Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Rest Echocardiography
2.3. Dobutamine Stress Echocardiography
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshy, M.; Fairchild, A.; Son, C.H.; Mahmood, U. Improved survival time trends in Hodgkin’s lymphoma. Cancer Med. 2016, 5, 997–1003. [Google Scholar] [CrossRef]
- Wästerlid, T.; Hasselblom, S.; Joelsson, J.; Weibull, C.E.; Rassidakis, G.; Sander, B.; Smedby, K.E. Real-world data on treatment and outcomes of patients with primary mediastinal large B-cell lymphoma: A Swedish lymphoma register study. Blood Cancer J. 2021, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Aleman, B.M.P.; van den Belt-Dusebout, A.W.; De Bruin, M.L.; van ’t Veer, M.B.; Baaijens, M.H.A.; de Boer, J.P.; Hart, A.A.M.; Klokman, W.J.; Kuenen, M.A.; Ouwens, G.M.; et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood 2007, 109, 1878–1886. [Google Scholar] [CrossRef]
- Orsinelli, D.A.; Armour, A.; De Cara, J.; Fey, B.; Frommelt, P.; Lopez-Mattei, J.; Marshall, J.; Poppe, A.; Sachdev, V.; Sanchez, L.; et al. The American Society of Echocardiography recommendations for cardiac chamber quantification in adults. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar]
- Gavazzoni, M.; Badano, L.P.; Vizzardi, E.; Raddino, R.; Genovese, D.; Taramasso, M.; Sciatti, E.; Palermo, C.; Metra, M.; Muraru, D. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1013–1021. [Google Scholar] [CrossRef]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging Industry representatives. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar]
- Ciampi, Q.; Carpeggiani, C.; Michelassi, C.; Villari, B.; Picano, E. Left ventricular contractile reserve by stress echocardiography as a predictor of response to cardiac resynchronization therapy in heart failure: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2017, 17, 223. [Google Scholar] [CrossRef]
- Altman, R.K.; McCarty, D.; Chen-Tournoux, A.A.; Tournoux, F.B.; Riedl, L.; Orencole, M.; Park, M.Y.; Picard, M.H.; Singh, J.P. Usefulness of low-dose dobutamine echocardiography to predict response and outcome in patients undergoing cardiac resynchronization therapy. Am. J. Cardiol. 2011, 108, 252–257. [Google Scholar] [CrossRef]
- Picano, E.; Ciampi, Q.; Citro, R.; D’andrea, A.; Scali, M.C.; Cortigiani, L.; Olivotto, I.; Mori, F.; Galderisi, M.; Costantino, M.F.; et al. Stress echo 2020: The international stress echo study in ischemic and non-ischemic heart disease. Cardiovasc. Ultrasound 2017, 15, 3. [Google Scholar] [CrossRef]
- Picano, E.; Bombardini, T.; Preradović, T.K.; Cortigiani, L.; Wierzbowska-Drabik, K.; Ciampi, Q. Left ventricular contractile reserve in stress echocardiography: The bright side of the force. Kardiol. Pol. 2019, 77, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Wierzbowska-Drabik, K.; Picano, E.; Simiera, M.; Plewka, M.; Kręcki, R.; Peruga, J.Z.; Kasprzak, J.D. A head-to-head comparison of wall motion score index, force, strain, and ejection fraction for the prediction of SYNTAX and Gensini coronary scores by dobutamine stress echocardiography. Kardiol. Pol. 2020, 78, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Morrone, D.; Scali, M.C.; Huqi, A.; Coviello, K.; Ciampi, Q. Integrated quadruple stress echocardiography. Minerva Cardioangiol. 2019, 67, 330–339. [Google Scholar] [CrossRef]
