Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Prediction of Cobb Angle Using DLA
2.2.1. 3D Depth Sensor Imaging
2.2.2. Estimation of Approximated Median Sagittal Plane and Region of Interest
2.2.3. Generation of Reflected Point Clouds
2.2.4. Conversion to Input Data for Predicting Cobb Angle by DLAs
2.2.5. Prediction of Cobb Angle by DLAs
2.3. Shooting Patterns
2.4. Pilot Study Using Phantom Models
2.5. Statistical Analysis
3. Results
3.1. Pilot Study Using Phantom Models
3.2. Human Subjects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grivas, T.B.; Vasiliadis, E.S.; Mihas, C.; Triantafyllopoulos, G.; Kaspiris, A. Trunk asymmetry in juveniles. Scoliosis 2008, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotwicki, T.; Kinel, E.; Stryla, W.; Szulc, A. Discrepancy in clinical versus radiological parameters describing deformity due to brace treatment for moderate idiopathic scoliosis. Scoliosis 2007, 2, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkas, G.; Papagelopoulos, P.J.; Kateros, K.; Koundis, G.L.; Boscainos, P.J.; Koukou, U.I.; Katonis, P. Prediction of Cobb Angle in Idiopathic Adolescent Scoliosis. Clin. Orthop. Relat. Res. 2003, 411, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H.; Kokabu, T.; Abe, Y.; Iwata, A.; Yamada, K.; Ito, Y.M.; Iwasaki, N.; Kanai, S. Automated noninvasive detection of idiopathic scoliosis in children and adolescents: A principle validation study. Sci. Rep. 2018, 8, 17714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokabu, T.; Kawakami, N.; Uno, K.; Kotani, T.; Suzuki, T.; Abe, Y.; Maeda, K.; Inage, F.; Ito, Y.M.; Iwasaki, N.; et al. Three-dimensional depth sensor imaging to identify adolescent idiopathic scoliosis: A prospective multicenter cohort study. Sci. Rep. 2019, 9, 9678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokabu, T.; Kanai, S.; Kawakami, N.; Uno, K.; Kotani, T.; Suzuki, T.; Tachi, H.; Abe, Y.; Iwasaki, N.; Sudo, H. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection. Spine J. 2021, 21, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Yasutaka, T.; Naka, A.; Sakanakura, H.; Kurosawa, A.; Inui, T.; Takeo, M.; Inoba, S.; Watanabe, Y.; Fujikawa, T.; Miura, T.; et al. Reproducibility of up-flow column percolation tests for contaminated soils. PLoS ONE 2017, 12, e0178979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madelin, G.; Babb, J.; Xia, D.; Regatte, R.R. Repeatability of Quantitative Sodium Magnetic Resonance Imaging for Estimating Pseudo-Intracellular Sodium Concentration and Pseudo-Extracellular Volume Fraction in Brain at 3 T. PLoS ONE 2015, 10, e0118692. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Gao, Y.; Feng, J.; Lei, T.; Yuan, X. Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 2020, 28, 3717–3731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, K.; Fan, H.; Huang, Z.; Xiang, Y.; Yang, J.; He, L.; Zhang, L.; Yang, Y.; Li, R.; et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun. Biol. 2019, 2, 390. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Han, P.; Hales, R.K.; Voong, K.R.; Noro, K.; Sugiyama, S.; Haller, J.W.; McNutt, T.R.; Lee, J. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy. Phys. Med. Biol. 2020, 65, 195015. [Google Scholar] [CrossRef] [PubMed]
UNIQLO | Ryohin Keikaku | SHIMAMURA | p Value | |
---|---|---|---|---|
Thoracic Single Curve | ||||
Predicted Cobb angle (°) | 24.8 ± 0.60 | 24.7 ± 0.47 | 24.6 ± 0.33 | 0.831 |
Coefficient of variation (%) | 2 | 2 | 1 | |
Thoracolumbar/lumbar single curve | ||||
Predicted Cobb angle (°) | 24.0 ± 0.59 | 24.6 ± 1.06 | 23.8 ± 0.63 | 0.151 |
