The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Eligibility Criteria and Data Extraction
2.3. Risk of Bias
3. Results
3.1. Selected Studies
3.2. Preclinical Studies
3.3. Risk of Bias in Preclinical Studies
3.4. Clinical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Mottron, L.; Bzdok, D. Autism spectrum heterogeneity: Fact or artifact? Mol. Psychiatry 2020, 25, 3178–3185. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Cheroni, C.; Caporale, N.; Testa, G. Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism 2020, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 551–563. [Google Scholar] [CrossRef]
- Trost, B.; Thiruvahindrapuram, B.; Chan, A.J.S.; Engchuan, W.; Higginbotham, E.J.; Howe, J.L.; Loureiro, L.O.; Reuter, M.S.; Roshandel, D.; Whitney, J.; et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022, 185, 4409–4427.e18. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.X.; Rasga, C.; Marques, A.R.; Martiniano, H.; Asif, M.; Vilela, J.; Oliveira, G.; Sousa, L.; Nunes, A.; Vicente, A.M. A Role for Gene-Environment Interactions in Autism Spectrum Disorder Is Supported by Variants in Genes Regulating the Effects of Exposure to Xenobiotics. Front. Neurosci. 2022, 16, 862315. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Richetto, J.; Cattaneo, A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: Focus on biological pathways and epigenetic mechanisms. Neurosci. Biobehav. Rev. 2020, 117, 253–278. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5 APR, 150. [Google Scholar] [CrossRef]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Salazar de Pablo, G.; Pastor Jordá, C.; Vaquerizo-Serrano, J.; Moreno, C.; Cabras, A.; Arango, C.; Hernández, P.; Veenstra-VanderWeele, J.; Simonoff, E.; Fusar-Poli, P.; et al. Systematic Review and Meta-analysis: Efficacy of Pharmacological Interventions for Irritability and Emotional Dysregulation in Autism Spectrum Disorder and Predictors of Response. J. Am. Acad. Child Adolesc. Psychiatry 2022, 62, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics 2022, 19, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Ameis, S.H.; Kassee, C.; Corbett-Dick, P.; Cole, L.; Dadhwal, S.; Lai, M.C.; Veenstra-VanderWeele, J.; Correll, C.U. Systematic review and guide to management of core and psychiatric symptoms in youth with autism. Acta Psychiatr. Scand. 2018, 138, 379–400. [Google Scholar] [CrossRef]
- Gosling, C.J.; Cartigny, A.; Mellier, B.C.; Solanes, A.; Radua, J.; Delorme, R. Efficacy of psychosocial interventions for Autism spectrum disorder: An umbrella review. Mol. Psychiatry 2022, 27, 3647–3656. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, S.; Carbone, E.; Melancia, F.; Buzzelli, V.; Manduca, A.; Campolongo, P.; Pallottini, V.; Trezza, V. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutr. Neurosci. 2022, 25, 898–911. [Google Scholar] [CrossRef] [PubMed]
- González-Domenech, P.J.; Díaz Atienza, F.; García Pablos, C.; Fernández Soto, M.L.; Martínez-Ortega, J.M.; Gutiérrez-Rojas, L. Influence of a Combined Gluten-Free and Casein-Free Diet on Behavior Disorders in Children and Adolescents Diagnosed with Autism Spectrum Disorder: A 12-Month Follow-Up Clinical Trial. J. Autism Dev. Disord. 2020, 50, 935–948. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Chan, R.; Li, L.; Chan, D.; Leung, J.; Leung, T. fan Eating Behaviors and Diet Quality in Chinese Preschoolers with and without Autism Spectrum Disorder: A Case-Control Study. J. Pediatr. 2021, 237, 258–266.e5. [Google Scholar] [CrossRef]
- van der Wurff, I.; Oenema, A.; de Ruijter, D.; Vingerhoets, C.; van Amelsvoort, T.; Rutten, B.; Mulkens, S.; Köhler, S.; Schols, A.; de Groot, R. A Scoping Literature Review of the Relation between Nutrition and ASD Symptoms in Children. Nutrients 2022, 14, 1389. [Google Scholar] [CrossRef]
