Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy
Abstract
:1. Introduction
2. Liver-Directed Therapies
2.1. Thermal Ablation
2.1.1. Radiofrequency Ablation (RFA)
2.1.2. Microwave Ablation (MWA)
2.2. Transarterial Chemoembolization (TACE)
2.3. Transarterial Radioembolization (TARE)
2.4. External Beam Radiation Therapy
3. Comparison of SABR with Other LDTs
3.1. SABR vs. RFA
3.2. SABR vs. TACE
3.3. SABR vs. TARE
3.4. SABR in HCC with MVI
3.5. SABR as Bridge Therapy to Transplant
4. MR-Linac SABR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Florio, A.A.; Znaor, A.; Ruggieri, D.; Laversanne, M.; Alvarez, C.S.; Ferlay, J.; Valery, P.C.; Bray, F.; McGlynn, K.A. International trends in hepatocellular carcinoma incidence, 1978–2012. Int. J. Cancer 2020, 147, 317–330. [Google Scholar] [CrossRef]
- Altekruse, S.F.; Petrick, J.L.; Rolin, A.I.; Cuccinelli, J.E.; Zou, Z.; Tatalovich, Z.; McGlynn, K.A. Geographic variation of intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, and hepatocellular carcinoma in the United States. PLoS ONE 2015, 10, e0120574. [Google Scholar] [CrossRef] [PubMed]
- Valery, P.C.; Laversanne, M.; Clark, P.J.; Petrick, J.L.; McGlynn, K.A.; Bray, F. Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology 2018, 67, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Florio, A.A.; Loomba, R.; McGlynn, K.A. Have incidence rates of liver cancer peaked in the United States? Cancer 2020, 126, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.J.; Cheung, R.; Ahmed, A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the US. Hepatology 2014, 59, 2188–2195. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. 1), 4–13. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- London, W.T.; McGlynn, K.; Schottenfeld, D.; Fraumeni, J. Cancer epidemiology and prevention. In Cancer Epidemiology and Prevention, 3rd ed.; Schottenfeld, D., Fraumeni, J.F., Jr., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 763–786. [Google Scholar]
- Thun, M.; Linet, M.S.; Cerhan, J.R.; Haiman, C.A.; Schottenfeld, D. Cancer Epidemiology and Prevention; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Kim, B.H.; Park, J.W. Epidemiology of liver cancer in South Korea. Clin. Mol. Hepatol. 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Yang, B.; Petrick, J.L.; Kelly, S.P.; Graubard, B.I.; Freedman, N.D.; McGlynn, K.A. Adiposity across the adult life course and incidence of primary liver cancer: The NIH-AARP cohort. Int. J. Cancer 2017, 141, 271–278. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Mapakshi, S.; Natarajan, Y.; Chayanupatkul, M.; Richardson, P.A.; Li, L.; Desiderio, R.; Thrift, A.P.; Asch, S.M.; et al. Risk of Hepatocellular Cancer in Patients with Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 1828–1837.e1822. [Google Scholar] [CrossRef]
- Foerster, F.; Galle, P.R. Comparison of the current international guidelines on the management of HCC. JHEP Rep. 2019, 1, 114–119. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.M.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv238–iv255. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; El-Serag, H.B. Rational HCC screening approaches for patients with NAFLD. J. Hepatol. 2022, 76, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol. 2020, 72, 250–261. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fabrega, J.; Burrel, M.; Garcia-Criado, A.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Benson, A.B.; D’Angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A.; et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef]
- Apisarnthanarax, S.; Barry, A.; Cao, M.; Czito, B.; DeMatteo, R.; Drinane, M.; Hallemeier, C.L.; Koay, E.J.; Lasley, F.; Meyer, J.; et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2022, 12, 28–51. [Google Scholar] [CrossRef]
- Noy, M.A.; Rich, B.J.; Llorente, R.; Kwon, D.; Abramowitz, M.; Mahal, B.; Mellon, E.A.; Zaorsky, N.G.; Dal Pra, A. Levels of Evidence for Radiation Therapy Recommendations in the National Comprehensive Cancer Network (NCCN) Clinical Guidelines. Adv. Radiat. Oncol. 2022, 7, 100832. [Google Scholar] [CrossRef]
- Head, H.W.; Dodd, G.D., 3rd. Thermal ablation for hepatocellular carcinoma. Gastroenterology 2004, 127 (Suppl. 1), S167–S178. [Google Scholar] [CrossRef]
- Chen, M.S.; Li, J.Q.; Zheng, Y.; Guo, R.P.; Liang, H.H.; Zhang, Y.Q.; Lin, X.J.; Lau, W.Y. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann. Surg. 2006, 243, 321–328. [Google Scholar] [CrossRef]
- Feng, K.; Yan, J.; Li, X.; Xia, F.; Ma, K.; Wang, S.; Bie, P.; Dong, J. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J. Hepatol. 2012, 57, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Battiston, C.; Perrone, S.; Pulvirenti, A.; Regalia, E.; Romito, R.; Sarli, D.; Schiavo, M.; Garbagnati, F.; Marchiano, A.; et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: A prospective study. Ann. Surg. 2004, 240, 900–909. [Google Scholar] [CrossRef]
- Livraghi, T.; Meloni, F.; Di Stasi, M.; Rolle, E.; Solbiati, L.; Tinelli, C.; Rossi, S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 2008, 47, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Iimuro, Y.; Yamamoto, Y.; Maetani, Y.; Ametani, F.; Itoh, K.; Konishi, J. Small hepatocellular carcinoma: Comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 2002, 223, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sun, Q.; Wang, Y.; Jing, X.; Ding, J.; Yuan, Q.; Ren, C.; Shan, S.; Wang, Y.; Du, Z. Comparison of microwave ablation and surgical resection for treatment of hepatocellular carcinomas conforming to Milan criteria. J. Gastroenterol. Hepatol. 2014, 29, 1500–1507. [Google Scholar] [CrossRef]
