Influence of Surgeon Experience on Surgical Outcome of Maxillomandibular Advancement for Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Participants
2.3. Surgeon Experience
2.4. Maxillomandibular Advancement Surgery
2.5. Polysomnography
2.6. Postoperative Complication
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Group-A versus Group-B
3.2. Surgical Characteristics of Group-A versus Group-B
3.3. Postoperative Outcomes of Group-A versus Group-B
3.4. Correlation between Surgeon Experience and Surgical Outcome
3.5. Correlation between Surgeon Experience and AHI Reduction
3.6. Correlation between Surgeon Experience and Occurrence of Postoperative Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malhotra, A.; White, D.P. Obstructive sleep apnoea. Lancet 2002, 360, 237–245. [Google Scholar] [CrossRef]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of Obstructive Sleep apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Peppard, P.E.; Nieto, F.J.; Hla, K.M. Burden of sleep apnea: Rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ Off. Publ. State Med. Soc. Wis. 2009, 108, 246–249. [Google Scholar]
- Prabhakar, N.R.; Peng, Y.-J.; Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Investig. 2020, 130, 5042–5051. [Google Scholar] [CrossRef]
- Shaeran, T.A.T.; Samsudin, A. Temporomandibular Joint Ankylosis Leading to Obstructive Sleep Apnea. J. Craniofacial Surg. 2019, 30, e714–e717. [Google Scholar] [CrossRef]
- Lal, C.; Strange, C.; Bachman, D. Neurocognitive Impairment in Obstructive Sleep Apnea. Chest 2012, 141, 1601–1610. [Google Scholar] [CrossRef]
- Rich, J.; Raviv, A.; Raviv, N.; Brietzke, S.E. All-Cause Mortality and Obstructive Sleep Apnea Severity Revisited. Otolaryngol. Head Neck Surg. 2012, 147, 583–587. [Google Scholar] [CrossRef]
- Sullivan, C.; Berthon-Jones, M.; Issa, F.; Eves, L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981, 317, 862–865. [Google Scholar] [CrossRef]
- Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical Guideline for the Evaluation, Management and Long-term Care of Obstructive Sleep Apnea in Adults. J. Clin. Sleep Med. 2009, 05, 263–276. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea With Positive Airway Pressure: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef]
- Weaver, T.E.; Grunstein, R.R. Adherence to Continuous Positive Airway Pressure Therapy: The Challenge to Effective Treatment. Proc. Am. Thorac. Soc. 2008, 5, 173–178. [Google Scholar] [CrossRef]
- Rotenberg, B.W.; Murariu, D.; Pang, K.P. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J. Otolaryngol. Head Neck Surg. 2016, 45, 1–9. [Google Scholar] [CrossRef]
- Randerath, W.; de Lange, J.; Hedner, J.; Ho, J.P.T.; Marklund, M.; Schiza, S.; Steier, J.; Verbraecken, J. Current and novel treatment options for obstructive sleep apnoea. ERJ Open Res. 2022, 8, 00126-2022. [Google Scholar] [CrossRef]
- Trăistaru, T.; Pantea, M.; Țâncu, A.M.C.; Imre, M. Elements of Diagnosis and Non-surgical Treatment of Obstructive Sleep Apnea in Adults from the Dental Medicine Perspective. In Sleep Medicine and the Evolution of Contemporary Sleep Pharmacotherapy; Larrivee, D., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Shi, X.; Lobbezoo, F.; Chen, H.; Rosenmöller, B.R.A.M.; Berkhout, E.; de Lange, J.; Aarab, G. Comparisons of the effects of two types of titratable mandibular advancement devices on respiratory parameters and upper airway dimensions in patients with obstructive sleep apnea: A randomized controlled trial. Clin. Oral Investig. 2023, 1–13. [Google Scholar] [CrossRef]