- Fraguas, D.; Díaz-Caneja, C.M.; Pina-Camacho, L.; Moreno, C.; Durán-Cutilla, M.; Ayora, M.; González-Vioque, E.; De Matteis, M.; Hendren, R.L.; Arango, C.; et al. Dietary Interventions for Autism Spectrum Disorder: A Meta-analysis. Pediatrics 2019, 144, e20183218. [Google Scholar] [CrossRef] [PubMed]
- Karhu, E.; Zukerman, R.; Eshraghi, R.S.; Mittal, J.; Deth, R.C.; Castejon, A.M.; Trivedi, M.; Mittal, R.; Eshraghi, A.A. Nutritional interventions for autism spectrum disorder. Nutr. Rev. 2020, 78, 515–531. [Google Scholar] [CrossRef]
- Cekici, H.; Sanlier, N. Current nutritional approaches in managing autism spectrum disorder: A review. Nutr. Neurosci. 2019, 22, 145–155. [Google Scholar] [CrossRef]
- Parker-Athill, E.; Luo, D.; Bailey, A.; Giunta, B.; Tian, J.; Shytle, R.D.; Murphy, T.; Legradi, G.; Tan, J. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J. Neuroimmunol. 2009, 217, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Hill, R.A. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders. Neurochem. Int. 2015, 89, 170–180. [Google Scholar] [CrossRef]
- Ali, S.; Corbi, G.; Maes, M.; Scapagnini, G.; Davinelli, S. Exploring the impact of flavonoids on symptoms of depression: A systematic review and meta-analysis. Antioxidants 2021, 10, 1644. [Google Scholar] [CrossRef]
- Davinelli, S.; De Stefani, D.; De Vivo, I.; Scapagnini, G. Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends Endocrinol. Metab. 2020, 31, 536–550. [Google Scholar] [CrossRef]
- Hamsalakshmi; Alex, A.M.; Arehally Marappa, M.; Joghee, S.; Chidambaram, S.B. Therapeutic benefits of flavonoids against neuroinflammation: A systematic review. Inflammopharmacology 2022, 30, 111–136. [Google Scholar] [CrossRef] [PubMed]
- Davinelli, S.; Medoro, A.; Ali, S.; Passarella, D.; Intrieri, M.; Scapagnini, G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr. Neuropharmacol. 2023, 21, 651–668. [Google Scholar] [CrossRef]
- Paladini, A.C.; Marder, M.; Viola, H.; Wolfman, C.; Wasowski, C.; Medina, J.H. Flavonoids and the central nervous system: From forgotten factors to potent anxiolytic compounds. J. Pharm. Pharmacol. 1999, 51, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Niescier, R.F.; Lin, Y.C. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021, 479, 180–191. [Google Scholar] [CrossRef]
- Abhishek, M.; Rubal, S.; Rohit, K.; Rupa, J.; Phulen, S.; Gurjeet, K.; Raj, S.A.; Manisha, P.; Alka, B.; Ramprasad, P.; et al. Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. J. Ethnopharmacol. 2022, 293, 115199. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, B.; Crupi, R.; Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Siracusa, R.; Esposito, E.; Cuzzocrea, S. Beneficial Effects of Co-Ultramicronized Palmitoylethanolamide/Luteolin in a Mouse Model of Autism and in a Case Report of Autism. CNS Neurosci. Ther. 2017, 23, 87–98. [Google Scholar] [CrossRef]
- Bhandari, R.; Paliwal, J.K.; Kuhad, A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J. Funct. Foods 2018, 47, 361–375. [Google Scholar] [CrossRef]
- de Mattos, B.d.S.; Soares, M.S.P.; Spohr, L.; Pedra, N.S.; Teixeira, F.C.; de Souza, A.A.; Stefanello, F.M.; Baldissarelli, J.; Gamaro, G.D.; Spanevello, R.M. Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. Int. J. Dev. Neurosci. 2020, 80, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Elesawy, R.O.; El-Deeb, O.S.; Eltokhy, A.K.; Arakeep, H.M.; Ali, D.A.; Elkholy, S.S.; Kabel, A.M. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/Bcl-2 pathway. Biomed. Pharmacother. 2022, 150, 112960. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, E.J.; Turner, K.J.; Fernandez, J.M.; Cifuentes, D.; Ghosh, M.; Ijaz, S.; Jain, R.A.; Kubo, F.; Bill, B.R.; Baier, H.; et al. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 2016, 89, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.A.; Lam, M.; Punzo, A.M.; Li, H.; Lin, B.R.; Ye, K.; Mitchell, G.S.; Chang, Q. 7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome. J. Appl. Physiol. 2012, 112, 704–710. [Google Scholar] [CrossRef]
