Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Analyses
2.3. Analyses of the Biochemistry
2.4. Measurement of Carotid–Femoral Pulse Wave Velocity
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blacher, J.; Pannier, B.; Guerin, A.P.; Marchais, S.J.; Safar, M.E.; London, G.M. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 1998, 32, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Bao, W.; Wang, F.; Tang, W. Aortic-Brachial Stiffness Mismatch and Mortality in Peritoneal Dialysis Patients. Kidney Blood Press Res. 2019, 44, 123–132. [Google Scholar] [CrossRef]
- Sipahioglu, M.H.; Kucuk, H.; Unal, A.; Kaya, M.G.; Oguz, F.; Tokgoz, B.; Oymak, O.; Utas, C. Impact of arterial stiffness on adverse cardiovascular outcomes and mortality in peritoneal dialysis patients. Perit. Dial. Int. 2012, 32, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Willum-Hansen, T.; Staessen, J.A.; Torp-Pedersen, C.; Rasmussen, S.; Thijs, L.; Ibsen, H.; Jeppesen, J. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 2006, 113, 664–670. [Google Scholar] [CrossRef]
- Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 9232. [Google Scholar] [CrossRef]
- Suthahar, N.; Meijers, W.C.; Silljé, H.H.W.; Ho, J.E.; Liu, F.T.; de Boer, R.A. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018, 8, 593–609. [Google Scholar] [CrossRef]
- Gehlken, C.; Suthahar, N.; Meijers, W.C.; de Boer, R.A. Galectin-3 in Heart Failure: An Update of the Last 3 Years. Heart Fail. Clin. 2018, 14, 75–92. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, P.L. The Role of Galectin-3 in the Kidneys. Int. J. Mol. Sci. 2016, 17, 565. [Google Scholar] [CrossRef]
- Ou, S.M.; Tsai, M.T.; Chen, H.Y.; Li, F.A.; Lee, K.H.; Tseng, W.C.; Chang, F.P.; Lin, Y.P.; Yang, R.B.; Tarng, D.C. Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression. Biomedicines 2022, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.; Delgado, G.; Wanner, C.; Blouin, K.; Pilz, S.; Tomaschitz, A.; Kleber, M.E.; Dressel, A.; Willmes, C.; Krane, V.; et al. Galectin-3, Renal Function, and Clinical Outcomes: Results from the LURIC and 4D Studies. J. Am. Soc. Nephrol. 2015, 26, 2213–2221. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Sun, C.; Tanaka, H.; Al Rifai, M.; Aguilar, D.; Ndumele, C.; Selvin, E.; Virani, S.S.; Hoogeveen, R.C.; Heiss, G.; et al. Association between circulating Galectin-3 and arterial stiffness in older adults. Vasa 2021, 50, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yin, K.; Zhu, M.; Lin, X.; Fang, Y.; Lu, J.; Li, Z.; Ni, Z. Galectin-3 is associated with arterial stiffness among hemodialysis patients. Biomark Med. 2019, 13, 437–443. [Google Scholar] [CrossRef]
- Oikonomou, E.; Karlis, D.; Tsalamadris, S.; Siasos, G.; Chrysohoou, C.; Vogiatzi, G.; Dimitropoulos, S.; Charalambous, G.; Kouskouni, E.; Tousoulis, D. Galectin-3 and Arterial Stiffness in Patients with Heart Failure: A Pilot Study. Curr. Vasc. Pharmacol. 2019, 17, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Wang, C.H.; Tsai, J.P.; Chen, C.T.; Chen, Y.H.; Hung, S.C.; Hsu, B.G. A Comparison of SARC-F, Calf Circumference, and Their Combination for Sarcopenia Screening among Patients Undergoing Peritoneal Dialysis. Nutrients 2022, 14, 923. [Google Scholar] [CrossRef]