- Mohammadieh, A.M.; Sutherland, K.; Chan, A.S.L.; Cistulli, P.A. Mandibular Advancement Splint Therapy. In Advances in the Diagnosis and Treatment of Sleep Apnea: Filling the Gap Between Physicians and Engineers; Springer International Publishing: Cham, Switzerland, 2022; pp. 373–385. [Google Scholar] [CrossRef]
- Ciavarella, D.; Campobasso, A.; Suriano, C.; Muzio, E.L.; Guida, L.; Salcuni, F.; Laurenziello, M.; Illuzzi, G.; Tepedino, M. A new design of mandibular advancement device (IMYS) in the treatment of obstructive sleep apnea. Cranio® 2022, 1–8. [Google Scholar] [CrossRef]
- Venema, J.A.U.; Rosenmöller, B.R.; de Vries, N.; de Lange, J.; Aarab, G.; Lobbezoo, F.; Hoekema, A. Mandibular advancement device design: A systematic review on outcomes in obstructive sleep apnea treatment. Sleep Med. Rev. 2021, 60, 101557. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Palomo, J.M.; Matthaios, S.; Tsolakis, A.I. Dental and Skeletal Side Effects of Oral Appliances Used for the Treatment of Obstructive Sleep Apnea and Snoring in Adult Patients—A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 483. [Google Scholar] [CrossRef]
- Zhou, N.; Ho, J.-P.T.; Huang, Z.; Spijker, R.; de Vries, N.; Aarab, G.; Lobbezoo, F.; Ravesloot, M.J.; de Lange, J. Maxillomandibular advancement versus multilevel surgery for treatment of obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101471. [Google Scholar] [CrossRef]
- Zhou, N.; Ho, J.-P.T.F.; Spijker, R.; Aarab, G.; de Vries, N.; Ravesloot, M.J.L.; de Lange, J. Maxillomandibular Advancement and Upper Airway Stimulation for Treatment of Obstructive Sleep Apnea: A Systematic Review. J. Clin. Med. 2022, 11, 6782. [Google Scholar] [CrossRef]
- Liu, S.Y.-C.; Awad, M.; Riley, R.W. Maxillomandibular Advancement: Contemporary Approach at Stanford. Atlas Oral Maxillofac. Surg. Clin. 2019, 27, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.W.; Powell, N.B.; Li, K.K.; Troell, R.J.; Guilleminault, C. Surgery and Obstructive Sleep Apnea: Long-Term Clinical Outcomes. Otolaryngol. Neck Surg. 2000, 122, 415–421. [Google Scholar] [CrossRef]
- Giralt-Hernando, M.; Valls-Ontañón, A.; Guijarro-Martínez, R.; Masià-Gridilla, J.; Hernández-Alfaro, F. Impact of surgical maxillomandibular advancement upon pharyngeal airway volume and the apnoea–hypopnoea index in the treatment of obstructive sleep apnoea: Systematic review and meta-analysis. BMJ Open Respir. Res. 2019, 6, e000402. [Google Scholar] [CrossRef]
- Li, K.K. Surgical management of obstructive sleep apnea. Clin. Chest Med. 2003, 24, 365–370. [Google Scholar] [CrossRef]
- Zaghi, S.; Holty, J.-E.C.; Certal, V.; Abdullatif, J.; Guilleminault, C.; Powell, N.B.; Riley, R.W.; Camacho, M. Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea. JAMA Otolaryngol. Neck Surg. 2016, 142, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Holty, J.-E.C.; Guilleminault, C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med. Rev. 2010, 14, 287–297. [Google Scholar] [CrossRef]