Coefficient of variation (%) | 2 | 4 | 3 | |
Thoracic Thoracolumbar/lumbar double curve | ||||
Predicted Cobb angle (°) | 31.1 ± 0.56 | 30.9 ± 0.93 | 31.6 ± 0.62 | 0.108 |
Coefficient of variation (%) | 2 | 3 | 2 |
UNIQLO Black | UNIQLO White | p Value | |
---|---|---|---|
Thoracic single curve | |||
Predicted Cobb angle (°) | 24.8 ± 0.60 | 25.5 ± 1.09 | 0.098 |
Coefficient of variation (%) | 2 | 4 | |
Thoracolumbar/lumbar single curve | |||
Predicted Cobb angle (°) | 24.0 ± 0.59 | 23.6 ± 0.72 | 0.115 |
Coefficient of variation (%) | 2 | 3 | |
Thoracic Thoracolumbar/lumbar double curve | |||
Predicted Cobb angle (°) | 31.1 ± 0.53 | 32.3 ± 1.00 | 0.997 |
Coefficient of variation (%) | 1 |
Pattern 1 | Pattern 2 | Pattern 3 | Pattern 4 | |||||
---|---|---|---|---|---|---|---|---|
MAE (°) | RMSE (°) | MAE (°) | RMSE (°) | MAE (°) | RMSE (°) | MAE (°) | RMSE (°) | |
Mild group (0° to 19°) | 5.1 | 7.4 | 4.9 | 6.3 | 6.4 | 8.6 | 6.1 | 7.5 |
Moderate group (20° to 39°) | 4.4 | 6.0 | 4.2 | 5.4 | 6.7 | 7.8 | 4.7 | 5.8 |
Severe group (≥40°) | 4.7 | 7.1 | 6.0 | 7.7 | 6.2 | 7.2 | 11.0 | 12.0 |
Total | 4.7 | 6.0 | 4.8 | 6.1 | 6.3 | 8.0 | 6.1 | 7.6 |
Pattern 1 | Pattern 2 | Pattern 3 | Pattern 4 | |
---|---|---|---|---|
Pattern 1 | N/A | 0.99 | 0.03 | 0.09 |
Pattern 2 | N/A | 0.04 | 0.11 | |
Pattern 3 | N/A | 0.97 | ||
Pattern 4 | N/A |
Pattern | Cobb Angle | Sensitivity | Specificity | PPV | NPV | Accuracy | PLR | NLR |
---|---|---|---|---|---|---|---|---|
1 | 10° | 0.98 | 0.36 | 0.93 | 0.67 | 0.92 | 1.54 | 0.06 |
15° | 0.94 | 0.52 | 0.88 | 0.69 | 0.86 | 1.97 | 0.12 | |
20° | 0.89 | 0.69 | 0.84 | 0.77 | 0.83 | 2.84 | 0.16 | |
25° | 0.83 | 0.85 | 0.86 | 0.82 | 0.85 | 5.57 | 0.20 | |
2 | 10° | 0.98 | 0.18 | 0.89 | 0.50 | 0.89 | 1.19 | 0.13 |
15° | 0.92 | 0.52 | 0.88 | 0.65 | 0.85 | 1.94 | 0.14 | |
20° | 0.94 | 0.71 | 0.86 | 0.86 | 0.87 | 3.28 | 0.09 | |
25° | 0.85 | 0.85 | 0.87 | 0.83 | 0.86 | 5.70 | 0.18 | |
3 | 10° | 0.99 | 0.18 | 0.91 | 0.67 | 0.91 | 1.21 | 0.06 |
15° | 0.94 | 0.43 | 0.86 | 0.64 | 0.84 | 1.64 | 0.15 | |
20° | 0.95 | 0.57 | 0.81 | 0.87 | 0.83 | 2.23 | 0.08 | |
25° | 0.83 | 0.70 | 0.76 | 0.79 | 0.78 | 2.79 | 0.24 | |
4 | 10° | 0.98 | 0.18 | 0.91 | 0.50 | 0.90 | 1.19 | 0.12 |
15° | 0.89 | 0.33 | 0.83 | 0.44 | 0.78 | 1.32 | 0.34 | |
20° | 0.94 | 0.69 | 0.85 | 0.86 | 0.86 | 2.99 | 0.09 | |
25° | 0.77 | 0.87 | 0.87 | 0.77 | 0.83 | 6.06 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, Y.; Kokabu, T.; Yamada, K.; Abe, Y.; Tachi, H.; Suzuki, H.; Ohnishi, T.; Endo, T.; Ukeba, D.; Ura, K.; et al. Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis. J. Clin. Med. 2023, 12, 499. https://doi.org/10.3390/jcm12020499
Ishikawa Y, Kokabu T, Yamada K, Abe Y, Tachi H, Suzuki H, Ohnishi T, Endo T, Ukeba D, Ura K, et al. Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis. Journal of Clinical Medicine. 2023; 12(2):499. https://doi.org/10.3390/jcm12020499
Chicago/Turabian StyleIshikawa, Yoko, Terufumi Kokabu, Katsuhisa Yamada, Yuichiro Abe, Hiroyuki Tachi, Hisataka Suzuki, Takashi Ohnishi, Tsutomu Endo, Daisuke Ukeba, Katsuro Ura, and et al. 2023. "Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis" Journal of Clinical Medicine 12, no. 2: 499. https://doi.org/10.3390/jcm12020499
APA StyleIshikawa, Y., Kokabu, T., Yamada, K., Abe, Y., Tachi, H., Suzuki, H., Ohnishi, T., Endo, T., Ukeba, D., Ura, K., Takahata, M., Iwasaki, N., & Sudo, H. (2023). Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis. Journal of Clinical Medicine, 12(2), 499. https://doi.org/10.3390/jcm12020499