- Kang, M.S.; Choi, T.Y.; Ryu, H.G.; Lee, D.; Lee, S.H.; Choi, S.Y.; Kim, K.T. Autism-like behavior caused by deletion of vaccinia-related kinase 3 is improved by TrkB stimulation. J. Exp. Med. 2017, 214, 2947–2966. [Google Scholar] [CrossRef]
- Kaur, S.; Sarma, S.J.; Marshall, B.L.; Liu, Y.; Kinkade, J.A.; Bellamy, M.M.; Mao, J.; Helferich, W.G.; Schenk, A.K.; Bivens, N.J.; et al. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci. Rep. 2020, 10, 10902. [Google Scholar] [CrossRef]
- Khalaj, R.; Hajizadeh Moghaddam, A.; Zare, M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. Int. J. Dev. Neurosci. 2018, 69, 80–87. [Google Scholar] [CrossRef]
- Mehta, R.; Bhandari, R.; Kuhad, A. Effects of catechin on a rodent model of autism spectrum disorder: Implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology 2021, 238, 3249–3271. [Google Scholar] [CrossRef] [PubMed]
- Okano, H.; Takashima, K.; Takahashi, Y.; Ojiro, R.; Tang, Q.; Ozawa, S.; Ogawa, B.; Koyanagi, M.; Maronpot, R.R.; Yoshida, T.; et al. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem. Biol. Interact. 2022, 351, 109767. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O. The green tea polyphenol EGCG modulates NGF, BDNF, and CAMKII-α pathways to alleviate neurological damage in autism-induced rats. Acta Pol. Pharm.—Drug Res. 2021, 77, 889–895. [Google Scholar] [CrossRef]
- Serra, D.; Henriques, J.F.; Sousa, F.J.; Laranjo, M.; Resende, R.; Ferreira-Marques, M.; de Freitas, V.; Silva, G.; Peça, J.; Dinis, T.C.P.; et al. Attenuation of Autism-like Behaviors by an Anthocyanin-Rich Extract from Portuguese Blueberries via Microbiota-Gut-Brain Axis Modulation in a Valproic Acid Mouse Model. Int. J. Mol. Sci. 2022, 23, 9259. [Google Scholar] [CrossRef]
- Tassinari, M.; Mottolese, N.; Galvani, G.; Ferrara, D.; Gennaccaro, L.; Loi, M.; Medici, G.; Candini, G.; Rimondini, R.; Ciani, E.; et al. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int. J. Mol. Sci. 2022, 23, 8719. [Google Scholar] [CrossRef] [PubMed]
- Trovò, L.; Fuchs, C.; De Rosa, R.; Barbiero, I.; Tramarin, M.; Ciani, E.; Rusconi, L.; Kilstrup-Nielsen, C. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol. Dis. 2020, 138, 104791. [Google Scholar] [CrossRef]
- Ekici, B. Combination of Steroid and Flavonoid for the Treatment of Regressive Autism. J. Neurosci. Rural Pract. 2020, 11, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Taliou, A.; Zintzaras, E.; Lykouras, L.; Francis, K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin. Ther. 2013, 35, 592–602. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Asadi, S.; Panagiotidou, S. A case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. Int. J. Immunopathol. Pharmacol. 2012, 25, 317–323. [Google Scholar] [CrossRef]
- Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl. Psychiatry 2015, 5, e647. [Google Scholar] [CrossRef]
- Weimer, K.; Gulewitsch, M.D.; Schlarb, A.A.; Schwille-Kiuntke, J.; Klosterhalfen, S.; Enck, P. Placebo effects in children: A review. Pediatr. Res. 2013, 74, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Roth-Cline, M.; Gerson, J.; Bright, P.; Lee, C.S.; Nelson, R.M. Ethical considerations in conducting pediatric research. Handb. Exp. Pharmacol. 2011, 205, 219–244. [Google Scholar] [CrossRef]