- Narayanan, G.; Froud, T.; Suthar, R.; Barbery, K. Irreversible electroporation of hepatic malignancy. Semin. Interv. Radiol. 2013, 30, 67–73. [Google Scholar] [CrossRef]
- Lencioni, R.; Crocetti, L.; Narayanan, G. Irreversible Electroporation in the Treatment of Hepatocellular Carcinoma. Tech. Vasc. Interv. Radiol. 2015, 18, 135–139. [Google Scholar] [CrossRef]
- Tsochatzis, E.A.; Fatourou, E.; O’Beirne, J.; Meyer, T.; Burroughs, A.K. Transarterial chemoembolization and bland embolization for hepatocellular carcinoma. World J. Gastroenterol. 2014, 20, 3069–3077. [Google Scholar] [CrossRef]
- Cheng, A.L.; Amarapurkar, D.; Chao, Y.; Chen, P.J.; Geschwind, J.F.; Goh, K.L.; Han, K.H.; Kudo, M.; Lee, H.C.; Lee, R.C.; et al. Re-evaluating transarterial chemoembolization for the treatment of hepatocellular carcinoma: Consensus recommendations and review by an International Expert Panel. Liver Int. 2014, 34, 174–183. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Kooby, D.A.; Staley, C.A.; Kauh, J.S.; Khanna, V.; Kim, H.S. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J. Surg. Oncol. 2010, 101, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Lammer, J.; Malagari, K.; Vogl, T.; Pilleul, F.; Denys, A.; Watkinson, A.; Pitton, M.; Sergent, G.; Pfammatter, T.; Terraz, S.; et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study. Cardiovasc. Interv. Radiol. 2010, 33, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Sherman, M.; American Association for the Study of Liver, D. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef]
- Alba, E.; Valls, C.; Dominguez, J.; Martinez, L.; Escalante, E.; Llado, L.; Serrano, T. Transcatheter arterial chemoembolization in patients with hepatocellular carcinoma on the waiting list for orthotopic liver transplantation. AJR Am. J. Roentgenol. 2008, 190, 1341–1348. [Google Scholar] [CrossRef]
- Nugent, F.W.; Gunturu, K.; Stuart, K.E.; Flacke, S.; Molgaard, C.; Hunter, K.; Qamar, A.; Iqbal, S.; Gordon, F.; Galuski, K.; et al. A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) as a bridge to transplant in hepatocellular carcinoma (HCC). J. Clin. Oncol. 2017, 35 (Suppl. 15), e15677. [Google Scholar] [CrossRef]
- Brown, K.T.; Do, R.K.; Gonen, M.; Covey, A.M.; Getrajdman, G.I.; Sofocleous, C.T.; Jarnagin, W.R.; D’Angelica, M.I.; Allen, P.J.; Erinjeri, J.P.; et al. Randomized Trial of Hepatic Artery Embolization for Hepatocellular Carcinoma Using Doxorubicin-Eluting Microspheres Compared With Embolization With Microspheres Alone. J. Clin. Oncol. 2016, 34, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.M.; Ngan, H.; Tso, W.K.; Liu, C.L.; Lam, C.M.; Poon, R.T.; Fan, S.T.; Wong, J. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002, 35, 1164–1171. [Google Scholar] [CrossRef]
- Llovet, J.M.; Real, M.I.; Montana, X.; Planas, R.; Coll, S.; Aponte, J.; Ayuso, C.; Sala, M.; Muchart, J.; Sola, R.; et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial. Lancet 2002, 359, 1734–1739. [Google Scholar] [CrossRef]
- Buckstein, M.; Kim, E.; Fischman, A.; Blacksburg, S.; Facciuto, M.; Schwartz, M.; Rosenzweig, K. Stereotactic body radiation therapy following transarterial chemoembolization for unresectable hepatocellular carcinoma. J. Gastrointest. Oncol. 2018, 9, 734–740. [Google Scholar] [CrossRef]
- Takeda, A.; Sanuki, N.; Tsurugai, Y.; Iwabuchi, S.; Matsunaga, K.; Ebinuma, H.; Imajo, K.; Aoki, Y.; Saito, H.; Kunieda, E. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer 2016, 122, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.M.; Ryoo, B.Y.; Lee, S.J.; Kim, J.H.; Shin, J.H.; An, J.H.; Lee, H.C.; Lim, Y.S. Efficacy and Safety of Transarterial Chemoembolization Plus External Beam Radiotherapy vs. Sorafenib in Hepatocellular Carcinoma With Macroscopic Vascular Invasion: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 661–669. [Google Scholar] [CrossRef]
- Buckstein, M.; Kim, E.; Ozbek, U.; Tabrizian, P.; Gunasekaran, G.; Facciuto, M.; Rosenzweig, K.; Llovet, J.M.; Schwartz, M. Combination Transarterial Chemoembolization and Stereotactic Body Radiation Therapy for Unresectable Single Large Hepatocellular Carcinoma: Results From a Prospective Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 221–230. [Google Scholar] [CrossRef]
- Dawson, L.A.; Winter, K.; Knox, J.; Zhu, A.X.; Krishnan, S.; Guha, C.; Kachnic, L.A.; Gillin, M.T.; Hong, T.S.; Craig, T.; et al. NRG/RTOG 1112: Randomized Phase III Study of Sorafenib vs. Stereotactic Body Radiation Therapy (SBRT) Followed by Sorafenib in Hepatocellular Carcinoma (HCC) (NCT01730937). Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 1057. [Google Scholar] [CrossRef]
- Vouche, M.; Habib, A.; Ward, T.J.; Kim, E.; Kulik, L.; Ganger, D.; Mulcahy, M.; Baker, T.; Abecassis, M.; Sato, K.T.; et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: Multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014, 60, 192–201. [Google Scholar] [CrossRef]
- Kulik, L.M.; Carr, B.I.; Mulcahy, M.F.; Lewandowski, R.J.; Atassi, B.; Ryu, R.K.; Sato, K.T.; Benson, A., 3rd; Nemcek, A.A., Jr.; Gates, V.L.; et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008, 47, 71–81. [Google Scholar] [CrossRef]