- Hsu, B.G.; Wang, C.H.; Lai, Y.H.; Tsai, J.P. Serum Galectin-3 Level Is Positively Associated with Endothelial Dysfunction in Patients with Chronic Kidney Disease Stage 3 to 5. Toxins 2021, 13, 532. [Google Scholar] [CrossRef]
- Esposito, C.; Machado, P.; Cohen, I.S.; Mehrotra, P.; Savage, M.; Fischman, D.; Davis, M.; Ruggiero, N.; Walinsky, P.; McDonald, M.E.; et al. Comparing Central Aortic Pressures Obtained Using a SphygmoCor Device to Pressures Obtained Using a Pressure Catheter. Am. J. Hypertens 2022, 35, 397–406. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens 2012, 30, 445–448. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Lacolley, P.; Regnault, V.; Laurent, S. Mechanisms of Arterial Stiffening: From Mechanotransduction to Epigenetics. Arterioscler Thromb Vasc Biol 2020, 40, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arter. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial Stiffness in the Heart Disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, Z.; Wang, R.; Zheng, Y.; Li, H.; Yang, L. Galectin-3 Is a Potential Mediator for Atherosclerosis. J. Immunol. Res. 2020, 2020, 5284728. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridonos, M.; McNeill, E.; de Bono, J.P.; Smith, A.; Burnand, K.G.; Channon, K.M.; Greaves, D.R. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arter. Thromb. Vasc. Biol. 2008, 28, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Matute, J.; Lindholt, J.S.; Fernandez-Garcia, C.E.; Benito-Martin, A.; Burillo, E.; Zalba, G.; Beloqui, O.; Llamas-Granda, P.; Ortiz, A.; Egido, J.; et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J. Am. Heart Assoc. 2014, 3, e000785. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.C.; Chou, W.C.; Hung, C.H.; Chu, P.M.; Hsieh, P.L.; Chan, S.H.; Tsai, K.L. Galectin-3 aggravates ox-LDL-induced endothelial dysfunction through LOX-1 mediated signaling pathway. Environ. Toxicol. 2019, 34, 825–835. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, A.C.; Liu, X.; Hadoke, P.W.; Miller, M.R.; Newby, D.E.; Sethi, T. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology 2013, 23, 654–663. [Google Scholar] [CrossRef]
- Barman, S.A.; Chen, F.; Li, X.; Haigh, S.; Stepp, D.W.; Kondrikov, D.; Mahboubi, K.; Bordan, Z.; Traber, P.; Su, Y.; et al. Galectin-3 Promotes Vascular Remodeling and Contributes to Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2018, 197, 1488–1492. [Google Scholar] [CrossRef]
- Barman, S.A.; Li, X.; Haigh, S.; Kondrikov, D.; Mahboubi, K.; Bordan, Z.; Stepp, D.W.; Zhou, J.; Wang, Y.; Weintraub, D.S.; et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L784–L797. [Google Scholar] [CrossRef] [PubMed]
- Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.P.; Hsu, B.G. Arterial stiffness: A brief review. Tzu Chi Med J. 2021, 33, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, X.; Chen, S.; Song, Y.; Zhao, Q.; Gao, X.; Wu, S. Arterial Stiffness Preceding Diabetes: A Longitudinal Study. Circ. Res. 2020, 127, 1491–1498. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Zhou, Z.; Xiao, Y. Emerging roles of Galectin-3 in diabetes and diabetes complications: A snapshot. Rev Endocr Metab. Disord. 