- Siafis, S.; Çlray, O.; Schneider-Thoma, J.; Bighelli, I.; Krause, M.; Rodolico, A.; Ceraso, A.; Deste, G.; Huhn, M.; Fraguas, D.; et al. Placebo response in pharmacological and dietary supplement trials of autism spectrum disorder (ASD): Systematic review and meta-regression analysis. Mol. Autism 2020, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019, 59, 152774. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Fan, L.; Wu, X.; Xin, A.; Ren, H.; Wang, X.J. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 2011, 50, 1599–1609. [Google Scholar] [CrossRef]
- Zhou, W.B.; Miao, Z.N.; Zhang, B.; Long, W.; Zheng, F.X.; Kong, J.; Yu, B. Luteolin induces hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neural Regen. Res. 2019, 14, 613–620. [Google Scholar] [CrossRef]
- Crupi, R.; Paterniti, I.; Ahmad, A.; Campolo, M.; Esposito, E.; Cuzzocrea, S. Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression. CNS Neurol. Disord. Drug Targets 2013, 12, 989–1001. [Google Scholar] [CrossRef]
- Cordaro, M.; Cuzzocrea, S.; Crupi, R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants 2020, 9, 216. [Google Scholar] [CrossRef]
- Dajas, F.; Abin-Carriquiry, J.A.; Arredondo, F.; Blasina, F.; Echeverry, C.; Martínez, M.; Rivera, F.; Vaamonde, L. Quercetin in brain diseases: Potential and limits. Neurochem. Int. 2015, 89, 140–148. [Google Scholar] [CrossRef]
- Wróbel-Biedrawa, D.; Grabowska, K.; Galanty, A.; Sobolewska, D.; Podolak, I. A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life 2022, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Ali, F.; Siddique, Y.H. Bioavailability and Pharmaco-therapeutic Potential of Luteolin in Overcoming Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2019, 18, 352–365. [Google Scholar] [CrossRef]
- Veenstra-VanderWeele, J.; O’Reilly, K.C.; Dennis, M.Y.; Uribe-Salazar, J.M.; Amaral, D.G. Translational Neuroscience Approaches to Understanding Autism. Am. J. Psychiatry 2023, 180, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Thurm, A.; Ethridge, S.B.; Soller, M.M.; Petkova, S.P.; Abel, T.; Bauman, M.D.; Brodkin, E.S.; Harony-Nicolas, H.; Wöhr, M.; et al. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes. Brain. Behav. 2022, 21, e12803. [Google Scholar] [CrossRef]
- Kohara, Y.; Kuwahara, R.; Kawaguchi, S.; Jojima, T.; Yamashita, K. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring. Physiol. Behav. 2014, 130, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem. 2011, 95, 270–276. [Google Scholar] [CrossRef]
- Pisani, S.L.; Neese, S.L.; Doerge, D.R.; Helferich, W.G.; Schantz, S.L.; Korol, D.L. Acute genistein treatment mimics the effects of estradiol by enhancing place learning and impairing response learning in young adult female rats. Horm. Behav. 2012, 62, 491–499. [Google Scholar] [CrossRef]
- Ball, E.R.; Caniglia, M.K.; Wilcox, J.L.; Overton, K.A.; Burr, M.J.; Wolfe, B.D.; Sanders, B.J.; Wisniewski, A.B.; Wrenn, C.C. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats. Horm. Behav. 2010, 57, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.K.; Lee, S.W.; Kim, J.H.; Shim, S.; Kim, Y.H.; Song, J.Y.; Koh, H.Y.; Shin, Y.H.; Han, M.Y. Neurodevelopmental Outcomes in Infants Fed with Soy Formula: A Retrospective, National Population-Based Observational Cohort Study. J. Nutr. 2021, 151, 3045–3052. [Google Scholar] [CrossRef]
- Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; et al. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med. 2020, 160, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Siniscalco, D.; Schultz, S.; Brigida, A.L.; Antonucci, N. Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals 2018, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.; Machado, A.S.; von Doellinger, O.; Almeida, M.I.; Barbosa, M.A.; Coelho, R.; Santos, S.G. The contribution of inflammation to autism spectrum disorders: Recent clinical evidence. Methods Mol. Biol. 2019, 2011, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef] [PubMed]