- Salem, R.; Lewandowski, R.J.; Mulcahy, M.F.; Riaz, A.; Ryu, R.K.; Ibrahim, S.; Atassi, B.; Baker, T.; Gates, V.; Miller, F.H.; et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: A comprehensive report of long-term outcomes. Gastroenterology 2010, 138, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Chow, P.K.H.; Gandhi, M.; Tan, S.B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef]
- Mikell, J.K.; Dewaraja, Y.K.; Owen, D. Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models. Semin. Radiat. Oncol. 2020, 30, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.; Garin, E.; Maccauro, M.; Kappadath, S.C.; Sze, D.Y.; Turkmen, C.; Cantasdemir, M.; Haste, P.; Herrmann, K.; Alsuhaibani, H.S.; et al. A global evaluation of advanced dosimetry in transarterial radioembolization of hepatocellular carcinoma with Yttrium-90: The TARGET study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3340–3352. [Google Scholar] [CrossRef] [PubMed]
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Edeline, J.; de Baere, T.; Assenat, E.; Tacher, V.; Robert, C.; Terroir-Cassou-Mounat, M.; et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): A randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 17–29. [Google Scholar] [CrossRef]
- Chan, K.T.; Alessio, A.M.; Johnson, G.E.; Vaidya, S.; Kwan, S.W.; Monsky, W.; Wilson, A.E.; Lewis, D.H.; Padia, S.A. Prospective Trial Using Internal Pair-Production Positron Emission Tomography to Establish the Yttrium-90 Radioembolization Dose Required for Response of Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 358–365. [Google Scholar] [CrossRef]
- Lawrence, T.S.; Robertson, J.M.; Anscher, M.S.; Jirtle, R.L.; Ensminger, W.D.; Fajardo, L.F. Hepatic toxicity resulting from cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.X.; Zhu, X.D.; Xu, Z.Y.; Zhu, J.; Zhao, J.D.; Lu, H.J.; Yang, Y.L.; Chen, L.; Wang, A.Y.; Fu, X.L.; et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: The risk factors and hepatic radiation tolerance. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 426–434. [Google Scholar] [CrossRef]
- Koay, E.J.; Owen, D.; Das, P. Radiation-induced liver disease and modern radiotherapy. In Seminars in Radiation Oncology: 2018; Elsevier: Amsterdam, The Netherlands, 2018; pp. 321–331. [Google Scholar]
- Reed, G.B., Jr.; Cox, A.J., Jr. The human liver after radiation injury. A form of veno-occlusive disease. Am. J. Pathol. 1966, 48, 597–611. [Google Scholar]
- Fajardo, L.F.; Colby, T.V. Pathogenesis of veno-occlusive liver disease after radiation. Arch. Pathol. Lab. Med. 1980, 104, 584–588. [Google Scholar]
- Cardenes, H.R.; Price, T.R.; Perkins, S.M.; Maluccio, M.; Kwo, P.; Breen, T.E.; Henderson, M.A.; Schefter, T.E.; Tudor, K.; Deluca, J.; et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin. Transl. Oncol. 2010, 12, 218–225. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Liang, S.X.; Zhu, J.; Zhu, X.D.; Zhao, J.D.; Lu, H.J.; Yang, Y.L.; Chen, L.; Wang, A.Y.; Fu, X.L.; et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 189–195. [Google Scholar] [CrossRef]
- Cheng, J.C.; Wu, J.K.; Huang, C.M.; Liu, H.S.; Huang, D.Y.; Cheng, S.H.; Tsai, S.Y.; Jian, J.J.; Lin, Y.M.; Cheng, T.I.; et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: Dosimetric analysis and implication. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; Normolle, D.; Balter, J.M.; McGinn, C.J.; Lawrence, T.S.; Ten Haken, R.K. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Dale, R.G.; Deehan, C.; Hopkins, K.I.; Morgan, D.A. The role of biologically effective dose (BED) in clinical oncology. Clin. Oncol. 2001, 13, 71–81. [Google Scholar]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F. 21 years of biologically effective dose. Br. J. Radiol. 2010, 83, 554–568. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.mdcalc.com/calc/10111/radiation-biologically-effective-dose-bed-calculator (accessed on 9 May 2023).
- Available online: http://eqd2.com/ (accessed on 9 May 2023).
- Macia, I.G.M. Radiobiology of stereotactic body radiation therapy (SBRT). Rep. Pract. Oncol. Radiother. 2017, 22, 86–95. [Google Scholar] [CrossRef]
- Lubas, M.J.; Kumar, S.S. The Combined Use of SBRT and Immunotherapy-a Literature Review. Curr. Oncol. Rep. 2020, 22, 117. [Google Scholar] [CrossRef]
- Kimura, T.; Fujiwara, T.; Kameoka, T.; Adachi, Y.; Kariya, S. The Current Role of Stereotactic Body Radiation Therapy (SBRT) in Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 4383. [Google Scholar] [CrossRef]
- Shampain, K.L.; Hackett, C.E.; Towfighi, S.; Aslam, A.; Masch, W.R.; Harris, A.C.; Chang, S.D.; Khanna, K.; Mendiratta, V.; Gabr, A.M.; et al. SBRT for HCC: Overview of technique and treatment response assessment. Abdom. Radiol. 2021, 46, 3615–3624. [Google Scholar] [CrossRef]
- Guglielmi, A.; Ruzzenente, A.; Conci, S.; Valdegamberi, A.; Iacono, C. How much remnant is enough in liver resection? Dig. Surg. 2012, 29, 6–17. [Google Scholar] [CrossRef]
- Dawson, L.A.; Zhu, A.; Knox, J.; Krishnan, S.; Craig, T.; Guha, C.; Kachnic, L.; Gillin, M.T.; Hong, T.S.; Winter, K. Radiation Therapy Oncology Group RTOG 1112 randomized phase III study of sorafenib versus stereotactic body radiation therapy followed by sorafenib in hepatocellular carcinoma. Available online: https://www.ctsu.org (accessed on 9 May 2023).