- Adams, M.J.; Lipsitz, S.R.; Colan, S.D.; Tarbell, N.J.; Treves, S.T.; Diller, L.; Greenbaum, N.; Mauch, P.; Lipshultz, S.E. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J. Clin. Oncol. 2004, 22, 3139–3148. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Van Nimwegen, F.A.; Schaapveld, M.; Janus, C.P.M.; Krol, A.D.G.; Petersen, E.J.; Raemaekers, J.M.M.; Kok, W.E.M.; Aleman, B.M.P.; van Leeuwen, F.E. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern. Med. 2015, 175, 1007–1017. [Google Scholar] [CrossRef]
- Trivedi, S.J.; Tang, S.; Byth, K.; Stefani, L.; Lo, Q.; Otton, J.; Jameson, M.; Tran, D.; Batumalai, V.; Holloway, L.; et al. Segmental cardiac radiation dose determines magnitude of regional cardiac dysfunction. J. Am. Heart Assoc. 2021, 10, e019476. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Schnittger, I.; Strauss, H.W.; Vagelos, R.H.; Lee, B.K.; Mariscal, C.S.; Tate, D.J.; Horning, S.J.; Hoppe, R.T.; Hancock, S.L. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J. Clin. Oncol. 2007, 25, 43–49. [Google Scholar] [CrossRef]
- Hershman, D.L.; Till, C.; Shen, S.; Wright, J.D.; Ramsey, S.D.; Barlow, W.E.; Unger, J.M. Association of Cardiovascular Risk Factors with Cardiac Events and Survival Outcomes Among Patients with Breast Cancer Enrolled in SWOG Clinical Trials. J. Clin. Oncol. 2018, 36, 2710–2717. [Google Scholar] [CrossRef] [PubMed]
- Hershman, D.L.; Accordino, M.K.; Shen, S.; Buono, D.; Crew, K.D.; Kalinsky, K.; Trivedi, M.S.; Hur, C.; Hu, J.; Unger, J.M.; et al. Association between nonadherence to cardiovascular risk factor medications after breast cancer diagnosis and incidence of cardiac events. Cancer 2020, 126, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.T.; Marwick, T.H.; Plana, J.C.; Li, Z.; Ness, K.K.; Joshi, V.M.; Green, D.M.; Robison, L.L.; Hudson, M.M.; Armstrong, G.T. Effect of Traditional Heart Failure Risk Factors on Myocardial Dysfunction in Adult Survivors of Childhood Cancer. JACC Cardiovasc. Imaging 2018, 11, 1202–1203. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise Standards for Testing and Training. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Qureshi, W.T.; Blaha, M.J.; Keteyian, S.J.; Brawner, C.A.; Al-Mallah, M.H. Systolic Blood Pressure Response during Exercise Stress Testing: The Henry Ford ExercIse Testing (FIT) Project. J. Am. Heart Assoc. 2015, 4, e002050. [Google Scholar] [CrossRef]
- Portugal, G.; Moura Branco, L.; Galrinho, A.; Mota Carmo, M.; Timóteo, A.T.; Feliciano, J.; Abreu, J.; Oliveira, S.D.; Batarda, L.; Ferreira, R.C. Global and regional patterns of longitudinal strain in screening for chemotherapy-induced cardiotoxicity. Rev. Port. Cardiol. 2017, 36, 9–15. [Google Scholar] [CrossRef]
- Astuti, A.; Erwinanto, E.; Akbar, M.R.; Martanto, E.; Badudu, D.F. Global and Regional Longitudinal Strain Reduction in Breast Cancer Patients After First Chemotherapy Cycle with Fluorouracil, Adriamycin, and Cyclophosphamide Regimen. Cardiol. Res. 2021, 12, 238–243. [Google Scholar] [CrossRef]
- Fourati, N.; Charfeddine, S.; Chaffai, I.; Dhouib, F.; Farhat, L.; Boukhris, M.; Abid, L.; Kammoun, S.; Mnejja, W.; Daoud, J. Subclinical left ventricle impairment following breast cancer radiotherapy: Is there an association between segmental doses and segmental strain dysfunction? Int. J. Cardiol. 2021, 345, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Khairat, I.; Khalfallah, M.; Shaban, A.; Farag, I.A.; Elkady, A. Right ventricular 2D speckle-tracking echocardiography in children with osteosarcoma under chemotherapy. Egypt. Heart J. Off. Bull. Egypt. Soc. Cardiol. 2019, 71, 23. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients n = 60 | Chemoradiotherapy Group n = 28 | Chemotherapy Group n = 32 | p |