Study | ASD Model | Flavonoid | Intervention Details | Key Findings |
---|---|---|---|---|
(Author, Year, and Reference) | (Duration and Dose) | |||
Abhishek et al. | VPA rat model | Flavonoid-rich extract | From PND 23 to 43 |
|
2022 [31] | (n = 24) | (leuteolin and apigenin) | 20, 40, and 80 mg/kg |
|
| ||||
| ||||
and learning and memory impairments | ||||
Bertolino et al. | VPA mouse model | Luteolin with PEA | PND 15 for 3 months |
|
2017 [32] | (n = 30) | 1 mg/kg | TNF-α, and Bax; | |
| ||||
| ||||
| ||||
Bhandari et al. | PPA rat model | Naringenin | From 2nd day post- |
|
2018 [33] | (n = 50) | surgery till 29th day |
| |
25, 50 and 100 mg/kg |
| |||
| ||||
dysfunction, and perseverative behavior | ||||
De Mattos et al. | Prenatal VPA rat model | Quercetin | From the 6th to the |
|
2020 [34] | (n = 12) | 28th day of gestation |
| |
50 mg/kg | ALA-D; | |||
| ||||
| ||||
Elesawy et al. | VPA rat model | Baicalin | From PND 10 to 42 |
|
2022 [35] | (n = 20) | 100 mg/kg | SOD; | |
| ||||
and social deficits | ||||
Hoffman et al. | Zebrafish larvae CNTNAP2 | Biochanin A | From DPF 4 to 7 |
|
2016 [36] | ASD model | 0.1–1 μM |
| |
(n = 302) |
| |||
Johnson et al. | RTT mouse model | 7,8-dihydroxyflavone | Throughout life |
|
2012 [37] | (n = 67) | (7,8 DHF) | 80 mg/L |
|
| ||||
voluntary wheel running; | ||||
| ||||
Kang et al. | VRK3-deficient mice | 7,8 DHF | 3 days (CT) |
|
2017 [38] | (n > 35) | 11 weeks (AT) |
| |
10 mg/kg |
| |||
Kaur et al. | Exposure to xenoestrogens | Genistein | Dams exposed to |
|
2020 [39] | to induce ASD-like | genistein for 2 weeks |
| |
behavior in California | prior to breeding |
| ||
mice offspring | throughout gestation | carbohydrate metabolism and synthesis (females); | ||
(n = 40) | and lactation |
| ||
250 mg/kg | tyrosine metabolism, and urea cycle (males) | |||
Khalaj et al. | VPA rat model | Hesperetin | From pregnancy to |
|
2018 [40] | (n = 42) | PND 30 |
| |
10–20 mg/kg |
| |||
| ||||
| ||||
Mehta et al. | PPA rat model | Catechin | From 3rd day till |
|
2021 [41] | (n = 60) | 28th day |
| |
(3–4 months of age) | IL-6, IFN-γ, NF-kB, HSP-70, and caspase-3; | |||
50–100 mg/kg |
| |||
locomotor activity | ||||
Okano et al. | LPS rat model | Alpha-glycosyl isoquercitrin | From GD 1 to 18 |
|
2022 [42] | (n = 71) | (AGIQ) | and from PND 0 to 77 |
|
0.25–0.5 % in basal |
| |||
diet | Iba1+ microglia/macrophages, and CD68+; | |||
| ||||
| ||||
neurogenesis and neuroinflammation | ||||
Ozdemir | PPA rat model | Epigallocatechin gallate | From day 5 to 35 in |
|
2020 [43] | (n = 28) | (EGCG) | 21-day-old rats |
|
100 mg/kg |
| |||
Parker-Athill et al. | IL-6/MIA mouse model | Diosmin | Only once |
|
2009 [21] | (n = 22) | 10 mg/kg |
| |
Serra et al. | VPA mouse model | Anthocyanin-rich extract | From PND 30 to 55 |
|
2022 [44] | (n = 16) | 30 mg/kg |
| |
| ||||
| ||||
| ||||
| ||||
behaviors | ||||
Tassinari et al. | Cdkl5 KO mouse model | Luteolin | From PND 90 |
|
2022 [45] | (n = 57) | for 20 days |
| |
10mg/kg | spine maturation; | |||
| ||||
Trovò et al. | Cdkl5 KO mouse model | EGCG | From PND 60 |
|
2020 [46] | (n = 31) | for 30 days |
| |
25 mg/kg |
| |||
Study (Author, Year, and Reference) | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | ||||
---|---|---|---|---|---|---|---|---|---|
Sequence Generation | Baseline Characteristics | Allocation Concealment | Random Housing | Investigator Blinding | Random Outcome Assessment | Blinded Outcome Assessment | Incomplete Outcome Data | Selective Outcome Reporting | |