- Peng, Y.; Wei, Q.; He, Y.; Xie, Q.; Liang, Y.; Zhang, L.; Xia, Y.; Li, Y.; Chen, W.; Zhao, J.; et al. ALBI versus child-pugh in predicting outcome of patients with HCC: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 383–400. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Kudo, M.; Hirooka, M.; Tsuji, K.; Itobayashi, E.; Kariyama, K.; Ishikawa, T.; Tajiri, K.; Ochi, H. Albumin-bilirubin (ALBI) grade as part of the evidence-based clinical practice guideline for HCC of the Japan Society of Hepatology: A comparison with the liver damage and Child-Pugh classifications. Liver Cancer 2017, 6, 204–215. [Google Scholar] [CrossRef]
- Pinato, D.J.; Sharma, R.; Allara, E.; Yen, C.; Arizumi, T.; Kubota, K.; Bettinger, D.; Jang, J.W.; Smirne, C.; Kim, Y.W. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J. Hepatol. 2017, 66, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.J.; Sykes, J.; Brierley, J.; Kim, J.J.; Wong, R.K.S.; Ringash, J.; Craig, T.; Velec, M.; Lindsay, P.; Knox, J.J.; et al. Baseline Albumin-Bilirubin (ALBI) Score in Western Patients With Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy (SBRT). Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 900–909. [Google Scholar] [CrossRef]
- Demirtas, C.O.; D’Alessio, A.; Rimassa, L.; Sharma, R.; Pinato, D.J. ALBI grade: Evidence for an improved model for liver functional estimation in patients with hepatocellular carcinoma. JHEP Rep. 2021, 3, 100347. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Lai, P.B.; O’Beirne, J.; Chong, C.C.; Berhane, S.; Reeves, H.; Manas, D.; Fox, R.P.; Yeo, W.; Mo, F.; et al. Long-term impact of liver function on curative therapy for hepatocellular carcinoma: Application of the ALBI grade. Br. J. Cancer 2016, 114, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Violi, N.V.; Duran, R.; Guiu, B.; Cercueil, J.P.; Aube, C.; Digklia, A.; Pache, I.; Deltenre, P.; Knebel, J.F.; Denys, A. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: A randomised controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2018, 3, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. Oncologist 2019, 24, e990–e1005. [Google Scholar] [CrossRef]
- Park, S.; Jung, J.; Cho, B.; Kim, S.Y.; Yun, S.C.; Lim, Y.S.; Lee, H.C.; Park, J.; Park, J.H.; Kim, J.H.; et al. Clinical outcomes of stereotactic body radiation therapy for small hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2020, 35, 1953–1959. [Google Scholar] [CrossRef]
- Mathew, A.S.; Atenafu, E.G.; Owen, D.; Maurino, C.; Brade, A.; Brierley, J.; Dinniwell, R.; Kim, J.; Cho, C.; Ringash, J. Long term outcomes of stereotactic body radiation therapy for hepatocellular carcinoma without macrovascular invasion. Eur. J. Cancer 2020, 134, 41–51. [Google Scholar] [CrossRef]
- Yoon, S.M.; Kim, S.Y.; Lim, Y.-S.; Kim, K.M.; Shim, J.H.; Lee, D.; An, J.; Jung, J.; Kim, J.H.; Lee, H.C. Stereotactic body radiation therapy for small (≤5 cm) hepatocellular carcinoma not amenable to curative treatment: Results of a single-arm, phase II clinical trial. Clin. Mol. Hepatol. 2020, 26, 506. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Koh, Y.H.; Kim, B.H.; Kim, M.J.; Lee, J.H.; Park, B.; Park, J.W. Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcinoma: A randomized phase III trial. J. Hepatol. 2021, 74, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.R.; Stenmark, M.H.; Tao, Y.; Pollom, E.L.; Caoili, E.M.; Lawrence, T.S.; Schipper, M.J.; Feng, M. Outcomes After Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J. Clin. Oncol. 2016, 34, 452–459. [Google Scholar] [CrossRef]
- Hara, K.; Takeda, A.; Tsurugai, Y.; Saigusa, Y.; Sanuki, N.; Eriguchi, T.; Maeda, S.; Tanaka, K.; Numata, K. Radiotherapy for Hepatocellular Carcinoma Results in Comparable Survival to Radiofrequency Ablation: A Propensity Score Analysis. Hepatology 2019, 69, 2533–2545. [Google Scholar] [CrossRef]
- Kim, N.; Cheng, J.; Jung, I.; Der Liang, J.; Shih, Y.L.; Huang, W.-Y.; Kimura, T.; Lee, V.H.; Zeng, Z.C.; Zhenggan, R. Stereotactic body radiation therapy vs. radiofrequency ablation in Asian patients with hepatocellular carcinoma. J. Hepatol. 2020, 73, 121–129. [Google Scholar] [CrossRef]
- Parikh, N.D.; Marshall, V.D.; Green, M.; Lawrence, T.S.; Razumilava, N.; Owen, D.; Singal, A.G.; Feng, M. Effectiveness and cost of radiofrequency ablation and stereotactic body radiotherapy for treatment of early-stage hepatocellular carcinoma: An analysis of SEER-medicare. J. Med. Imaging Radiat. Oncol. 2018, 62, 673–681. [Google Scholar] [CrossRef]
- Rajyaguru, D.J.; Borgert, A.J.; Smith, A.L.; Thomes, R.M.; Conway, P.D.; Halfdanarson, T.R.; Truty, M.J.; Kurup, A.N.; Go, R.S. Radiofrequency Ablation Versus Stereotactic Body Radiotherapy for Localized Hepatocellular Carcinoma in Nonsurgically Managed Patients: Analysis of the National Cancer Database. J. Clin. Oncol. 2018, 36, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.X.; Fu, Y.Z.; Hu, D.D.; Long, Q.; Wang, J.C.; Xi, M.; Liu, S.L.; Xu, L.; Liu, M.Z.; Chen, M.S.; et al. Stereotactic Body Radiotherapy vs. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Front. Oncol. 2020, 10, 1639. [Google Scholar] [CrossRef]
- Lee, J.; Shin, I.-S.; Yoon, W.S.; Koom, W.S.; Rim, C.H. Comparisons between radiofrequency ablation and stereotactic body radiotherapy for liver malignancies: Meta-analyses and a systematic review. Radiother. Oncol. 2020, 145, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ke, Q.; Huang, Q.; Shao, L.; Chen, J.; Wu, J. Stereotactic body radiotherapy versus radiofrequency ablation for hepatocellular carcinoma: A systematic review and meta-analysis. Int. J. Hyperth. 2020, 37, 1313–1321. [Google Scholar] [CrossRef]
- Sapir, E.; Tao, Y.; Schipper, M.J.; Bazzi, L.; Novelli, P.M.; Devlin, P.; Owen, D.; Cuneo, K.C.; Lawrence, T.S.; Parikh, N.D. Stereotactic body radiation therapy as an alternative to transarterial chemoembolization for hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, D.; Gkika, E.; Schultheiss, M.; Glaser, N.; Lange, S.; Maruschke, L.; Buettner, N.; Kirste, S.; Nestle, U.; Grosu, A.L.; et al. Comparison of local tumor control in patients with HCC treated with SBRT or TACE: A propensity score analysis. BMC Cancer 2018, 18, 807. [Google Scholar] [CrossRef] [PubMed]
- Su, T.S.; Liang, P.; Zhou, Y.; Huang, Y.; Cheng, T.; Qu, S.; Chen, L.; Xiang, B.D.; Zhao, C.; Huang, D.J.; et al. Stereotactic Body Radiation Therapy vs. Transarterial Chemoembolization in Inoperable Barcelona Clinic Liver Cancer Stage a Hepatocellular Carcinoma: A Retrospective, Propensity-Matched Analysis. Front. Oncol. 2020, 10, 347. [Google Scholar] [CrossRef]
- Bush, D.A.; Smith, J.C.; Slater, J.D.; Volk, M.L.; Reeves, M.E.; Cheng, J.; Grove, R.; de Vera, M.E. Randomized Clinical Trial Comparing Proton Beam Radiation Therapy with Transarterial Chemoembolization for Hepatocellular Carcinoma: Results of an Interim Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 477–482. [Google Scholar] [CrossRef]
- Randomized Phase III Clinical Trial of Stereotactic Body Radiation Therapy Versus Transarterial Chemoembolization in Hepatocellular Carcinoma. Available online: https://www.iaea.org/projects/crp/e33036 (accessed on 9 May 2023).