---|---|---|---|---|
Age, years | 49 ± 15 (18–79) | 46 ± 16 (18–79) | 52 ± 15 (20–75) | 0.12 |
Males, n (%) | 24 (40) | 9 (32) | 15 (47) | 0.33 |
Cardiovascular risk factors: | ||||
arterial hypertension, n (%) | 29 (48) | 9 (32) | 20 (62.5) | 0.04 |
dyslipidemia, n (%) | 26 (43) | 10 (35.7) | 16 (50) | 0.36 |
diabetes, n (%) | 6 (10) | 1 (3.6) | 5 (15.6) | 0.43 |
current/former smoker, n (%) | 15 (25) | 4 (14.2) | 11 (34.4) | 0.18 |
obesity, (BMI > 30 kg/m2), n (%) | 16 (27) | 6 (21) | 10 (31) | 0.81 |
chronic kidney disease, n (%) | 8 (13.3) | 2 (7.2) | 6 (18.8) | 0.45 |
Charlson comorbidity index, median (quartile 25%, quartile 75%) | 0.0 (0.0; 2.0) | 0.0 (0.0; 1.0) | 1.0 (1.0; 2.0) | 0.027 |
Laboratory parameters: | ||||
BNP, pg/mL | 49.8 | 49.6 | 50.0 | 0.80 |
Cumulative doxorubicin dose, mg/m2 | 292.0 ± 87 | 284.1 ± 101 | 298.9 ± 73 | 0.51 |
Median time from cancer treatment termination, months | 89 | 127 | 85 | 0.08 |
Parameter | Chemoradiotherapy Group n = 28 | Chemotherapy Group n = 32 | p |
---|---|---|---|
LVEF, % | 60.4 ± 9.3 | 57.5 ± 9.9 | 0.61 |
patients with decreased LVEF, n (%) | 4 (14.3) | 8 (25.0) | 0.48 |
LV GLS,% | −18.0 ± 2.9 | −17.4 ± 3.5 | 0.51 |
patients with an abnormal LV GLS, n (%) | 6 (21.4) | 8 (25.0) | 0.82 |
patients with a borderline LV GLS, n (%) | 5 (17.9) | 10 (31.3) | 0.38 |
inferior part of interventricular septum LS, % | −16.1 ± 3.9 | −16.1 ± 3.7 | 0.99 |
anterior part of interventricular septum LS, % | −15.9 ± 4.8 | −16.5 ± 5.5 | 0.66 |
anterior wall LS, % | −15.9 ± 4.1 | −15.8 ± 5.2 | 0.95 |
lateral wall LS, % | −17.5 ± 4.9 | −17.3 ± 3.8 | 0.66 |
posterior wall LS, % | −19.1 ± 3.1 | −16.5 ± 5.1 | 0.04 |
inferior wall LS, % | −19.0 ± 3.5 | −17.9 ± 4.5 | 0.33 |
SV, mL | 50.8 ± 17.2 | 51.9 ± 17.1 | 0.86 |
SVi, mL/m2 | 27.7 ± 8.7 | 27.0 ± 7.8 | 0.79 |
TAPSE, mm | 21.6 ± 3.9 | 21.7 ± 3.7 | 0.96 |
RV FAC, % | 42.7 ± 7.7 | 44.4 ± 10.0 | 0.86 |
RV s’, cm/s | 12.8 ± 3.0 | 12.2 ± 2.0 | 0.84 |
RV LS, % | −21.2 ± 6.5 | −18.8 ± 5.9 | 0.16 |
Parameter | After Chemoradiotherapy n = 11 | After Chemotherapy n = 10 | p |
---|---|---|---|
Age, years | 48 ± 14 (29–79) | 53 ± 12 (31–71) | 0.41 |
Males, n (%) | 2 (18) | 6 (60) | 0.11 |
Cardiovascular risk factors: | |||
arterial hypertension, n (%) | 3 (27) | 7 (70) | 0.11 |
dyslipidemia, n (%) | 2 (18) | 7 (70) | 0.049 |
diabetes, n (%) | 1 (9) | 1 (10) | 1.00 |
current/former smoker, n (%) | 2 (18) | 2 (20) | 0.97 |
obesity (BMI > 30 kg/m2), n (%) | 1 (9) | 2 (20) | 0.70 |
chronic kidney disease, n (%) | 0 | 3 (30) | 0.26 |
Charlson comorbidity index, median (quartile 25%, quartile 75%) | 0.0 (0.0; 1.0) | 2.0 (0.0; 3.0) | 0.25 |
Cumulative doxorubicin dose, mg/m2 | 258.2 ± 77 | 299.0 ± 72 | 0.25 |
Median time from cancer treatment termination, months | 179 | 105 | 0.10 |
LVEF at baseline, % | 65.9 ± 4.7 | 57.9 ± 7.9 | 0.01 |
Patients with decreased LVEF at rest, n (%) | 0 | 3 (30) | 0.26 |
LVEF at low dose, % | 72.6 ± 5.7 | 68.4 ± 6.8 | 0.16 |
LVEF at peak dose, % | 74.2 ± 5.8 | 68.7 ± 4.1 | 0.046 |
LV GLS at baseline, % | −19.5 ± 1.2 | −18.0 ± 3.2 | 0.18 |
Patients with an abnormal LV GLS at rest, n (%) | 0 | 2 (20) | 0.46 |