- De Ruiter, M.; Apperloo, R.; Milstein, D.; de Lange, J. Assessment of obstructive sleep apnoea treatment success or failure after maxillomandibular advancement. Int. J. Oral Maxillofac. Surg. 2017, 46, 1357–1362. [Google Scholar] [CrossRef]
- Zhou, M.N.; Ho, J.-P.T.; de Vries, N.; Bosschieter, P.F.; Ravesloot, M.J.; de Lange, J. Evaluation of drug-induced sleep endoscopy as a tool for selecting patients with obstructive sleep apnea for maxillomandibular advancement. J. Clin. Sleep Med. 2022, 18, 1073–1081. [Google Scholar] [CrossRef]
- Zhou, N.; Ho, J.-P.T.F.; Visscher, W.P.; Su, N.; Lobbezoo, F.; de Lange, J. Maxillomandibular advancement for obstructive sleep apnea: A retrospective prognostic factor study for surgical response. Sleep Breath. 2022, 1–10. [Google Scholar] [CrossRef]
- Vonk, P.E.; Rotteveel, P.J.; Ravesloot, M.J.; Ho, J.-P.T.; de Lange, J.; de Vries, N. The influence of position dependency on surgical success in patients with obstructive sleep apnea undergoing maxillomandibular advancement. J. Clin. Sleep Med. 2020, 16, 73–80. [Google Scholar] [CrossRef]
- Ho, J.-P.T.; Zhou, N.; Verbraecken, J.; de Vries, N.; de Lange, J. Central and mixed sleep apnea related to patients treated with maxillomandibular advancement for obstructive sleep apnea: A retrospective cohort study. J. Cranio-Maxillofacial Surg. 2022, 50, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.-P.T.F.; Zhou, N.; de Lange, J. Obstructive Sleep Apnea Resolution in Hypopnea-Predominant versus Apnea-Predominant Patients after Maxillomandibular Advancement. J. Clin. Med. 2022, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- Cahill, P.J.; Pahys, J.M.; Asghar, J.; Yaszay, B.; Marks, M.C.; Bastrom, T.P.; Lonner, B.S.; Shah, S.A.; Shufflebarger, H.L.; Newton, P.O.; et al. The Effect of Surgeon Experience on Outcomes of Surgery for Adolescent Idiopathic Scoliosis. J. Bone Jt. Surg. 2014, 96, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Kelz, R.R.; Sellers, M.M.; Niknam, B.A.; Sharpe, J.E.; Rosenbaum, P.R.; Hill, A.S.; Zhou, H.; Hochman, L.L.; Bilimoria, K.Y.; Itani, K.; et al. A National Comparison of Operative Outcomes of New and Experienced Surgeons. Ann. Surg. 2019, 273, 280–288. [Google Scholar] [CrossRef]
- Yousef, S.; Singh, S.; Mullan, C.W.; Dey, P.; Mori, M.; Brooks, C.; Bin Mahmood, S.U.; Hashim, S.; Vallabhajosyula, P.; Geirsson, A. Relationship of surgeon experience and outcomes of surgery for degenerative mitral valve disease. J. Card. Surg. 2021, 36, 2621–2627. [Google Scholar] [CrossRef]
- Maruthappu, M.; Gilbert, B.J.; El-Harasis, M.A.; Nagendran, M.; McCulloch, P.; Duclos, A.; Carty, M.J. The Influence of Volume and Experience on Individual Surgical Performance. Ann. Surg. 2015, 261, 642–647. [Google Scholar] [CrossRef]
- Ravesloot, M.J.L.; de Raaff, C.A.L.; van de Beek, M.J.; Benoist, L.B.L.; Beyers, J.; Corso, R.M.; Edenharter, G.; Haan, C.D.; Azad, J.H.; Ho, J.-P.T.F.; et al. Perioperative Care of Patients With Obstructive Sleep Apnea Undergoing Upper Airway Surgery. JAMA Otolaryngol. Neck Surg. 2019, 145, 751. [Google Scholar] [CrossRef]