- Salem, R.; Gabr, A.; Riaz, A.; Mora, R.; Ali, R.; Abecassis, M.; Hickey, R.; Kulik, L.; Ganger, D.; Flamm, S. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1000-patient 15-year experience. Hepatology 2018, 68, 1429–1440. [Google Scholar] [CrossRef]
- Swersky, A.; Kulik, L.; Kalyan, A.; Grace, K.; Caicedo, J.C.; Lewandowski, R.J.; Salem, R. Contemporary Algorithm for the Management of Hepatocellular Carcinoma in 2021: The Northwestern Approach. In Seminars in Interventional Radiology: 2021; Thieme Medical Publishers, Inc.: New York, NY, USA, 2021; pp. 432–437. [Google Scholar]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Salem, R.; Gordon, A.C.; Mouli, S.; Hickey, R.; Kallini, J.; Gabr, A.; Mulcahy, M.F.; Baker, T.; Abecassis, M.; Miller, F.H.; et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016, 151, 1155–1163.e1152. [Google Scholar] [CrossRef]
- Casadei Gardini, A.; Tamburini, E.; Inarrairaegui, M.; Frassineti, G.L.; Sangro, B. Radioembolization versus chemoembolization for unresectable hepatocellular carcinoma: A meta-analysis of randomized trials. OncoTargets Ther. 2018, 11, 7315–7321. [Google Scholar] [CrossRef]
- Chen, Q.F.; Wu, P.H.; Huang, T.; Shen, L.J.; Huang, Z.L.; Li, W. Efficacy of treatment regimens for advanced hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. Medicine 2019, 98, e17460. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.; Kassab, I.; Massani, M.; Townsend, W.; Singal, A.G.; Soydal, C.; Moreno-Luna, L.; Roberts, L.R.; Chen, V.L.; Parikh, N.D. TACE versus TARE for patients with hepatocellular carcinoma: Overall and individual patient level meta analysis. Cancer Med. 2022, 12, 2590–2599. [Google Scholar] [CrossRef]
- de Bettencourt, M.; Harris, A.; Stang, K.; Cottler, S.; Refaat, T.; Molvar, C.; Thomas, T. Stereotactic Body Radiotherapy and Yttrium-90 in the Treatment of Hepatocellular Carcinoma: A Comparison of Outcomes and Costs. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e36–e37. [Google Scholar] [CrossRef]
- Tanimoto, K.; Rusu, I.; Martin, B.; Price, J.; Thomas, T. Role of Stereotactic Body Radiation Therapy in Patients with Hepatocellular Carcinoma Extensively Pretreated with Transarterial Chemoembolization or Yttrium-90; American Society of Clinical Oncology: Alexandria, VA, USA, 2018. [Google Scholar]
- Campbell, S.; Juloori, A.; Smile, T.; LaHurd, D.; Yu, N.; Woody, N.; Stephans, K. Impact of Prior Y90 Dosimetry on Toxicity and Outcomes Following SBRT for Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Physics 2020, 108, e591–e592. [Google Scholar] [CrossRef]
- Costentin, C.E.; Ferrone, C.R.; Arellano, R.S.; Ganguli, S.; Hong, T.S.; Zhu, A.X. Hepatocellular Carcinoma with Macrovascular Invasion: Defining the Optimal Treatment Strategy. Liver Cancer 2017, 6, 360–374. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Guarino, M.; Cucchetti, A.; Pontillo, G.; Farinati, F.; Benevento, F.; Rapaccini, G.L.; Di Marco, M.; Caturelli, E.; Zoli, M.; Rodolfo, S.; et al. Pattern of macrovascular invasion in hepatocellular carcinoma. Eur. J. Clin. Invest. 2021, 51, e13542. [Google Scholar] [CrossRef] [PubMed]
- Cheung, T.K.; Lai, C.L.; Wong, B.C.; Fung, J.; Yuen, M.F. Clinical features, biochemical parameters, and virological profiles of patients with hepatocellular carcinoma in Hong Kong. Aliment. Pharmacol. Ther. 2006, 24, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.J.; Gao, S.; Zhu, X.; Guo, J.H.; Kou, F.X.; Liu, S.X.; Zhang, X.; Wang, X.D.; Cao, G.; Chen, H.; et al. Combination Therapy of Chemoembolization and Hepatic Arterial Infusion Chemotherapy in Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis Compared with Chemoembolization Alone: A Propensity Score-Matched Analysis. BioMed Res. Int. 2021, 2021, 6670367. [Google Scholar] [CrossRef] [PubMed]
- Cabibbo, G.; Enea, M.; Attanasio, M.; Bruix, J.; Craxi, A.; Camma, C. A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology 2010, 51, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Cheng, A.L.; Meinhardt, G.; Nakajima, K.; De Sanctis, Y.; Llovet, J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J. Hepatol. 2017, 67, 999–1008. [Google Scholar] [CrossRef]
- Cheng, S.; Yang, J.; Shen, F.; Zhou, W.; Wang, Y.; Cong, W.; Yang, G.S.; Cheng, H.; Hu, H.; Gao, C. Multidisciplinary management of hepatocellular carcinoma with portal vein tumor thrombus–Eastern Hepatobiliary Surgical Hospital consensus statement. Oncotarget 2016, 7, 40816. [Google Scholar] [CrossRef]
- Qadan, M.; Kothary, N.; Sangro, B.; Palta, M. The Treatment of Hepatocellular Carcinoma With Portal Vein Tumor Thrombosis. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 174–185. [Google Scholar] [CrossRef]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef]