2022, 23, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Safar, M.E.; Asmar, R.; Benetos, A.; Blacher, J.; Boutouyrie, P.; Lacolley, P.; Laurent, S.; London, G.; Pannier, B.; Protogerou, A.; et al. Interaction Between Hypertension and Arterial Stiffness. Hypertension 2018, 72, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Dumor, K.; Shoemaker-Moyle, M.; Nistala, R.; Whaley-Connell, A. Arterial Stiffness in Hypertension: An Update. Curr. Hypertens. Rep. 2018, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Oh, B.H. Aging and arterial stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef]
- Mikael, L.R.; Paiva, A.M.G.; Gomes, M.M.; Sousa, A.L.L.; Jardim, P.; Vitorino, P.V.O.; Euzébio, M.B.; Sousa, W.M.; Barroso, W.K.S. Vascular Aging and Arterial Stiffness. Arq. Bras. Cardiol. 2017, 109, 253–258. [Google Scholar] [CrossRef]
- DuPont, J.J.; Kenney, R.M.; Patel, A.R.; Jaffe, I.Z. Sex differences in mechanisms of arterial stiffness. Br. J. Pharmacol. 2019, 176, 4208–4225. [Google Scholar] [CrossRef]
- Nathan, L.; Chaudhuri, G. Estrogens and atherosclerosis. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 477–515. [Google Scholar] [CrossRef]
- Samargandy, S.; Matthews, K.A.; Brooks, M.M.; Barinas-Mitchell, E.; Magnani, J.W.; Janssen, I.; Hollenberg, S.M.; El Khoudary, S.R. Arterial Stiffness Accelerates Within 1 Year of the Final Menstrual Period: The SWAN Heart Study. Arter. Thromb. Vasc. Biol. 2020, 40, 1001–1008. [Google Scholar] [CrossRef]
- Moreau, K.L.; Babcock, M.C.; Hildreth, K.L. Sex differences in vascular aging in response to testosterone. Biol. Sex Differ. 2020, 11, 18. [Google Scholar] [CrossRef]
- Yao, J.; Dong, Z.; Wang, Q.; Li, Z.; Zhang, W.; Lin, W.; Luo, Y.; Li, H.; Guo, X.; Zhang, L.; et al. Clinical Factors Associated with Arterial Stiffness in Chronic Kidney Disease. J. Clin. Med. 2023, 12, 1077. [Google Scholar] [CrossRef]
- Krzanowski, M.; Janda, K.; Dumnicka, P.; Dubiel, M.; Stompór, M.; Kuśnierz-Cabala, B.; Grodzicki, T.; Sułowicz, W. Relationship between aortic pulse wave velocity, selected proinflammatory cytokines, and vascular calcification parameters in peritoneal dialysis patients. J. Hypertens. 2014, 32, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, F.; Dong, S.; Zeng, Q.; Zhang, L. Levels of Serum Phosphorus and Cardiovascular Surrogate Markers. J. Atheroscler. Thromb. 2016, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wolley, M.J.; Hutchison, C.A. Large uremic toxins: An unsolved problem in end-stage kidney disease. Nephrol Dial Transplant 2018, 33 (Suppl. S3), iii6–iii11. [Google Scholar] [CrossRef] [PubMed]
- Butlin, M.; Qasem, A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse 2017, 4, 180–192. [Google Scholar] [CrossRef]
- Butlin, M.; Qasem, A.; Battista, F.; Bozec, E.; McEniery, C.M.; Millet-Amaury, E.; Pucci, G.; Wilkinson, I.B.; Schillaci, G.; Boutouyrie, P.; et al. Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: Comparison with tonometric measurement. J. Hypertens. 2013, 31, 2237–2243; discussion 2243. [Google Scholar] [CrossRef]
Characteristic | All Participants (n = 196) | Group without Aortic Stiffness (n = 148) | Aortic Stiffness Group (n = 48) | p Value |
---|---|---|---|---|
Age (years) | 58.50 ± 14.06 | 56.94 ± 14.67 | 63.31 ± 10.75 | 0.006 * |
