deformation of anatomically pre-bent rods in thoracic adolescent idiopathic scoliosis. Sci. Rep. 2021, 16, 12622. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Sudo, H.; Iwasaki, N.; Chiba, A. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery. Spine 2020, 45, E312–E318. [Google Scholar] [CrossRef]
- Sudo, H.; Abe, Y.; Kokabu, T.; Kuroki, K.; Iwata, A.; Iwasaki, N. Impact of Multilevel Facetectomy and Rod Curvature on Anatomical Spinal Reconstruction in Thoracic Adolescent Idiopathic Scoliosis. Spine 2018, 43, E1135–E1142. [Google Scholar] [CrossRef] [PubMed]
- McKeon, P.O.; Hertel, J. Plantar hypoesthesia alters time-to-boundary measures of postural control. Somatosens. Mot. Res. 2007, 24, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J.; Olmsted-Kramer, L.C.; Challis, J.H. Time-to-boundary measures of postural control during single leg quiet standing. J. Appl. Biomech. 2006, 22, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Hertel, J.; Olmsted-Kramer, L.C. Deficits in time-to-boundary measures of postural control with chronic ankle instability. Gait Posture 2007, 25, 33–39. [Google Scholar] [CrossRef] [PubMed]
- van Wegen, E.E.; van Emmerik, R.E.; Riccio, G.E. Postural orientation: Age-related changes in variability and time-to-boundary. Hum. Mov. Sci. 2002, 21, 61–84. [Google Scholar] [CrossRef]
- Richmond, S.B.; Whittier, T.T.; Peterson, D.S.; Fling, B.W. Advanced characterization of static postural control dysfunction in persons with multiple sclerosis and associated neural mechanisms. Gait Posture 2021, 83, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Farahpour, N.; Ghasemi, S.; Allard, P.; Saba, M.S. Electromyographic responses of erector spinae and lower limb’s muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis. J. Electromyogr. Kinesiol. 2014, 24, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ko, J.Y.; Jang, J.Y.; Lee, S.; Beom, J.; Ryu, J.S. Asymmetrical activation and asymmetrical weakness as two different mechanisms of adolescent idiopathic scoliosis. Sci. Rep. 2021, 11, 17582. [Google Scholar] [CrossRef]
- Barrack, R.L.; Whitecloud, T.S., 3rd; Burke, S.W.; Cook, S.D.; Harding, A.F. Proprioception in idiopathic scoliosis. Spine 1984, 9, 681–685. [Google Scholar] [CrossRef]
- Valles, K.D.B.; Long, J.T.; Riedel, S.A.; Graf, A.; Krzak, J.; Hassani, S.; Riordan, M.; Zaharski, K.; Sturm, P.F.; Harris, G.F. Analysis of postural stability following posterior spinal fusion in adolescents with idiopathic scoliosis. Stud. Health Technol. Inform. 2010, 158, 127–131. [Google Scholar] [CrossRef]
- Schimmel, J.J.; Groen, B.E.; Weerdesteyn, V.; de Kleuver, M. Adolescent idiopathic scoliosis and spinal fusion do not substantially impact on postural balance. Scoliosis 2015, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- O’Beirne, J.; Goldberg, C.; Dowling, F.E.; Fogarty, E.E. Equilibrial dysfunction in scoliosis—cause or effect? J. Spinal. Disord. 1989, 2, 184–189. [Google Scholar] [PubMed]
- St-Georges, M.; Teles, A.R.; Rabau, O.; Saran, N.; Ouellet, J.A.; Ferland, C.E. Adolescent idiopathic scoliosis: Evaluating perioperative back pain through a simultaneous morphological and biomechanical approach. BMC Musculoskelet. Disord. 2020, 21, 466. [Google Scholar] [CrossRef] [PubMed]
- Majdouline, Y.; Aubin, C.E.; Robitaille, M.; Sarwark, J.F.; Labelle, H. Scoliosis correction objectives in adolescent idiopathic scoliosis. J. Pediatr. Orthop. 2007, 27, 775–781. [Google Scholar] [CrossRef]
- Bridwell, K.H. Surgical treatment of idiopathic adolescent scoliosis. Spine 1999, 24, 2607–2616. [Google Scholar] [CrossRef]
- Lowenstein, J.E.; Matsumoto, H.; Vitale, M.G.; Weidenbaum, M.; Gomez, J.A.; Lee, F.Y.; Hyman, J.E.; Roye, D.P., Jr. Coronal and sagittal plane correction in adolescent idiopathic scoliosis: A comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine 2007, 32, 448–452. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lenke, L.G.; Kim, J.; Bridwell, K.H.; Cho, S.K.; Cheh, G.; Sides, B. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 2006, 31, 291–298. [Google Scholar] [CrossRef]