- Chen, L.T.; Martinelli, E.; Cheng, A.L.; Pentheroudakis, G.; Qin, S.; Bhattacharyya, G.S.; Ikeda, M.; Lim, H.Y.; Ho, G.F.; Choo, S.P.; et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with intermediate and advanced/relapsed hepatocellular carcinoma: A TOS-ESMO initiative endorsed by CSCO, ISMPO, JSMO, KSMO, MOS and SSO. Ann. Oncol. 2020, 31, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Sposito, C.; Bhoori, S.; Romito, R.; Chiesa, C.; Morosi, C.; Maccauro, M.; Marchiano, A.; Bongini, M.; Lanocita, R.; et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study. Hepatology 2013, 57, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Costentin, C.E.; Decaens, T.; Laurent, A.; Nault, J.C.; Paule, B.; Letoublon, C.; Luciani, A.; Calderaro, J.; Adam, R.; Bricault, I.; et al. Sorafenib vs. surgical resection for hepatocellular carcinoma with macrovascular invasion: A propensity score analysis. Liver Int. 2017, 37, 1869–1876. [Google Scholar] [CrossRef]
- Munoz-Schuffenegger, P.; Barry, A.; Atenafu, E.G.; Kim, J.; Brierley, J.; Ringash, J.; Brade, A.; Dinniwell, R.; Wong, R.K.S.; Cho, C.; et al. Stereotactic body radiation therapy for hepatocellular carcinoma with Macrovascular invasion. Radiother. Oncol. 2021, 156, 120–126. [Google Scholar] [CrossRef]
- Shui, Y.; Yu, W.; Ren, X.; Guo, Y.; Xu, J.; Ma, T.; Zhang, B.; Wu, J.; Li, Q.; Hu, Q.; et al. Stereotactic body radiotherapy based treatment for hepatocellular carcinoma with extensive portal vein tumor thrombosis. Radiat. Oncol. 2018, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Jiang, Y.; Zhang, X.; Feng, S.; Zhou, B.; Ye, X.; Xing, H.; Xu, Y.; Shi, J.; Guo, W.; et al. Neoadjuvant Three-Dimensional Conformal Radiotherapy for Resectable Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Randomized, Open-Label, Multicenter Controlled Study. J. Clin. Oncol. 2019, 37, 2141–2151. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Geng, L.; Shen, W.; Sui, C.; Dai, B.; Lu, J.; Pan, M.; Yang, J. Adjuvant stereotactic body radiotherapy after marginal resection for hepatocellular carcinoma with microvascular invasion: A randomised controlled trial. Eur. J. Cancer 2022, 166, 176–184. [Google Scholar] [CrossRef]
- Mohamed, M.; Katz, A.W.; Tejani, M.A.; Sharma, A.K.; Kashyap, R.; Noel, M.S.; Qiu, H.; Hezel, A.F.; Ramaraju, G.A.; Dokus, M.K. Comparison of outcomes between SBRT, yttrium-90 radioembolization, transarterial chemoembolization, and radiofrequency ablation as bridge to transplant for hepatocellular carcinoma. Adv. Radiat. Oncol. 2016, 1, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Sapisochin, G.; Barry, A.; Doherty, M.; Fischer, S.; Goldaracena, N.; Rosales, R.; Russo, M.; Beecroft, R.; Ghanekar, A.; Bhat, M. Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis. J. Hepatol. 2017, 67, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Nugent, F.W.; Hunter, K.; Molgaard, C.; Qamar, A.; Gunturu, K.; Stuart, K.E.; Gordon, F.; Flacke, S. A Randomized Phase II Feasibility Study of Individualized Stereotactic Body Radiation Therapy (SBRT) Versus Transarterial Chemoembolization (TACE) with DEBDOX Beads as a Bridge to Transplant in Hepatocellular Carcinoma (HCC); American Society of Clinical Oncology: Alexandria, VA, USA, 2020. [Google Scholar]
- Lagendijk, J.J.; Raaymakers, B.W.; Van Vulpen, M. The magnetic resonance imaging–linac system. In Seminars in Radiation Oncology: 2014; Elsevier: Amsterdam, The Netherlands, 2014; pp. 207–209. [Google Scholar]
- Stemkens, B.; Glitzner, M.; Kontaxis, C.; de Senneville, B.D.; Prins, F.M.; Crijns, S.P.M.; Kerkmeijer, L.G.W.; Lagendijk, J.J.W.; van den Berg, C.A.T.; Tijssen, R.H.N. Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. Phys. Med. Biol. 2017, 62, 7407–7424. [Google Scholar] [CrossRef]
- Raaymakers, B.W.; Jurgenliemk-Schulz, I.M.; Bol, G.H.; Glitzner, M.; Kotte, A.; van Asselen, B.; de Boer, J.C.J.; Bluemink, J.J.; Hackett, S.L.; Moerland, M.A.; et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys. Med. Biol. 2017, 62, L41–L50. [Google Scholar] [CrossRef] [PubMed]
- Kluter, S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [Google Scholar] [CrossRef]
- Cuccia, F.; Alongi, F.; Belka, C.; Boldrini, L.; Horner-Rieber, J.; McNair, H.; Rigo, M.; Schoenmakers, M.; Niyazi, M.; Slagter, J.; et al. Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat. Oncol. 2021, 16, 183. [Google Scholar] [CrossRef]
- Luterstein, E.; Cao, M.; Lamb, J.; Raldow, A.C.; Low, D.A.; Steinberg, M.L.; Lee, P. Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach. Cureus 2018, 10, e2324. [Google Scholar] [CrossRef]
- Michalet, M.; Bordeau, K.; Cantaloube, M.; Valdenaire, S.; Debuire, P.; Simeon, S.; Portales, F.; Draghici, R.; Ychou, M.; Assenat, E.; et al. Stereotactic MR-Guided Radiotherapy for Pancreatic Tumors: Dosimetric Benefit of Adaptation and First Clinical Results in a Prospective Registry Study. Front. Oncol. 2022, 12, 842402. [Google Scholar] [CrossRef] [PubMed]