Abhishek et al., 2022 [31] | High | Low | High | Unclear | Unclear | Unclear | Unclear | Unclear | Low |
Bertolino et al., 2017 [32] | High | Low | High | Unclear | Unclear | Unclear | Unclear | Unclear | Low |
Bhandari et al., 2018 [33] | High | Low | High | Unclear | Unclear | Unclear | Unclear | Low | High |
de Mattos et al., 2020 [34] | High | Low | High | Unclear | Unclear | Unclear | Unclear | Unclear | Low |
Elesawy et al., 2022 [35] | Unclear | Low | Unclear | Unclear | Unclear | Unclear | Unclear | Low | Low |
Hoffman et al., 2016 [36] | High | Unclear | High | Unclear | Unclear | Unclear | Low | Unclear | Low |
Johnson et al., 2012 [37] | High | Low | High | Unclear | Low | Unclear | Low | Unclear | Low |
Kang et al., 2017 [38] | High | Low | High | Unclear | Low | Unclear | Low | Unclear | Low |
Kaur et al., 2020 [39] | Unclear | Low | Unclear | Unclear | Unclear | Low | Unclear | Unclear | Low |
Khalaj et al., 2018 [40] | Unclear | Low | Unclear | Unclear | Unclear | Low | Unclear | Low | Low |
Mehta et al., 2021 [41] | Low | Low | Low | Unclear | Low | Low | Low | Unclear | Low |
Okano et al., 2022 [42] | Unclear | Low | Unclear | Unclear | Unclear | Unclear | Low | High | Low |
Ozdemir 2020 [43] | Unclear | Low | Unclear | Unclear | Unclear | Unclear | Unclear | Low | Low |
Parker-Athill et al., 2009 [21] | High | Low | High | Unclear | Unclear | Unclear | Unclear | Unclear | Low |
Serra et al., 2022 [44] | High | Low | High | Unclear | Low | Unclear | Low | Unclear | Low |
Tassinari et al., 2022 [45] | Unclear | Low | Unclear | Unclear | Low | Unclear | Low | Unclear | Low |
Trovò et al., 2020 [46] | Unclear | Low | Unclear | Unclear | Low | Unclear | Low | Unclear | Low |
Study | Study Design | Study Population | Flavonoids | Intervention Details | Key Findings |
---|---|---|---|---|---|
(Author, Year, and Reference) | (Duration and Dose) | ||||
Bertolino et al. | Case report | A 10-year old | Luteolin with PEA | 12 months |
|
2017 [32] | male child with ASD | 700 mg + 70 mg b.i.d. | stereotypies; | ||
| |||||
Ekici | Open-label study | 17 children (4-8 years old) | Quercitin | 18 months |
|
2020 [47] | (n = 14 boys; n = 3 girls) | 250 mg/day | language skills, and EEG | ||
Taliou et al. | Open-label study | 50 children (4–10 years old) | Luteolin and quercitin | 26 weeks |
|
2013 [48] | (n = 42 boys; n = 8 girls) | 200 mg/day |
| ||
Transient irritability | |||||
Theoharides et al. | Case series | 37 children (4–14 years old) | Luteolin and quercitin | 4 months |
|
2012 [49] | (n = 29 boys; n = 8 girls) | 200 mg/day | and allergy; | ||
| |||||
and social interaction; | |||||
| |||||
Tsilioni et al. | Open-label study | 40 children (4–10 years old) | Luteolin and quercitin | 26 weeks |
|
2015 [50] | (n = 34 boys; n = 6 girls) | 200 mg/day |
| ||
| |||||
daily living skills | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savino, R.; Medoro, A.; Ali, S.; Scapagnini, G.; Maes, M.; Davinelli, S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J. Clin. Med. 2023, 12, 3520. https://doi.org/10.3390/jcm12103520
Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. Journal of Clinical Medicine. 2023; 12(10):3520. https://doi.org/10.3390/jcm12103520
Chicago/Turabian StyleSavino, Rosa, Alessandro Medoro, Sawan Ali, Giovanni Scapagnini, Michael Maes, and Sergio Davinelli. 2023. "The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review" Journal of Clinical Medicine 12, no. 10: 3520. https://doi.org/10.3390/jcm12103520
APA StyleSavino, R., Medoro, A., Ali, S., Scapagnini, G., Maes, M., & Davinelli, S. (2023). The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. Journal of Clinical Medicine, 12(10), 3520. https://doi.org/10.3390/jcm12103520