- Camacho, M.; Liu, S.Y.; Certal, V.; Capasso, R.; Powell, N.B.; Riley, R.W. Large maxillomandibular advancements for obstructive sleep apnea: An operative technique evolved over 30 years. J. Cranio-Maxillofac. Surg. 2015, 43, 1113–1118. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef]
- Sher, A.E.; Schechtman, K.B.; Piccirillo, J.F. The Efficacy of Surgical Modifications of the Upper Airway in Adults With Obstructive Sleep Apnea Syndrome. Sleep 1996, 19, 156–177. [Google Scholar] [CrossRef]
- Elshaug, A.G.; Moss, J.R.; Southcott, A.M.; Hiller, J.E. Redefining Success in Airway Surgery for Obstructive Sleep Apnea: A Meta Analysis and Synthesis of the Evidence. Sleep 2007, 30, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Strasberg, S.M.; Linehan, D.C.; Hawkins, W.G. The Accordion Severity Grading System of Surgical Complications. Ann. Surg. 2009, 250, 177–186. [Google Scholar] [CrossRef]
- Eckert, D.J. Phenotypic approaches to obstructive sleep apnoea—New pathways for targeted therapy. Sleep Med. Rev. 2018, 37, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Pevernagie, D.A.; Gnidovec-Strazisar, B.; Grote, L.; Heinzer, R.; McNicholas, W.T.; Penzel, T.; Randerath, W.; Schiza, S.; Verbraecken, J.; Arnardottir, E.S. On the rise and fall of the apnea−hypopnea index: A historical review and critical appraisal. J. Sleep Res. 2020, 29, e13066. [Google Scholar] [CrossRef]
- McNicholas, W.T.; Pevernagie, D. Obstructive sleep apnea: Transition from pathophysiology to an integrative disease model. J. Sleep Res. 2022, 31, e13616. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Katz, E.S.; D’Ambrosio, C.M. Pathophysiology of Pediatric Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 253–262. [Google Scholar] [CrossRef]
- Davies, H.T.; Crombie, I.K. Bias in cohort studies. Hosp. Med. 2000, 61, 133–135. [Google Scholar] [CrossRef]
- Faber, J.; Fonseca, L.M. How sample size influences research outcomes. Dent. Press J. Orthod. 2014, 19, 27–29. [Google Scholar] [CrossRef]
- Veys, B.; Pottel, L.; Mollemans, W.; Abeloos, J.; Swennen, G.; Neyt, N. Three-dimensional volumetric changes in the upper airway after maxillomandibular advancement in obstructive sleep apnoea patients and the impact on quality of life. Int. J. Oral Maxillofac. Surg. 2017, 46, 1525–1532. [Google Scholar] [CrossRef]
- Hsieh, Y.-J.; Liao, Y.-F.; Chen, N.-H.; Chen, Y.-R. Changes in the calibre of the upper airway and the surrounding structures after maxillomandibular advancement for obstructive sleep apnoea. Br. J. Oral Maxillofac. Surg. 2014, 52, 445–451. [Google Scholar] [CrossRef] [PubMed]
- List, W.; Steinwender, G.; Glatz, W.; Riedl, R.; Wedrich, A.; Ivastinovic, D. The impact of surgeon’s experience and sex on the incidence of cystoid macular edema after uneventful cataract surgery. PLoS ONE 2022, 17, e0279518. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.B.; Chigurupati, R.; Cillo, J.E.; Eskes, G.; Goodday, R.; Meisami, T.; Viozzi, C.F.; Waite, P.; Wilson, J. Maxillomandibular Advancement Improves Multiple Health-Related and Functional Outcomes in Patients With Obstructive Sleep Apnea: A Multicenter Study. J. Oral Maxillofac. Surg. 2018, 77, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chin, W.-C.; Huang, Y.-S.; Wang, P.-F.; Li, K.K.; Pirelli, P.; Chen, Y.-H.; Guilleminault, C. Objective and subjective long term outcome of maxillomandibular advancement in obstructive sleep apnea. Sleep Med. 2020, 74, 289–296. [Google Scholar] [CrossRef]