- Bohoudi, O.; Bruynzeel, A.M.E.; Senan, S.; Cuijpers, J.P.; Slotman, B.J.; Lagerwaard, F.J.; Palacios, M.A. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother. Oncol. 2017, 125, 439–444. [Google Scholar] [CrossRef]
- Mittauer, K.; Paliwal, B.; Hill, P.; Bayouth, J.E.; Geurts, M.W.; Baschnagel, A.M.; Bradley, K.A.; Harari, P.M.; Rosenberg, S.; Brower, J.V.; et al. A New Era of Image Guidance with Magnetic Resonance-guided Radiation Therapy for Abdominal and Thoracic Malignancies. Cureus 2018, 10, e2422. [Google Scholar] [CrossRef]
- Kashani, R.; Olsen, J.R. Magnetic resonance imaging for target delineation and daily treatment modification. In Seminars in Radiation Oncology: 2018; Elsevier: Amsterdam, The Netherlands, 2018; pp. 178–184. [Google Scholar]
- Chuong, M.D.; Bryant, J.; Mittauer, K.E.; Hall, M.; Kotecha, R.; Alvarez, D.; Romaguera, T.; Rubens, M.; Adamson, S.; Godley, A.; et al. Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided Radiation Therapy With On-Table Adaptive Replanning and Elective Nodal Irradiation for Inoperable Pancreas Cancer. Pract. Radiat. Oncol. 2021, 11, 134–147. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Henke, L.E.; Shaverdian, N.; Mittauer, K.; Wojcieszynski, A.P.; Hullett, C.R.; Kamrava, M.; Lamb, J.; Cao, M.; Green, O.L.; et al. A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Adv. Radiat. Oncol. 2019, 4, 142–149. [Google Scholar] [CrossRef]
- Rogowski, P.; von Bestenbostel, R.; Walter, F.; Straub, K.; Nierer, L.; Kurz, C.; Landry, G.; Reiner, M.; Auernhammer, C.J.; Belka, C.; et al. Feasibility and Early Clinical Experience of Online Adaptive MR-Guided Radiotherapy of Liver Tumors. Cancers 2021, 13, 1523. [Google Scholar] [CrossRef]
- Weykamp, F.; Hoegen, P.; Kluter, S.; Spindeldreier, C.K.; Konig, L.; Seidensaal, K.; Regnery, S.; Liermann, J.; Rippke, C.; Koerber, S.A.; et al. Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Tumors: Initial Clinical Experience and Patient-Reported Outcomes. Front. Oncol. 2021, 11, 610637. [Google Scholar] [CrossRef]
- Fischer-Valuck, B.W.; Henke, L.; Green, O.; Kashani, R.; Acharya, S.; Bradley, J.D.; Robinson, C.G.; Thomas, M.; Zoberi, I.; Thorstad, W.; et al. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv. Radiat. Oncol. 2017, 2, 485–493. [Google Scholar] [CrossRef]
- Hal, W.A.; Straza, M.W.; Chen, X.; Mickevicius, N.; Erickson, B.; Schultz, C.; Awan, M.; Ahunbay, E.; Li, X.A.; Paulson, E.S. Initial clinical experience of Stereotactic Body Radiation Therapy (SBRT) for liver metastases, primary liver malignancy, and pancreatic cancer with 4D-MRI based online adaptation and real-time MRI monitoring using a 1.5 Tesla MR-Linac. PLoS ONE 2020, 15, e0236570. [Google Scholar] [CrossRef] [PubMed]
- van Dams, R.; Wu, T.; Kishan, A. Ablative radiotherapy for liver tumors using stereotactic mri-guidance: A prospective phase I trial. Radiother. Oncol. 2022, 170, 14–20. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, M.; Kwak, Y.K.; Kang, H.J. MRI-guided radiotherapy for PVTT in HCC patients: Evaluation of the efficacy and safety. J. Cancer Res. Clin. Oncol. 2022, 148, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Bijman, R.; Rossi, L.; Janssen, T.; de Ruiter, P.; van Triest, B.; Breedveld, S.; Sonke, J.-J.; Heijmen, B. MR-Linac Radiotherapy—The Beam Angle Selection Problem. Front. Oncol. 2021, 11, 717681. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; LaHurd, D.V.; Balagamwala, E.H.; Chao, S.T.; Suh, J.H.; Xia, P. Treatment planning of VMAT and step-and-shoot IMRT delivery techniques for single fraction spine SBRT: An intercomparative dosimetric analysis and phantom-based quality assurance measurements. J. Appl. Clin. Med. Phys. 2020, 21, 62–68. [Google Scholar] [CrossRef]
- Da Silva Mendes, V.; Nierer, L.; Li, M.; Corradini, S.; Reiner, M.; Kamp, F.; Niyazi, M.; Kurz, C.; Landry, G.; Belka, C. Dosimetric comparison of MR-linac-based IMRT and conventional VMAT treatment plans for prostate cancer. Radiat. Oncol. 2021, 16, 133. [Google Scholar] [CrossRef] [PubMed]
Author | Study | Year | Patients | Modality | Outcomes |
---|---|---|---|---|---|
Park et al. [86] | Retrospective | 2020 | 290 | SABR | 5 y OS 44.9%, 5 y LC 91.3% |
Mathew et al. [87] | Retrospective | 2020 | 436 | SABR | 5 y OS 77.3%, 3 y LR 13.3% |
Yoon et al. [88] | Phase II single arm | 2020 | 50 | SABR | 5 y OS 77.6%, 5 y LC 97.1% |
Kim et al. [89] | Phase III | 2021 | 144 | PBT vs. RFA | 2 y LPFS 94.8% vs. 83.9% (per protocol population), 92.8% vs. 83.2% (intention to treat population), p < 0.001 |
Wahl et al. [90] | Retrospective | 2016 | 224 | SABR vs. RFA | 2 y FFLP 83.8% vs. 80.2%; 2 y OS 46.3% vs. 52.9% (NS); RFA vs. SABR LR hazard ratio 3.94, p = 0.002 |
Hara et al. [91] | Retrospective | 2019 | 231 | SABR vs. RFA | 3 y LC 5.3% vs. 12.9%, p < 0.01; 3 y OS 69.1% vs. 70.4%, p = 0.86 |