Female, n (%) | 109 (55.6) | 93 (62.8) | 16 (33.3) | <0.001 * |
Diabetes, n (%) | 77 (39.3) | 46 (31.1) | 31 (64.6) | <0.001 * |
Hypertension, n (%) | 140 (71.4) | 100 (67.6) | 40 (83.3) | 0.036 * |
Peritoneal dialysis vintage (months) | 49.00 (21.97–83.30) | 43.50 (19.71–81.66) | 53.34 (29.00–100.95) | 0.084 |
Body mass index (kg/m2) | 25.02 ± 4.16 | 24.78 ± 4.26 | 25.76 ± 3.76 | 0.160 |
Waist circumference (cm) | 92.44 ± 10.72 | 91.10 ± 10.93 | 96.56 ± 8.95 | 0.002 * |
Carotid–femoral PWV (m/s) | 9.15 ± 1.60 | 8.45 ± 1.02 | 11.30 ± 1.06 | <0.001 * |
Systolic blood pressure (mm Hg) | 149.15 ± 22.11 | 147.28 ± 21.77 | 154.90 ± 22.38 | 0.038 * |
Diastolic blood pressure (mm Hg) | 85.01 ± 15.01 | 84.68 ± 15.47 | 86.00 ± 13.57 | 0.598 |
Total cholesterol (mg/dL) | 170.24 ± 43.03 | 173.11 ± 45.44 | 161.40 ± 33.44 | 0.101 |
Fasting glucose (mg/dL) | 103.00 (92.00–128.00) | 100.00 (91.00–116.00) | 121.00 (96.50–166.25) | <0.001 * |
Albumin (g/dL) | 3.56 ± 0.36 | 3.57 ± 0.35 | 3.53 ± 0.39 | 0.447 |
Blood urea nitrogen (mg/dL) | 62.92 ± 20.70 | 62.47 ± 20.06 | 64.33 ± 22.71 | 0.588 |
Creatinine (mg/dL) | 10.76 ± 3.04 | 10.74 ± 3.18 | 10.84 ± 2.62 | 0.829 |
Total calcium (mg/dL) | 9.61 ± 0.72 | 9.55 ± 0.72 | 9.79 ± 0.71 | 0.053 |
Phosphorus (mg/dL) | 5.26 ± 1.31 | 5.33 ± 1.36 | 5.05 ± 1.15 | 0.201 |
Calcium–phosphorus product (mg2/dL2) | 50.53 ± 12.96 | 50.89 ± 13.38 | 49.39 ± 11.64 | 0.486 |
Intact parathyroid hormone (pg/mL) | 242.20 (102.51–454.50) | 242.20 (106.50–446.88) | 234.46 (84.83–511.88) | 0.763 |
Galectin-3 (ng/mL) | 82.61 ± 15.97 | 80.56 ± 15.54 | 88.92 ± 15.78 | 0.001 * |
Weekly Kt/V | 2.07 ± 0.45 | 2.11 ± 0.48 | 1.97 ± 0.35 | 0.061 |
Peritoneal Kt/V | 46.93 ± 13.47 | 1.86 ± 0.48 | 1.82 ± 0.36 | 0.575 |
Total clearance of creatinine (L/week) | 58.78 ± 17.83 | 58.72 ± 18.32 | 58.96 ± 16.42 | 0.936 |
Peritoneal clearance of creatinine (L/week) | 46.93 ± 13.47 | 46.05 ± 13.73 | 49.62 ± 12.41 | 0.111 |
CAPD, n (%) | 72 (36.7) | 56 (37.8) | 16 (33.3) | 0.574 |
ARB use, n (%) | 124 (63.3) | 95 (64.2) | 29 (60.4) | 0.638 |
β-blocker use, n (%) | 93 (47.4) | 70 (47.3) | 23 (47.9) | 0.940 |
CCB use, n (%) | 113 (57.7) | 86 (58.1) | 27 (56.3) | 0.821 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Galectin-3, 1 ng/mL | 1.029 | 1.002–1.057 | 0.034 * |
Age, 1 year | 1.044 | 1.011–1.078 | 0.008 * |
Male | 3.479 | 1.548–7.818 | 0.003 * |
Waist circumference, 1 cm | 1.019 | 0.978–1.062 | 0.368 |
Diabetes, present | 2.142 | 0.860–5.335 | 0.102 |
Hypertension, present | 2.215 | 0.722–6.793 | 0.164 |
Systolic blood pressure, 1 mmHg | 1.004 | 0.983–1.025 | 0.700 |
Fasting glucose, 1 mg/dL | 1.005 | 0.995–1.015 | 0.348 |
Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Simple Regression | Multivariate Regression | ||||
r | p Value | Beta | Adjusted R2 Change | p Value | |
Female | −0.330 | <0.001 * | −0.309 | 0.089 | <0.001 * |
Diabetes | 0.387 | <0.001 * | 0.257 | 0.161 | <0.001 * |
Hypertension | 0.123 | 0.086 | – | – | – |
Age (years) | 0.338 | <0.001 * | 0.306 | 0.082 | <0.001* |
Log-PD vintage (months) | 0.056 | 0.433 | – | – | – |
Body mass index (kg/m2) | 0.216 | 0.002 * | – | – | – |
Waist circumference (cm) | 0.332 | <0.001 * | – | – | – |
Systolic blood pressure (mm Hg) | 0.250 | <0.001 * | 0.184 | 0.028 | 0.002 * |