- Knudsen, T.B.; Laulund, A.S.; Ingerslev, J.; Homøe, P.; Pinholt, E.M. Improved Apnea-Hypopnea Index and Lowest Oxygen Saturation After Maxillomandibular Advancement With or Without Counterclockwise Rotation in Patients With Obstructive Sleep Apnea: A Meta-Analysis. J. Oral Maxillofac. Surg. 2015, 73, 719–726. [Google Scholar] [CrossRef]
Total Population (n = 75) | Group-A (n = 49) | Group-B (n = 26) | p-Value | |
---|---|---|---|---|
Male:female (n) | 64:11 | 43:6 | 21:5 | 0.423 |
Age (years) | 50.7 ± 10.0 | 50.7 ± 9.5 | 50.8 ± 11.0 | 0.969 |
BMI (kg/m2) | 30.2 ± 4.2 | 30.6 ± 4.4 | 29.5 ± 3.6 | 0.307 |
AHI (events/h) | 54.8 ± 21.3 | 54.0 ± 21.6 | 56.2 ± 21.0 | 0.676 |
ODI (events/h) | 54.8 ± 21.7 | 50.1 ± 20.9 | 62.3 ± 21.3 | 0.073 |
LSAT (%) | 76.1 ± 11.0 | 76.6 ± 11.3 | 75.3 ± 10.6 | 0.634 |
Total Population (n = 75) | Group-A (n = 49) | Group-B (n = 26) | p-Value | |
---|---|---|---|---|
Maxillary advancement (mm) | 7.1 ± 2.4 | 7.4 ± 2.7 | 6.7 ± 1.9 | 0.260 |
Mandibular advancement (mm) | 9.7 ± 4.4 | 8.9 ± 4.4 | 10.9 ± 4.1 | 0.078 |
Anticlockwise rotation of the jaw (%) | 69.8 | 52.6 | 96.0 | <0.001 |
Operation time (min) | 222.2 ± 60.3 | 205.5 ± 60.1 | 253.8 ± 47.4 | 0.051 |
Blood loss (cc) | 384.1 ± 225.6 | 347.6 ± 193.3 | 455.6 ± 268.5 | <0.001 |
Preoperative | Postoperative | p-Value | Δ | p-Value * | ||
---|---|---|---|---|---|---|
AHI (events/h) | Group A Group B | 54.0 ± 21.6 56.8 ± 21.2 | 20.0 ± 17.4 14.9 ± 15.7 | <0.001 <0.001 | 34.0 ± 23.2 41.9 ± 24.5 | 0.015 |
ODI (events/h) | Group A Group B | 50.1 ± 20.9 62.3 ± 21.3 | 28.7 ± 18.4 17.8 ± 11.8 | <0.001 <0.001 | 21.4 ± 20.0 44.5 ± 25.1 | 0.002 |
LSAT (%) | Group A Group B | 76.7 ± 11.6 75.0 ± 10.9 | 85.1 ± 5.9 84.0 ± 7.3 | <0.001 <0.001 | 8.3 ± 11.0 9.0 ± 8.4 | 0.163 |
Success (n, (%)) | Group A Group B | - | 29 (59.2) 19 (73.1) | - | - | 0.065 |
Cure (n, (%)) | Group A Group B | - | 12 (24.5) 5 (19.2) | - | - | 0.151 |
Variable | B | S.E. | Exp(B) | 95% CI | p-Value |
---|---|---|---|---|---|
Surgical Success | |||||
Constant | 6.958 | 3.527 | 1051.166 | - | 0.049 |
Surgeon experience (month) | −0.037 | 0.017 | 0.963 | [0.931, 0.997] | 0.031 |
Age (years) | −0.082 | 0.034 | 0.921 | [0.863, 0.984] | 0.015 |
Gender | |||||
Female (Ref.) | |||||
Male | −0.768 | 0.806 | 0.464 | [0.095, 2.253] | 0.341 |
Baseline BMI (kg/m2) | −0.022 | 0.074 | 0.978 | [0.847, 1.130] | 0.766 |
Baseline AHI (events/h) | 0.004 | 0.013 | 1.004 | [0.979, 1.030] | 0.750 |
Surgeon | 0.407 | 0.623 | 1.502 | [0.443, 5.097] | 0.514 |
Surgical cure | |||||
Constant | 0.717 | 3.417 | 2.049 | - | 0.834 |
Surgeon experience (month) | −0.012 | 0.019 | 0.989 | [0.953, 1.025] | 0.535 |
Age (years) | −0.038 | 0.033 | 0.962 | [0.902, 1.026] | 0.241 |
Gender Female (Ref.) Male | −1.077 | 0.867 | 0.340 | [0.062, 1.863] | 0.214 |
Baseline BMI (kg/m2) | 0.051 | 0.072 | 1.053 | [0.914, 1.212] | 0.476 |
Baseline AHI (events/h) | −0.004 | 0.014 | 0.996 | [0.970, 1.024] | 0.791 |
Surgeon group | −0.637 | 0.690 | 0.529 | [0.137, 2.046] | 0.356 |