Kim et al. [92] | Retrospective | 2020 | 2064 | SABR vs. RFA | 3 y LR 21.2% vs. 27.9%, p < 0.001 |
Rajyagaru et al. [94] | Retrospective (National Cancer Database) | 2018 | 3980 | SABR vs. RFA | 5 y OS 19.3% vs. 29.8%, p < 0.001 |
Pan et al. [95] | Retrospective meta-analysis | 2020 | 2732 | SABR vs. RFA | 3 y LC OR 0.54, p = 0.002 (favor SABR); 2 y OS OR 1.66 p < 0.00001 (favor RFA) |
Lee et al. [96] | Retrospective meta-analysis | 2020 | 2238 | SABR vs. RFA | 2 y LC for HCC and mets 83.8% vs. 71.8%, p = 0.024; 2 y LC for HCC only 84.5% vs. 79.5%, p = 0.431 |
Wang et al. [97] | Retrospective meta-analysis | 2020 | 7928 | SABR vs. RFA | OS pooled HR 1.09, p = 0.63; LC pooled HR tumors > 2 cm 0.42, p = 0.003 (favor SBRT); pooled HR tumors ≤ 2 cm 0.56, p = 0.17 |
Sapir et al. [98] | Retrospective | 2018 | 209 | SABR vs. TACE | 2 y LC: 91% vs. 23%, p < 0.001, 2 y OS 34.9% vs. 54.9%, p = 0.21 |
Bettinger et al. [99] | Retrospective | 2018 | 402 | SABR vs. TACE | 1 y LC 84.8% vs. 74.4%, p = 0.146; median OS 9 vs. 17 mo, p = 0.016. Matched cohort median OS 9 vs. 11 mo, p = 0.989 |
Su et al. [100] | Retrospective | 2020 | 326 | SABR vs. TACE | 5 y OS 62.8% vs. 50.4%, p = 0.29; 5 y PFS 27.5% vs. 14.2%, p = 0.049; 5 y LC: 56.9% vs. 36.6%, p = 0.0047, 5 y intrahepatic control 42.4% vs. 17.7%, p = 0.003 |
Bush et al. [101] | RCT (interim analysis) | 2016 | 69 | PBT vs. TACE | PCR 25% vs. 10% (p = 0.38); 2 y OS 59% both groups; 2 y LC 88% vs. 45%, p = 0.06; 2 y PFS 48% vs. 31%, p = 0.06 |
Salem et al. [105] | Retrospective | 2021 | 162 | Y90 | Objective response rate 88.3%, 3 y OS 86.6% |
SARAH [51] | RCT phase III | 2017 | 467 | Y90 vs. sorafenib | Median OS 8 vs. 9.9 mo, p = 0.18 |
SIRveNIB [52] | RCT phase III | 2018 | 360 | Y90 vs. sorafenib | Median OS 8.8 vs. 10 mo, p = 0.36 |
NRG/RTOG 1112 [46] | RCT (interim analysis) | 2022 | 193 | SABR + sorafenib vs. sorafenib | Median OS 15.8 vs. 12.3 mo, p = 0.0554; median PFS 9.2 vs. 5.5 mo, p = 0.0001 |
Mohamed et al. [130] | Retrospective | 2016 | 60 | SABR, Y90, TACE, and RFA prior to transplant | PCR 28.5%, 75%, 41%, 60% |
deBettencourt et al. [110] | Retrospective | 2021 | 87 | SABR vs. Y90 | 1 y LC 87% vs. 89%, p = 0.76 |
Munoz-Schuffenegger et al. [126] | Retrospective | 2021 | 128 | SABR in HCC with MVI | 1 y LC 87.4%, median OS 18.3 mo |
Shui et al. [127] | Retrospective | 2018 | 70 | SABR in HCC with PVTT | Median OS 10 mo |
Wei et al. [128] | RCT | 2019 | 164 | Neoadjuvant RT + hepatectomy vs. hepatectomy alone | 2 y OS 27.4% vs. 9.3%, p < 0.001; 2 y DFS 13.3% vs. 3.3%, p < 0.001 |
Shi et al. [129] | RCT | 2022 | 76 | Surgery + adjuvant SABR vs. surgery alone | 5 y DFS 65.1% vs. 26.3%, p = 0.005; 5 y OS 75% vs. 53.7%, 0.053 |
Yoon et al. [44] | RCT | 2018 | 90 | TACE + RT vs. sorafenib in HCC with MVI | 12 wk PFS 86.7% vs. 34.3%, p < 0.001; OS 55 vs. 43 wks, p = 0.04 |
Sapisochin et al. [131] | Retrospective | 2017 | 379 | SABR, TACE, RFA bridge to transplant | 5 y survival from transplant listing 61% vs. 56% vs. 61%, p = 0.4 |
Nugent et al. [132] | Phase II (abstract) | 2020 | 60 | SABR vs. TACE bridge to transplant | Time to recurrent or residual disease 10.4 vs. 9.2 mo, p value not available |
Rosenberg et al. [144] | Retrospective | 2018 | 26 (6 HCC, 2 cholangiocarcinoma, 18 metastases) | MRgRT | 2 y OS 60%; PFS 35%; FFLP for HCC 100%; PFS for HCC 33% |
Rogowski et al. [145] | Retrospective | 2021 | 11 (2 cholangio-carcinoma, 9 metastases) | MRgRT | 5 mo local failure 0% |
Weykamp et al. [146] | Prospective observational | 2021 | 20 (2 HCC, 18 metastases) | MRgRT | 1 y LC 88.1%, 1 y OS 84.0% |
Van Dams et al. [149] | Phase I | 2021 | 20 (5 HCC, 3 cholangiocarcinoma, 12 metastases) | MRgRT | 2 y LC 79.6%, 2 y OS 50.7%, median OS 29 mo |
Lee et al. [150] | Retrospective | 2022 | 12 | MRgRT in HCC with PVTT | 1 y intrahepatic control 48.9%, LC 83.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chou, B.; Yalamanchili, A.; Lim, S.N.; Dawson, L.A.; Thomas, T.O. Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy. J. Clin. Med. 2023, 12, 3517. https://doi.org/10.3390/jcm12103517
Liu Y, Chou B, Yalamanchili A, Lim SN, Dawson LA, Thomas TO. Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy. Journal of Clinical Medicine. 2023; 12(10):3517. https://doi.org/10.3390/jcm12103517
Chicago/Turabian StyleLiu, Yirong, Brian Chou, Amulya Yalamanchili, Sara N. Lim, Laura A. Dawson, and Tarita O. Thomas. 2023. "Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy" Journal of Clinical Medicine 12, no. 10: 3517. https://doi.org/10.3390/jcm12103517
APA StyleLiu, Y., Chou, B., Yalamanchili, A., Lim, S. N., Dawson, L. A., & Thomas, T. O. (2023). Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy. Journal of Clinical Medicine, 12(10), 3517. https://doi.org/10.3390/jcm12103517