Diastolic blood pressure (mm Hg) | 0.052 | 0.468 | – | – | – |
Total cholesterol (mg/dl) | −0.126 | 0.078 | – | – | – |
Log-Glucose (mg/dL) | 0.372 | <0.001* | – | – | – |
Albumin (g/dL) | −0.077 | 0.284 | – | – | – |
Blood urea nitrogen (mg/dL) | 0.011 | 0.880 | – | – | – |
Creatinine (mg/dL) | −0.014 | 0.841 | – | – | – |
Total calcium (mg/dL) | 0.110 | 0.126 | – | – | – |
Phosphorus (mg/dL) | −0.126 | 0.078 | – | – | – |
Calcium–phosphorus product (mg2/dL2) | −0.090 | 0.207 | – | – | – |
Log-iPTH (pg/mL) | −0.050 | 0.489 | – | – | – |
Galectin-3 (ng/mL) | 0.274 | <0.001 * | 0.184 | 0.031 | 0.001 * |
Log-Weekly Kt/V | −0.101 | 0.159 | – | – | – |
Peritoneal Kt/V | −0.050 | 0.484 | – | – | – |
Total clearance of creatinine (L/week) | 0.022 | 0.763 | – | – | – |
Peritoneal clearance of creatinine (L/week) | 0.133 | 0.067 | – | – | – |
Variables | Serum Galectin-3 (ng/mL) | ||||
---|---|---|---|---|---|
Simple Regression | Multivariate Regression | ||||
r | p Value | Beta | Adjusted R2 Change | p Value | |
Female | −0.067 | 0.352 | – | – | – |
Diabetes | 0.146 | 0.041 * | – | – | – |
Hypertension | 0.160 | 0.025 * | – | – | – |
Age (years) | 0.032 | 0.657 | – | – | – |
Log-PD vintage (months) | 0.111 | 0.121 | – | – | – |
Body mass index (kg/m2) | 0.068 | 0.342 | – | – | – |
Waist circumference (cm) | 0.019 | 0.788 | – | – | – |
Carotid–femoral PWV (m/s) | 0.212 | 0.003 * | 2.741 | 0.070 | <0.001 * |
Systolic blood pressure (mm Hg) | 0.070 | 0.327 | – | – | – |
Diastolic blood pressure (mm Hg) | −0.033 | 0.649 | – | – | – |
Total cholesterol (mg/dl) | 0.025 | 0.727 | – | – | – |
Log-Glucose (mg/dL) | 0.161 | 0.024 * | – | – | – |
Albumin (g/dL) | 0.070 | 0.332 | – | – | – |
Blood urea nitrogen (mg/dL) | 0.003 | 0.969 | – | – | – |
Creatinine (mg/dL) | 0.038 | 0.596 | – | – | – |
Total calcium (mg/dL) | 0.060 | 0.407 | – | – | – |
Phosphorus (mg/dL) | −0.096 | 0.181 | – | – | – |
Calcium–phosphorus product (mg2/dL2) | −0.060 | 0.404 | – | – | – |
Log-iPTH (pg/mL) | −0.028 | 0.701 | – | – | – |
Log-Weekly Kt/V | 0.077 | 0.281 | – | – | – |
Peritoneal Kt/V | 0.146 | 0.041 * | – | – | – |
Total clearance of creatinine (L/week) | −0.041 | 0.573 | – | – | – |
Peritoneal clearance of creatinine (L/week) | 0.037 | 0.611 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-Y.; Huang, C.-S.; Lin, Y.-L.; Chen, Y.-H.; Hung, S.-C.; Tsai, J.-P.; Hsu, B.-G. Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis. J. Clin. Med. 2023, 12, 3519. https://doi.org/10.3390/jcm12103519
Huang P-Y, Huang C-S, Lin Y-L, Chen Y-H, Hung S-C, Tsai J-P, Hsu B-G. Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis. Journal of Clinical Medicine. 2023; 12(10):3519. https://doi.org/10.3390/jcm12103519
Chicago/Turabian StyleHuang, Po-Yu, Chen-Sen Huang, Yu-Li Lin, Yi-Hsin Chen, Szu-Chun Hung, Jen-Pi Tsai, and Bang-Gee Hsu. 2023. "Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis" Journal of Clinical Medicine 12, no. 10: 3519. https://doi.org/10.3390/jcm12103519
APA StyleHuang, P. -Y., Huang, C. -S., Lin, Y. -L., Chen, Y. -H., Hung, S. -C., Tsai, J. -P., & Hsu, B. -G. (2023). Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis. Journal of Clinical Medicine, 12(10), 3519. https://doi.org/10.3390/jcm12103519