Variable | B | S.E. | 95% CI | p-Value |
---|---|---|---|---|
AHI Reduction | ||||
Constant | 15.745 | 20.319 | [−24.812, 56.303] | 0.441 |
Surgeon experience (month) | −0.074 | 0.106 | [−0.286, 0.138] | 0.489 |
Age (years) | −0.417 | 0.186 | [−0.787, −0.046] | 0.028 |
Gender Female (Ref.) Male | −2.750 | 5.312 | [−13.354, 7.854] | 0.606 |
Baseline BMI (kg/m2) | −0.035 | 0.451 | [−0.935, 0.865] | 0.938 |
Baseline AHI (events/h) | 0.845 | 0.084 | [0.678, 1.013] | <0.001 |
Surgeon group | 4.527 | 3.924 | [−3.305, 12.359] | 0.253 |
Complications | Number of Events (% of Population) | Group-A | Group-B |
---|---|---|---|
Minor complication
| 38 (50.7) | 18 (24.0) | 20 (26.7) |
Major complication
| 17 (22.7) 5 (6.7) 4 (5.3) | 11 (14.7) 5 (6.7) 3 (4.0) | 6 (8.0) 0 (0) 1 (1.3) |
Complications | Number of Subjects (% of Population) | Group-A | Group-B |
No complication | 24 (32.0) | 19 (25.3) | 5 (6.7) |
Any complication
| 25 (33.3) 26 (34.7) | 11 (14.7) 19 (25.3) | 14 (18.7) 7 (9.3) |
Variable | B | S.E. | Exp(B) | 95% CI | p-Value |
---|---|---|---|---|---|
Constant for Minor complications Constant for Major complications | −1.274 0.307 | 2.809 2.806 | 0.280 1.359 | [0.001, 68.786] [0.006, 332.620] | 0.650 0.913 |
Surgeon Experience (months) | −0.008 | 0.017 | 0.992 | [0.960, 1.026] | 0.656 |
Age (years) | 0.026 | 0.027 | 1.026 | [0.974, 1.081] | 0.333 |
Gender Female Male (Ref.) | −0.957 | 0.835 | 0.384 | [0.075, 1.974] | 0.252 |
Baseline BMI (kg/m2) | −0.018 | 0.064 | 0.982 | [0.866, 1.114] | 0.776 |
Baseline AHI (events/h) | −0.005 | 0.013 | 0.995 | [0.969, 1.022] | 0.734 |
Mandibular advancement (mm) | 0.139 | 0.094 | 1.149 | [0.956, 1.381] | 0.139 |
Maxillary advancement (mm) | −0.059 | 0.188 | 0.943 | [0.652, 1.362] | 0.753 |
Smoking (no smoking) Smoking (<10 p/week) Smoking (>10 p/week) (Ref.) | −1.672 −1.504 | 0.845 0.961 | 0.188 0.222 | [0.036, 0.984] [0.034, 1.462] | 0.048 0.118 |
Surgeon group | 0.108 | 0.68 | 1.114 | [0.293, 4.233] | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, J.-P.T.F.; Özkan, S.; Zhou, N.; Apperloo, R.C.; Su, N.; Becking, A.G.; de Lange, J. Influence of Surgeon Experience on Surgical Outcome of Maxillomandibular Advancement for Obstructive Sleep Apnea. J. Clin. Med. 2023, 12, 3504. https://doi.org/10.3390/jcm12103504
Ho J-PTF, Özkan S, Zhou N, Apperloo RC, Su N, Becking AG, de Lange J. Influence of Surgeon Experience on Surgical Outcome of Maxillomandibular Advancement for Obstructive Sleep Apnea. Journal of Clinical Medicine. 2023; 12(10):3504. https://doi.org/10.3390/jcm12103504
Chicago/Turabian StyleHo, Jean-Pierre T. F., Semih Özkan, Ning Zhou, Ruben C. Apperloo, Naichuan Su, Alfred G. Becking, and Jan de Lange. 2023. "Influence of Surgeon Experience on Surgical Outcome of Maxillomandibular Advancement for Obstructive Sleep Apnea" Journal of Clinical Medicine 12, no. 10: 3504. https://doi.org/10.3390/jcm12103504
APA StyleHo, J. -P. T. F., Özkan, S., Zhou, N., Apperloo, R. C., Su, N., Becking, A. G., & de Lange, J. (2023). Influence of Surgeon Experience on Surgical Outcome of Maxillomandibular Advancement for Obstructive Sleep Apnea. Journal of Clinical Medicine, 12(10), 3504. https://doi.org/10.3390/jcm12103504