- Sucato, D.J.; Agrawal, S.; O’Brien, M.F.; Lowe, T.G.; Richards, S.B.; Lenke, L. Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: A multicenter comparison of three surgical approaches. Spine 2008, 33, 2630–2636. [Google Scholar] [CrossRef]
Mean (Standard Deviation) | Range | |
---|---|---|
Age at surgery, yrs | 14.7 (2.0) | 11–18 |
Height at surgery, cm | 157.1 (6.6) | 140.0–171.0 |
Weight at surgery, kg | 47.2 (7.8) | 29.5–62.5 |
Risser sign | 3.7 (1.5) | 0–5 |
Cobb length (upper end–lower end vertebra) | 7.6 (0.9) | 6–10 |
Instrumentation length (segments) | 10.9 (1.6) | 6–13 |
Operation time, min | 254.3 (52.4) | 126–402 |
Preop | Postop (1 Week) | Postop (6 Months) | Overall p | Post Hoc Test p | |||
---|---|---|---|---|---|---|---|
Preop to Postop (1 Week) | Preop to Postop (6 Months) | Postop (1 Week) to Postop (6 Months) | |||||
Velocity, cm/s | |||||||
Mediolateral | 2.34 (0.63) | 2.28 (0.58) | 2.04 (0.51) | <0.001 | 1.000 | <0.001 | <0.001 |
Anteroposterior | 2.04 (0.63) | 2.07 (0.55) | 1.77 (0.53) | <0.001 | 1.000 | <0.001 | <0.001 |
Standard deviation, cm | |||||||
Mediolateral | 0.44 (0.08) | 0.47 (0.09) | 0.44 (0.08) | 0.015 | 0.102 | 1.000 | 0.017 |
Anteroposterior | 0.61 (0.15) | 0.68 (0.25) | 0.63 (0.17) | 0.249 | - | - | - |
Range, cm | |||||||
Mediolateral | 2.07 (0.34) | 2.13 (0.37) | 2.02 (0.38) | 0.303 | - | - | - |
Anteroposterior | 2.74 (0.63) | 3.00 (0.93) | 2.79 (0.67) | 0.303 | - | - | - |
95% confidence ellipse area, cm2 | 4.98 (1.94) | 5.95 (3.24) | 5.10 (2.02) | 0.109 | - | - | - |
Preop | Postop (1 Week) | Postop (6 Months) | Overall p | Post Hoc Test p | |||
---|---|---|---|---|---|---|---|
Preop to Postop (1 Week) | Preop to Postop (6 Months) | Postop (1 Week) to Postop (6 Months) | |||||
Coronal plane data, degree | |||||||
Proximal thoracic curve | 26.9 (8.5) | 11.4 (6.3) | 11.1 (6.8) | <0.001 | <0.001 | <0.001 | 1.000 |
Main thoracic curve | 53.5 (9.1) | 11.6 (7.3) | 12.6 (6.4) | <0.001 | <0.001 | <0.001 | 1.000 |
Thoracolumbar/lumbar curve | 36.1 (12.6) | 9.1 (6.0) | 9.8 (6.2) | <0.001 | <0.001 | <0.001 | 1.000 |
Sagittal plane data, degree | |||||||
Thoracic kyphosis | 15.7 (8.1) | 25.2 (5.8) | 25.5 (7.0) | <0.001 | <0.001 | <0.001 | 1.000 |
Lumbar lordosis | 47.0 (9.7) | 45.0 (9.5) | 50.2 (10.7) | <0.001 | 0.324 | 0.029 | <0.001 |
Balance parameters and translational data, mm | |||||||
C7 translation from central sacral vertical line | 16.9 (11.6) | 14.8 (10.6) | 9.5 (8.0) | 0.005 | 0.798 | <0.001 | 0.017 |
Sagittal vertical axis | −18.2 (18.8) | −7.7 (22.1) | −15.7 (21.3) | 0.018 | 0.021 | 1.000 | 0.113 |
Thoracic apical vertebral translation | 47.5 (16.8) | 11.1 (9.4) | 12.2 (8.3) | <0.001 | < 0.001 | <0.001 | 1.000 |
Thoracolumbar/Lumbar apical vertebral translation | 16.3 (17.4) | 11.8 (10.0) | 11.2 (9.5) | 0.779 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuka, S.; Sudo, H.; Yamada, K.; Tachi, H.; Watanabe, K.; Sentoku, F.; Chiba, T.; Iwasaki, N.; Mukaino, M.; Tohyama, H. Effects of Posterior Spinal Correction and Fusion on Postural Stability in Patients with Adolescent Idiopathic Scoliosis. J. Clin. Med. 2023, 12, 270. https://doi.org/10.3390/jcm12010270
Osuka S, Sudo H, Yamada K, Tachi H, Watanabe K, Sentoku F, Chiba T, Iwasaki N, Mukaino M, Tohyama H. Effects of Posterior Spinal Correction and Fusion on Postural Stability in Patients with Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine. 2023; 12(1):270. https://doi.org/10.3390/jcm12010270
Chicago/Turabian StyleOsuka, Satoshi, Hideki Sudo, Katsuhisa Yamada, Hiroyuki Tachi, Kentaro Watanabe, Fuma Sentoku, Takeshi Chiba, Norimasa Iwasaki, Masahiko Mukaino, and Harukazu Tohyama. 2023. "Effects of Posterior Spinal Correction and Fusion on Postural Stability in Patients with Adolescent Idiopathic Scoliosis" Journal of Clinical Medicine 12, no. 1: 270. https://doi.org/10.3390/jcm12010270
APA StyleOsuka, S., Sudo, H., Yamada, K., Tachi, H., Watanabe, K., Sentoku, F., Chiba, T., Iwasaki, N., Mukaino, M., & Tohyama, H. (2023). Effects of Posterior Spinal Correction and Fusion on Postural Stability in Patients with Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine, 12(1), 270. https://doi.org/10.3390/jcm12010270