Patients with a borderline LV GLS at rest, n (%) | 1 (9) | 3 (30) | 0.44 |
LV GLS at low dose, % | −23.8 ± 2.1 | −23.3 ± 2.7 | 0.67 |
LV GLS at peak dose, % | −22.5 ± 2.5 | −22.9 ± 2.9 | 0.72 |
LVCR assessed with ΔLVEF at peak dose, % | 12.6 | 18.6 | 0.27 |
Patients with reduced LVCR assessed with LVEF at peak dose, n (%) | 9 (82) | 4 (40) | 0.11 |
LVCR assessed with ΔLV GLS at peak dose, % | 15.9 | 27.8 | 0.26 |
Patients with reduced LVCR assessed with LV GLS at peak dose, n (%) | 8 (73) | 4 (40) | 0.22 |
LVCR obtained from Force at peak dose | 1.10 | 1.14 | 0.45 |
Patients with reduced LVCR assessed with Force at peak dose, n (%) | 11 (100) | 10 (100) | 1.0 |
Parameter | Study Group n = 21 | Control Group n = 11 | p |
---|---|---|---|
Age, years | 51 ± 13 (29–79) | 49 ± 13 (33–76) | 0.87 |
Males, n (%) | 8 (38) | 5 (45) | 0.75 |
Cardiovascular risk factors: | |||
arterial hypertension, n (%) | 10 (52) | 3 (27) | 0.11 |
dyslipidemia, n (%) | 9 (48) | 2 (18) | 0.049 |
diabetes, n (%) | 2 (9.5) | 1 (9) | 1.00 |
current/former smoker, n (%) | 4 (19) | 5 (45) | 0.23 |
obesity (BMI >30 kg/m2), n (%) | 3 (14) | 2 (18) | 0.87 |
chronic kidney disease, n (%) | 3 (14) | 0 | 0.26 |
LVEF at baseline, % | 62.1 ± 7.5 | 63.6 ± 4.7 | 0.54 |
Patients with decreased LVEF at rest, n (%) | 3 (14) | 0 | 0.53 |
LVEF at low dose, % | 70.8 ± 6.4 | 71.7 ± 6.1 | 0.72 |
LVEF at peak dose, % | 72.1 ± 5.8 | 76.5 ± 5.8 | 0.06 |
LV GLS at baseline, % | −18.8 ± 2.4 | −19.5 ± 1.7 | 0.38 |
Patients with an abnormal LV GLS at rest, n (%) | 2 (9.5) | 0 | 0.68 |
Patients with a borderline LV GLS at rest, n (%) | 4 (19) | 2 (18) | 0.98 |
LV GLS at low dose, % | −23.6 ± 2.4 | −23.0 ± 1.9 | 0.50 |
LV GLS at peak dose, % | −22.6 ± 2.6 | −23.1 ± 1.8 | 0.61 |
LVCR assessed with ΔLVEF at peak dose, % | 16.1 | 21.1 | 0.18 |
Patients with reduced LVCR assessed with LVEF at peak dose, n (%) | 13 (62) | 1 (9) | 0.01 |
LVCR assessed with ΔLV GLS at peak dose, % | 21.3 | 19.0 | 0.92 |
Patients with reduced LVCR assessed with LV GLS at peak dose, n (%) | 12 (57) | 1 (9) | 0.03 |
LVCR obtained from Force at peak dose | 1.12 | 2.04 | 0.01 |
Patients with reduced LVCR assessed with Force at peak dose, n (%) | 21 (100) | 2 (18) | 0.0002 |
Parameter | Baseline | Peak Dobutamine Dose | LVCR Estimated at Peak Dose |
---|---|---|---|
LVEF | 56% | 69% | 23.2% |
LV GLS | −18.5% | −22.6% | 22.2% |
Force | 1.614 mmHg/mL | 1.542 mmHg/mL | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabiałek-Trojanowska, I.; Jankowska, H.; Sławiński, G.; Dąbrowska-Kugacka, A.; Lewicka, E. Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination. J. Clin. Med. 2023, 12, 3427. https://doi.org/10.3390/jcm12103427
Nabiałek-Trojanowska I, Jankowska H, Sławiński G, Dąbrowska-Kugacka A, Lewicka E. Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination. Journal of Clinical Medicine. 2023; 12(10):3427. https://doi.org/10.3390/jcm12103427
Chicago/Turabian StyleNabiałek-Trojanowska, Izabela, Hanna Jankowska, Grzegorz Sławiński, Alicja Dąbrowska-Kugacka, and Ewa Lewicka. 2023. "Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination" Journal of Clinical Medicine 12, no. 10: 3427. https://doi.org/10.3390/jcm12103427
APA StyleNabiałek-Trojanowska, I., Jankowska, H., Sławiński, G., Dąbrowska-Kugacka, A., & Lewicka, E. (2023). Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination. Journal of Clinical Medicine, 12(10), 3427. https://doi.org/10.3390/jcm12103427